JP2002339048A - HIGH Al FERRITE STAINLESS STEEL HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE - Google Patents

HIGH Al FERRITE STAINLESS STEEL HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE

Info

Publication number
JP2002339048A
JP2002339048A JP2002122141A JP2002122141A JP2002339048A JP 2002339048 A JP2002339048 A JP 2002339048A JP 2002122141 A JP2002122141 A JP 2002122141A JP 2002122141 A JP2002122141 A JP 2002122141A JP 2002339048 A JP2002339048 A JP 2002339048A
Authority
JP
Japan
Prior art keywords
weight
stainless steel
steel
less
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002122141A
Other languages
Japanese (ja)
Inventor
Retsu Nagabayashi
烈 長林
Yukio Yashima
幸雄 八島
Morihiro Hasegawa
守弘 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002122141A priority Critical patent/JP2002339048A/en
Publication of JP2002339048A publication Critical patent/JP2002339048A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide high Al ferritic stainless steel which has improved high temperature oxidation resistance by reducing the concentration of Mg in the steel to thereby prevent the occurrence of fine bubbles on casting and reduce surface defects in the steel. SOLUTION: The high Al ferrite stainless steel has a composition containing, by weight, <=0.03% C, <=0.25% Si, <=0.25% Mn, <=0.03% P, <=0.001% S, <=0.03% N, 15 to 30% Cr, 3 to 6% Al and 0.01 to 0.2% of one or more kinds selected from rare earth metals and Y, and in which the content of Mg is controlled in <=0.015%. The stainless steel may contain <=4% Mo.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、優れた耐高温酸化特性
を呈する高Alフェライト系ステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high Al ferritic stainless steel exhibiting excellent high temperature oxidation resistance.

【0002】[0002]

【従来の技術】高Alフェライト系ステンレス鋼は、優
れた耐高温酸化特性を呈することから、チムニー材,電
熱材料,排ガス浄化装置の触媒コンバータ基材等として
使用されている。高Alフェライト系ステンレス鋼を基
材に使用したメタリックコンバータは、従来のセラミッ
クコンバータの比較して格段に熱衝撃性が強く、エンジ
ンにより近い場所に設置できる利点をもつ。また、他の
高温酸化性雰囲気に曝される構造用材料等の用途に適し
た材料として注目されている。本発明者等も、この系統
の高Alフェライト系ステンレス鋼の開発を進めてき
た。その一環として、たとえば特開平4−147945
号公報では、希土類金属,Y,アルカリ土類金属等の合
金元素を添加した高Alフェライト系ステンレス鋼を紹
介した。これらの合金元素は、鋼材表面に形成される酸
化皮膜を強固なものにし、鋼材の耐高温酸化特性を向上
させる。また、鋼中に含まれているS等の有害元素を除
去し、或いは固定する作用も呈する。
2. Description of the Related Art High Al ferritic stainless steel is used as a chimney material, an electrothermal material, a catalytic converter base material of an exhaust gas purifying device, etc. because of its excellent high temperature oxidation resistance. Metallic converters using high Al ferritic stainless steel as a base material have significantly higher thermal shock resistance than conventional ceramic converters, and have the advantage that they can be installed closer to the engine. In addition, it is attracting attention as a material suitable for applications such as structural materials exposed to other high-temperature oxidizing atmospheres. The present inventors have also been developing a high Al ferritic stainless steel of this system. For example, Japanese Patent Application Laid-Open No. 4-147945
In this publication, a high Al ferritic stainless steel to which alloy elements such as rare earth metals, Y, and alkaline earth metals are added has been introduced. These alloy elements strengthen the oxide film formed on the surface of the steel material and improve the high-temperature oxidation resistance of the steel material. Further, it also has an action of removing or fixing harmful elements such as S contained in steel.

【0003】[0003]

【発明が解決しようとする課題】近年、ステンレス鋼の
製造にも連続鋳造法が適用されている。ところが、連続
鋳造によって高Alフェライト系ステンレス鋼のスラブ
を製造する際、スラブ表面近傍に微細な管状気泡が発生
し易い。微細な管状気泡は、高Alフェライト系ステン
レス鋼特有の現象であり、スラブの熱延や冷延,加工工
程で肌荒れ,クラック等の表面欠陥を発生させる原因と
なる。この微細気泡は、本発明者等の調査によると、A
rに起因したピンホールとは明らかに異なるパイプ状の
形態をもっている。本発明は、このような問題を解消す
べく案出されたものであり、微細な管状気泡発生の原因
が鋼中Mg濃度にあるとの知見に基づき、鋼中Mg濃度
を低減させて鋳造時の管状気泡発生を防止し、鋼材の表
面欠陥を少なくして耐高温酸化特性を向上させた高Al
フェライト系ステンレス鋼を提供することを目的とす
る。
In recent years, the continuous casting method has been applied to the production of stainless steel. However, when producing a slab of high Al ferritic stainless steel by continuous casting, fine tubular bubbles are likely to be generated near the slab surface. The fine tubular bubbles are a phenomenon peculiar to the high Al ferritic stainless steel, and cause surface defects such as surface roughening and cracks in hot rolling and cold rolling of the slab and in a processing step. According to the investigation by the present inventors, the fine bubbles are A
It has a pipe-like form that is clearly different from the pinhole caused by r. The present invention has been devised to solve such a problem, and based on the finding that the cause of the generation of fine tubular bubbles is the Mg concentration in steel, the present invention reduces the Mg concentration in steel and reduces High Al that prevents the generation of tubular bubbles and reduces the surface defects of steel and improves high-temperature oxidation resistance
An object of the present invention is to provide a ferritic stainless steel.

【0004】[0004]

【課題を解決するための手段】本発明の耐高温酸化性に
優れた高Alフェライト系ステンレス鋼は、その目的を
達成するため、C:0.03重量%以下と、Si:0.
25重量%以下と、Mn:0.25重量%以下と、P:
0.03重量%以下と、S:0.001重量%以下と、
N:0.03重量%以下と、Cr:15〜30重量%
と、Al:3〜6重量%と、希土類金属及びYの1種又
は2種以上:0.01〜0.2重量%を含み、Mg含有
量が0.015重量%以下に規制されている。この高A
lフェライト系ステンレス鋼は、更に4重量%以下のM
oを含んでいても良い。
The high-Al ferritic stainless steel of the present invention having excellent resistance to high-temperature oxidation has a C content of 0.03% by weight or less and a Si content of 0.1%.
25% by weight or less, Mn: 0.25% by weight or less, P:
0.03% by weight or less, S: 0.001% by weight or less,
N: 0.03% by weight or less, Cr: 15 to 30% by weight
, Al: 3 to 6% by weight, one or more rare earth metals and Y: 0.01 to 0.2% by weight, and the Mg content is regulated to 0.015% by weight or less. . This high A
l Ferritic stainless steel further contains 4% by weight or less of M
o may be included.

【0005】このような高Alフェライト系ステンレス
鋼は、Al:3〜6重量%を含む高Alフェライト系ス
テンレス鋼の溶湯に、5〜30重量%のCaF2を含む
CaO−CaF2−Al23系のスラグを接触させた
後、希土類元素及びYの1種又は2種以上を添加し、次
いで連続鋳造することによって得られる。或いは、連続
鋳造の前工程で希土類元素やYの1種又は2種以上を添
加する際、少なくともアルミナ系耐火物でライニングさ
れた容器にAl:3〜6重量%を含む高Alフェライト
系ステンレス鋼の溶湯を収容することにより、鋼中Mg
濃度が低い高Alフェライト系ステンレス鋼が得られ
る。アルミナ系耐火物は、容器の器壁自体を、或いは容
器内面にライニングとして施す何れの形態でも使用され
る。
[0005] Such high-Al ferritic stainless steels, Al: the molten metal of a high Al ferritic stainless steel containing 3 to 6 wt%, CaO-CaF 2 -Al 2 containing CaF 2 5-30 wt% After contacting an O 3 -based slag, one or more of a rare earth element and Y is added, and then continuous casting is performed. Alternatively, a high Al ferritic stainless steel containing at least 3 to 6% by weight of Al in a container lined with an alumina-based refractory when one or more rare earth elements or Y is added in a pre-process of continuous casting. Of molten steel in the steel
A high-Al ferritic stainless steel having a low concentration can be obtained. The alumina-based refractory is used in any form in which the container wall itself of the container or the inner surface of the container is lining.

【0006】[0006]

【作用】本発明の高Alフェライト系ステンレス鋼は、
鋼中Mg濃度を低減させて鋳造時に管状の微細気泡の発
生を防止し、圧延状態で良好な表面性状をもたらして耐
高温酸化特性を向上させたものである。本発明者等は、
高Alフェライト系ステンレス鋼に管状の微細気泡が発
生するメカニズムを調査・研究した。所定の組成をもつ
スラグ−メタルを誘導溶解炉で溶解し、希土類金属,
Y,アルカリ土類金属等を添加した後、定期的に溶湯を
サンプリングした。また、成分調整された溶湯を鋳造
し、気泡の発生状況を観察した。鋼中Mg濃度[Mg]
及び鋼中水素濃度[H]で実験結果を整理したところ、
図1に示す関係が成立していることを見出した。すなわ
ち、鋼中のMg濃度[Mg]が150ppmを超えると
き、得られた鋳片に微細な管状気泡の発生がみられた。
他方、150ppm以下の[Mg]では、3〜4ppm
の範囲で[H]が変動しても、管状気泡の発生は検出さ
れなかった。このことから、微細な管状気泡を発生させ
る主要な原因は、凝固時に溶湯から放出されるMgガス
にあるものと推論した。
The high Al ferritic stainless steel of the present invention
This is to reduce the Mg concentration in steel to prevent the generation of tubular fine bubbles during casting, to provide good surface properties in a rolled state, and to improve high-temperature oxidation resistance. The present inventors,
The mechanism of the generation of tubular microbubbles in high Al ferritic stainless steel was investigated and studied. Slag-metal having a predetermined composition is melted in an induction melting furnace, and rare earth metals,
After adding Y, alkaline earth metal, etc., the molten metal was sampled periodically. In addition, the molten metal whose components were adjusted was cast, and the generation state of bubbles was observed. Mg concentration in steel [Mg]
And when the experimental results were arranged by the hydrogen concentration [H] in steel,
It has been found that the relationship shown in FIG. 1 is established. That is, when the Mg concentration [Mg] in the steel exceeded 150 ppm, generation of fine tubular bubbles was observed in the obtained slab.
On the other hand, for [Mg] of 150 ppm or less, 3 to 4 ppm
Even when [H] fluctuated in the range, generation of tubular bubbles was not detected. From this, it was inferred that the main cause of the generation of fine tubular bubbles was Mg gas released from the molten metal during solidification.

【0007】Al及び希土類金属,Y等を含む高Alフ
ェライト系ステンレス鋼の溶湯においては、Mgに関し
次式(1)〜(3)の反応が生じるものと考えられる。 2[Al]+3(MgO)=(Al23)+3[Mg] ・・・・(1) 2[Y]+3(MgO)=(Y23)+3[Mg] ・・・・(2) 2[Y]+3(MgO)=(Y23)+3Mg(g) ・・・・(3) 式(1)の反応は、Al添加によって[Mg]が増加す
ることによって確認される。すなわち、溶湯にAlを添
加すると、反応式(1)に従ってスラグ中のMgOが還
元され、図2に示すように鋼中Mg濃度[Mg]が増加
する。また、Yを添加したとき、反応式(2)に従って
[Mg]が飽和溶解度まで上昇する。更にYを添加する
と、式(3)に示すようにMgガスが発生する。Mgガ
スは、スラグ層を通過して上昇し、空気に接触したとき
燃焼する。本発明者等は、発生した白煙から粉末を回収
し、成分分析した。その結果、白煙粉末の大部分がMg
Oであることを確認した。
[0007] In a molten metal of a high Al ferritic stainless steel containing Al and rare earth metals, Y, etc., it is considered that the following reactions (1) to (3) occur with respect to Mg. 2 [Al] +3 (MgO) = (Al 2 O 3) +3 [Mg] ···· (1) 2 [Y] +3 (MgO) = (Y 2 O 3) +3 [Mg] ···· ( 2) 2 [Y] +3 (MgO) = (Y 2 O 3 ) + 3Mg (g) (3) The reaction of the formula (1) is confirmed by the increase of [Mg] by the addition of Al. . That is, when Al is added to the molten metal, MgO in the slag is reduced according to the reaction formula (1), and the Mg concentration [Mg] in the steel increases as shown in FIG. When Y is added, [Mg] increases to the saturation solubility according to the reaction formula (2). When Y is further added, Mg gas is generated as shown in equation (3). Mg gas rises through the slag layer and burns when it comes into contact with air. The present inventors collected powder from white smoke generated and analyzed the components. As a result, most of the white smoke powder was Mg
O was confirmed.

【0008】他方、溶湯に添加したYの減少速度を解析
したところ、一次反応で整理できることを見出した。た
とえば、粘性の小さなスラグと接触する溶湯では、鋼中
Y濃度[Y]が急激に減少する。これは、スラグ層をM
gガスが盛んに上昇し、それに伴って式(3)に従った
[Y]の酸化反応が進行することに由来するものと推察
される。このように、[Y]を減少させる反応は、スラ
グ中の反応に関与する元素の拡散に律速され、本系にお
いてはMgが主要な律速因子である。以上の結果から、
高Alフェライト系ステンレス鋼を溶製している状態で
は、鋼中Mg濃度[Mg]が平衡に達しており、溶湯を
鋳造しスラブとして凝固するときに飽和限界を超えた鋼
中Mgが外部に放出され、Mgの放出跡が微細な管状気
泡となってスラブに残るものと考えられる。したがっ
て、気泡の主要な原因である[Mg]を減少させるため
には、温度及び圧力が一定条件下ではMgOの濃度を下
げること、Al23,Y23等の活量を上げること等が
効果的であることが、式(1)及び(2)から予想され
る。
[0008] On the other hand, when the rate of reduction of Y added to the molten metal was analyzed, it was found that it could be arranged by the primary reaction. For example, in a molten metal that comes into contact with slag having low viscosity, the Y concentration [Y] in steel sharply decreases. This means that the slag layer
It is presumed that the g-gas rises vigorously and the oxidation reaction of [Y] according to the formula (3) progresses accordingly. As described above, the reaction for decreasing [Y] is limited by the diffusion of elements involved in the reaction in the slag, and Mg is the main limiting factor in the present system. From the above results,
In the state where the high Al ferritic stainless steel is being melted, the Mg concentration [Mg] in the steel has reached an equilibrium, and when the molten metal is cast and solidified as a slab, the Mg in the steel exceeding the saturation limit becomes outside. It is considered that the released traces of Mg are released as fine tubular bubbles and remain in the slab. Therefore, in order to reduce [Mg] which is a main cause of bubbles, the concentration of MgO should be reduced under a constant temperature and pressure, and the activity of Al 2 O 3 , Y 2 O 3, etc. should be increased. It is expected from Equations (1) and (2) that these are effective.

【0009】Al23の活量を上げるためには、Al2
3の活量を低下させるCaOを相対的に低減するこ
と、換言すればCaO/Al23比を小さくすることが
有効である。しかし、高Alの溶湯を製造する工程で
は、メタルからスラグに移行するAl分が多く、スラグ
中のCaO/Al23比は0.6程度の低いレベルにあ
る。これ以上にCaO/Al23比を下げることは、C
aO−Al23−MgO三元系状態図における1600
℃の液相線からみて限界がある。また、Y23等の活量
を上げることは、有効であるものの、高価なY源を多量
に消費し、製造コストを上昇させる原因となる。そこ
で、本発明者等は、MgOの濃度を低下させる方法とし
て、スラグ中のMgO溶解度を下げる手段を検討した。
そして、種々のスラグについて組成との関連でMgO溶
解度を調査したところ、5〜30重量%のCaF2を含
むCaO−CaF2−Al23系のスラグは、従来から
使用されているCaO−Al23系のスラグに比較し
て、MgO溶解度を大幅に減少させる作用を呈すること
を見出した。
[0009] To increase the activity amount of Al 2 O 3, Al 2
It is effective to relatively reduce CaO, which lowers the activity of O 3 , in other words, to reduce the CaO / Al 2 O 3 ratio. However, in the process of producing a high Al molten metal, a large amount of Al migrates from metal to slag, and the CaO / Al 2 O 3 ratio in the slag is at a low level of about 0.6. Decreasing the CaO / Al 2 O 3 ratio further than this would result in C
aO-Al 2 O 3 1600 in -MgO ternary phase diagram
There is a limit in view of the liquidus at ℃. Increasing the activity of Y 2 O 3 or the like is effective, but consumes a large amount of an expensive Y source and causes an increase in manufacturing cost. Therefore, the present inventors have studied means for reducing the solubility of MgO in slag as a method of reducing the concentration of MgO.
Then, was investigated MgO solubility in relation to the composition for various slag, 5-30 wt% of the CaO-CaF 2 -Al 2 O 3 system slag containing CaF 2 have been used conventionally CaO- It has been found that, compared to slag of the Al 2 O 3 system, an effect of significantly reducing the solubility of MgO is exhibited.

【0010】具体的には、5重量%以上のCaF2を含
むCaO−CaF2−Al23系スラグでは、CaO−
Al23系に比較して[Mg]を0.005重量%程度
或いはそれ以上に低減することが可能であった。[M
g]の減少作用は、CaF2含有量が5重量%を超えた
ときに顕著であった。しかし、30重量%を超える多量
のCaF2を含むCaO−CaF2−Al23系スラグ
は、耐火物の溶損が激しく、炉材の寿命を低下させる。
スラグのMgO溶解度は、アルミナ系耐火物の使用によ
り実質的にゼロにできる。すなわち、スラグ中のMgO
は、ドロマイト系の耐火物から供給される。そこで、ド
ロマイト系に代えアルミナ系耐火物を少なくとも容器の
ライニングに使用するとき、耐火物から供給されるMg
Oがなく、スラグ中のMgOが極めて低い濃度レベルに
規制される。この場合、鋼中Mg濃度[Mg]が50p
pm以下に低下し、管状気泡の発生がみられないスラブ
が得られる。
Specifically, in a CaO—CaF 2 —Al 2 O 3 slag containing 5% by weight or more of CaF 2 , CaO—
[Mg] could be reduced to about 0.005% by weight or more as compared with the Al 2 O 3 system. [M
g] was remarkable when the CaF 2 content exceeded 5% by weight. However, CaO-CaF 2 -Al 2 O 3 slag containing large amounts of CaF 2 of more than 30% by weight, erosion of refractories is severely reduces the life of the furnace material.
The MgO solubility of the slag can be made substantially zero by using an alumina-based refractory. That is, MgO in slag
Is supplied from dolomite refractories. Therefore, when an alumina-based refractory is used at least for lining a container instead of a dolomite-based material, Mg supplied from the refractory is used.
There is no O and MgO in the slag is regulated to a very low concentration level. In this case, the Mg concentration in steel [Mg] is 50p
pm or less, and a slab free of tubular bubbles is obtained.

【0011】ところで、Mgは希土類金属やYと同様に
耐高温酸化特性を向上させる元素であるが、上記したよ
うに鋼中Mg濃度が上昇するとスラブに管状気泡が発生
し易くなる。そして管状気泡が発生したスラブを圧延す
ると管状気泡は鋼材の表面性状を悪化させ、結果的に耐
高温酸化特性を低下させる。そこで、本発明の高Alフ
ェライト系ステンレス鋼においては、鋳造時の管状気泡
の発生を抑え、表面性状が良好なスラブや熱延鋼板を得
る観点から、Mg含有量の上限を0.015重量%に規
制した。また、本発明のステンレス鋼には、Mg以外に
合金元素を所定の含有量で含んでいる。以下、各合金元
素及びその含有量を説明する。
By the way, Mg is an element which improves high-temperature oxidation resistance like rare earth metals and Y. However, as described above, when the Mg concentration in steel increases, tubular bubbles are easily generated in the slab. When the slab in which the tubular bubbles are generated is rolled, the tubular bubbles deteriorate the surface properties of the steel material, and as a result, the high-temperature oxidation resistance is reduced. Therefore, in the high-Al ferritic stainless steel of the present invention, the upper limit of the Mg content is set to 0.015% by weight from the viewpoint of suppressing the generation of tubular bubbles during casting and obtaining a slab or a hot-rolled steel sheet having good surface properties. Regulated. Further, the stainless steel of the present invention contains an alloy element in a predetermined content other than Mg. Hereinafter, each alloy element and its content will be described.

【0012】C:0.03重量%以下 高Alフェライト系ステンレス鋼においては、耐酸化性
に悪影響を与える有害元素である。C含有量の増加に応
じて、異常酸化が発生し易くなる。また、スラブ又はホ
ットコイルの靭性を劣化させる原因ともなる。Si:0.25重量%以下 Siは、一般に耐高温酸化特性に対し有効な合金元素で
あるとされている。しかし、高Alフェライト系ステン
レス鋼では、Si含有量を低減することにより耐高温酸
化特性が著しく改善される。Si含有量低減による影響
は、Mn含有量の規制と相俟って顕著になる。Mn:0.25重量%以下 熱間加工性の改善に有効な合金元素であるものの、高A
lフェライト系ステンレス鋼においては耐高温酸化特性
に悪影響を及ぼす。そこで、耐高温酸化特性を確保する
ため、Mn含有量を0.25重量%未満に低減する。ま
た、Mn含有量の低減によって、靭性の向上も図られ
る。
C: 0.03 wt% or less In high Al ferritic stainless steel, it is a harmful element that has a bad influence on oxidation resistance. As the C content increases, abnormal oxidation tends to occur. Further, it also causes deterioration of the toughness of the slab or the hot coil. Si: 0.25% by weight or less Si is generally considered to be an effective alloy element for high-temperature oxidation resistance. However, in high Al ferritic stainless steel, the high-temperature oxidation resistance is significantly improved by reducing the Si content. The effect of reducing the Si content becomes remarkable in conjunction with the regulation of the Mn content. Mn: 0.25% by weight or less Although it is an alloy element effective for improving hot workability, it has a high A
(1) Ferritic stainless steel adversely affects high-temperature oxidation resistance. Therefore, in order to secure high-temperature oxidation resistance, the Mn content is reduced to less than 0.25% by weight. In addition, toughness is improved by reducing the Mn content.

【0013】P:0.03重量%以下 耐高温酸化特性に悪影響を与える元素であることから、
P含有量は低いほど好ましい。また、P含有量を低減す
るとき、熱延板の靭性も向上する。S:0.001重量%以下 希土類金属,Y等と結合し、非金属介在物となって鋼材
の表面性状を劣化させる。また、耐高温酸化特性に有効
な希土類金属,Y等を消費することから、多量のSを含
むとき、損失分を見込んで多量の希土類金属,Y等を添
加することが必要になる。しかも、希土類金属,Y等と
の反応が一定化しないため、添加した希土類金属,Y等
の歩留りに大きくバラツキが生じる結果となる。したが
って、本発明においては、S含有量を0.001重量%
以下と厳しく規制することが必要である。N:0.03重量%以下 鋼材の靭性を低下させる有害元素である。また、耐高温
酸化特性に有効なAl量をAlNの生成により消費し、
異常酸化発生の原因となる。したがって、N含有量は、
上限を0.03重量%に設定する。
P: 0.03% by weight or less P is an element that has an adverse effect on high-temperature oxidation resistance properties.
The lower the P content, the better. Further, when the P content is reduced, the toughness of the hot-rolled sheet is also improved. S: 0.001% by weight or less Bonds with rare earth metals, Y, etc., and becomes nonmetallic inclusions, deteriorating the surface properties of the steel material. Further, since rare earth metal, Y, and the like effective for high-temperature oxidation resistance are consumed, when a large amount of S is contained, it is necessary to add a large amount of rare earth metal, Y, etc. in anticipation of loss. In addition, since the reaction with the rare earth metal, Y or the like is not constant, the yield of the added rare earth metal, Y or the like greatly varies. Therefore, in the present invention, the S content is 0.001% by weight.
It is necessary to regulate strictly as follows. N: 0.03% by weight or less N is a harmful element that lowers the toughness of the steel material. In addition, the amount of Al effective for high-temperature oxidation resistance is consumed by the generation of AlN,
It causes abnormal oxidation. Therefore, the N content is
The upper limit is set to 0.03% by weight.

【0014】Cr:15〜30重量% 本発明に従った高Alフェライトステンレス鋼における
基本的な合金元素であり、15重量%以上のCr含有で
耐高温酸化特性の改善に顕著な効果がみられる。しか
し、25重量%を超える多量のCr含有は、スラブ又は
ホットコイルの靭性を劣化させ、製造性が悪くなる。Al:3〜6重量% Crと同様に、耐高温酸化特性を確保する上で必要な合
金元素である。箔材料等の形態で使用するとき、異常酸
化の発生を抑制するために3重量%以上のAl含有が必
要とされる。しかし、6重量%を超える多量のAl含有
は、スラブ又はホットコイルの靭性を劣化させ、製造性
を悪くする。希土類金属,Y及びアルカリ土類金属の1種又は2種以
上:0.01〜0.2重量% これら合金元素は、鋼材表面に生成する酸化皮膜の保護
作用を著しく改善し、また下地鋼に対する酸化皮膜の密
着性を向上させる。その結果、高Alフェライトステン
レス鋼の耐高温酸化特性が改善される。このような効果
は、含有量が0.01重量%以上になると顕著に現れ
る。しかし、0.2重量%を超えて多量に含有される
と、熱間加工性及び靭性の劣化によって製造が困難にな
るばかりでなく、多量の介在物生成により鋼材の表面性
状を劣化させる原因になる。
Cr: 15 to 30% by weight Cr is a basic alloying element in the high-Al ferritic stainless steel according to the present invention. When Cr is contained in an amount of 15% by weight or more, a remarkable effect on improvement in high-temperature oxidation resistance is observed. . However, a large amount of Cr exceeding 25% by weight deteriorates the toughness of the slab or the hot coil, resulting in poor manufacturability. Al: 3 to 6% by weight Like Cr, it is an alloy element necessary for ensuring high-temperature oxidation resistance. When used in the form of a foil material or the like, 3% by weight or more of Al is required to suppress the occurrence of abnormal oxidation. However, a large content of Al exceeding 6% by weight deteriorates the toughness of the slab or the hot coil and deteriorates the manufacturability. One or more rare earth metals, Y and alkaline earth metals
Above: 0.01 to 0.2% by weight These alloy elements remarkably improve the protective effect of the oxide film formed on the surface of the steel material and improve the adhesion of the oxide film to the base steel. As a result, the high temperature oxidation resistance of the high Al ferritic stainless steel is improved. Such an effect becomes remarkable when the content is 0.01% by weight or more. However, when it is contained in a large amount exceeding 0.2% by weight, not only the production becomes difficult due to the deterioration of hot workability and toughness, but also the formation of a large amount of inclusions deteriorates the surface properties of the steel material. Become.

【0015】Mo:4重量%以下 本発明においては、必要に応じて添加される任意元素で
あるが、Moを添加することによって鋼の耐高温酸化性
が著しく改善され、なおかつ高温強度も改善される。し
かし、Moの過剰添加は鋼の靭性を劣化させ、清掃性を
悪くする原因ともなるので、最高4重量%までとする。
更に、本発明の高Alフェライト系ステンレス鋼は、C
及び/又はNを固定するNb,V,Ti等を添加するこ
とにより、靭性を向上させることもできる。過酷な高温
雰囲気に曝される用途にあっては、Nb,V,Ti等を
0.05重量%以上添加することにより、高温強度を改
善することが有効である。
Mo: not more than 4% by weight In the present invention, although it is an optional element added as necessary, the addition of Mo significantly improves the high-temperature oxidation resistance of steel and the high-temperature strength. You. However, excessive addition of Mo deteriorates the toughness of the steel and causes the cleaning property to deteriorate, so that the maximum content is 4% by weight.
Furthermore, the high Al ferritic stainless steel of the present invention
And / or the addition of Nb, V, Ti or the like for fixing N can also improve toughness. For applications exposed to a severe high-temperature atmosphere, it is effective to improve the high-temperature strength by adding 0.05% by weight or more of Nb, V, Ti, and the like.

【0016】[0016]

【実施例】実施例1:表1に成分を調整したステンレス
鋼溶湯82トンを溶製した。表2は、このときのスラグ
組成を示す。VODを大気に開放し、0.2重量%に相
当する410kgのYを添加した。そして、Arガス吹
込みにより溶湯を3分間撹拌した後、連続鋳造工程に送
り鋳造した。組成を表1に併せ示すように得られたスラ
ブのMg濃度[Mg]は0.008重量%であり、スラ
ブ中に管状気泡は観察されなかった。このスラブを熱延
することにより、肌荒れ等の欠陥がない良好な表面性状
を持つ鋼板が得られた。このときのスラブ研削歩留りは
98%,酸洗後の疵取り歩留りは99.5%であった。
EXAMPLE 1 82 tons of molten stainless steel whose components were adjusted as shown in Table 1 were produced. Table 2 shows the slag composition at this time. The VOD was opened to the atmosphere and 410 kg of Y was added, corresponding to 0.2% by weight. Then, the molten metal was stirred for 3 minutes by blowing Ar gas, and then sent to a continuous casting step to perform casting. As shown in Table 1, the slab obtained had a Mg concentration [Mg] of 0.008% by weight, and no tubular bubbles were observed in the slab. By hot rolling this slab, a steel sheet having good surface properties without defects such as rough skin was obtained. The slab grinding yield at this time was 98%, and the flaw removal yield after pickling was 99.5%.

【0017】 [0017]

【0018】 [0018]

【0019】実施例2:Al23系耐火物でライニング
した取鍋を使用し、表3に示すように成分調整したステ
ンレス鋼溶湯82トンを溶製した。表4は、このときの
スラグ組成を示す。VODを大気に開放し、実施例1と
同じ条件下でYを添加し、溶湯を3分間撹拌した後、連
続鋳造工程に送り鋳造した。得られたスラブの組成を、
表3に併せ示す。スラブは、0.08重量%のY及び
0.004重量%のMgを含んでいた。また、スラブ中
に管状気泡は観察されず、実施例1と同様に肌荒れ等の
欠陥がない良好な表面性状を持つ鋼板に圧延できた。こ
のときのスラブ研削歩留りは98%,酸洗後の疵取り歩
留りは99.7%であった。
Example 2 Using a ladle lined with an Al 2 O 3 refractory, 82 tons of molten stainless steel whose components were adjusted as shown in Table 3 were produced. Table 4 shows the slag composition at this time. The VOD was released to the atmosphere, Y was added under the same conditions as in Example 1, the melt was stirred for 3 minutes, and then sent to a continuous casting step to perform casting. The composition of the obtained slab,
The results are shown in Table 3. The slab contained 0.08 wt% Y and 0.004 wt% Mg. Further, no tubular bubbles were observed in the slab, and as in Example 1, it was rolled into a steel sheet having good surface properties without defects such as rough skin. The slab grinding yield at this time was 98%, and the flaw removal yield after pickling was 99.7%.

【0020】 [0020]

【0021】 [0021]

【0022】比較例:表5に示すように成分調整したス
テンレス鋼溶湯82トンを溶製した。表6は、このとき
のスラグ組成を示す。VODを大気に開放し、実施例1
と同じ条件下でYを添加し、溶湯を3分間撹拌した後、
連続鋳造工程に送り鋳造した。得られたスラブの組成
を、表5に併せ示す。スラブは、0.07重量%のY及
び0.016重量%のMgを含んでいた。スラブ中に
は、微細な管状気泡が発生していた。このスラブから製
造された熱延鋼板には、管状気泡に由来する表面疵が発
生していた。このときのスラブ研削歩留りは96%,酸
洗後の疵取り歩留りは94.9%であった。
Comparative Example: 82 tons of molten stainless steel whose components were adjusted as shown in Table 5 were produced. Table 6 shows the slag composition at this time. VOD was released to the atmosphere, and Example 1
After adding Y under the same conditions as above and stirring the molten metal for 3 minutes,
It was sent to a continuous casting process and cast. Table 5 also shows the composition of the obtained slab. The slab contained 0.07 wt% Y and 0.016 wt% Mg. Fine tubular bubbles were generated in the slab. The hot rolled steel sheet produced from this slab had surface defects derived from tubular bubbles. At this time, the slab grinding yield was 96%, and the flaw removal yield after pickling was 94.9%.

【0023】 [0023]

【0024】 [0024]

【0025】実施例3:表7に示す成分に調整したステ
ンレス鋼溶湯82トンを溶製した。表8は、このときの
スラグ組成を示す。VODを大気開放し、0.2重量%
に相当する410kgのYを添加した。Arガス吹き込
みにより3分間撹拌した後、連続鋳造工程に送りスラブ
に鋳造した。得られたスラブは、組成を表7に併せ示す
ように、Mg濃度[Mg]が0.007%であり、スラ
ブ中に管状気泡は観察されなかった。このスラブを熱延
することにより、表面疵の少ない良好な表面性状をもつ
鋼板が得られた。このときのスラブの研削歩留りは98
%,酸洗後の疵取り歩留りは99.5%であった。
Example 3 82 tons of molten stainless steel adjusted to the components shown in Table 7 were produced. Table 8 shows the slag composition at this time. VOD released to atmosphere, 0.2% by weight
410 kg of Y was added. After stirring for 3 minutes by blowing Ar gas, the mixture was sent to a continuous casting step and cast into a slab. As shown in Table 7, the obtained slab had a Mg concentration [Mg] of 0.007%, and no tubular bubbles were observed in the slab. By hot rolling this slab, a steel sheet having few surface flaws and good surface properties was obtained. The slab grinding yield at this time is 98.
%, And the yield of removing flaws after pickling was 99.5%.

【0026】 [0026]

【0027】 [0027]

【0028】実施例4:Al23系耐火物をライニング
した取鍋を使用し、表9に示す成分に調整したステンレ
ス鋼溶湯82トンを溶製した。表10は、このときのス
ラグ組成を示す。VODを大気に開放し、実施例1と同
じ条件下でYを添加し、溶鋼を3分間撹拌した後、連続
鋳造工程に送り鋳造した。得られたスラブは、組成を表
9に併せ示すように、0.07重量%のY及び0.00
4重量%のMgを含んでいた。また、スラブ中に管状気
泡は観察されず、実施例1と同様に表面疵の少ない良好
な表面性状を持つ鋼板に圧延できた。このときのスラブ
研削歩留りは98%,酸洗後の疵取り歩留りは99.5
%であった。
Example 4: Using a ladle lined with an Al 2 O 3 refractory, 82 tons of molten stainless steel adjusted to the components shown in Table 9 were produced. Table 10 shows the slag composition at this time. The VOD was released to the atmosphere, Y was added under the same conditions as in Example 1, the molten steel was stirred for 3 minutes, and then sent to a continuous casting step for casting. The obtained slab had a composition of 0.07% by weight of Y and 0.00 as shown in Table 9.
It contained 4% by weight of Mg. Further, no tubular bubbles were observed in the slab, and the steel sheet was rolled into a steel sheet having few surface flaws and good surface properties as in Example 1. The slab grinding yield at this time is 98%, and the flaw removal yield after pickling is 99.5.
%Met.

【0029】 [0029]

【0030】 [0030]

【0031】[0031]

【発明の効果】以上に説明したように、本発明において
は、鋼中Mg濃度を低下させて、連続鋳造時に微細な管
状気泡がスラブに発生することを抑制している。得られ
たスラブは、良好な表面性状をもつ鋼板に圧延されてい
る。表面性状が良好であるので、高Alフェライト系ス
テンレス鋼がもつ本来の耐高温酸化特性を十分に発揮す
ることができ、構造材,暖房器具の各種機材,メタリッ
クコンバータ用基材等として広範な分野で使用される高
温用鋼材が提供される。
As described above, in the present invention, the generation of fine tubular bubbles in a slab during continuous casting is suppressed by reducing the Mg concentration in steel. The obtained slab is rolled into a steel sheet having good surface properties. Due to its good surface properties, it can sufficiently exhibit the high-temperature oxidation resistance inherent in high-Al ferritic stainless steel, and can be used in a wide range of fields as structural materials, various equipment for heating appliances, base materials for metallic converters, etc. A high-temperature steel material used in the present invention is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 鋼中H濃度及び鋼中Mg濃度が管状気泡の発
生に与える影響
Fig. 1 Effect of H concentration in steel and Mg concentration in steel on generation of tubular bubbles

【図2】 鋼中Al濃度が鋼中Mg濃度に与える影響Fig. 2 Effect of Al concentration in steel on Mg concentration in steel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/22 C22C 38/22 (72)発明者 長谷川 守弘 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内 Fターム(参考) 4E004 MB14 NC02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/22 C22C 38/22 (72) Inventor Morihiro Hasegawa 4976 Nomura Minamimachi, Shinnanyo-shi, Yamaguchi Nisshin F-term in Steel Research Laboratories of Steel Corporation (reference) 4E004 MB14 NC02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.03重量%以下と、Si:0.
25重量%以下と、Mn:0.25重量%以下と、P:
0.03重量%以下と、S:0.001重量%以下と、
N:0.03重量%以下と、Cr:15〜30重量%
と、Al:3〜6重量%と、希土類金属及びYの1種又
は2種以上:0.01〜0.2重量%を含み、Mg含有
量が0.015重量%以下に規制されている耐高温酸化
性に優れた高Alフェライト系ステンレス鋼。
C: 0.03% by weight or less;
25% by weight or less, Mn: 0.25% by weight or less, P:
0.03% by weight or less, S: 0.001% by weight or less,
N: 0.03% by weight or less, Cr: 15 to 30% by weight
, Al: 3 to 6% by weight, one or more rare earth metals and Y: 0.01 to 0.2% by weight, and the Mg content is regulated to 0.015% by weight or less. High Al ferritic stainless steel with excellent high temperature oxidation resistance.
【請求項2】 C:0.03重量%以下と、Si:0.
25重量%以下と、Mn:0.25重量%以下と、P:
0.03重量%以下と、S:0.001重量%以下と、
N:0.03重量%以下と、Cr:15〜30重量%
と、Al:3〜6重量%と、Mo:4重量%以下と、希
土類金属及びYの1種又は2種以上:0.01〜0.2
重量%を含み、Mg含有量が0.015重量%以下に規
制されている耐高温酸化性に優れた高Alフェライト系
ステンレス鋼。
2. C: 0.03% by weight or less and Si: 0.
25% by weight or less, Mn: 0.25% by weight or less, P:
0.03% by weight or less, S: 0.001% by weight or less,
N: 0.03% by weight or less, Cr: 15 to 30% by weight
And Al: 3 to 6% by weight, Mo: 4% by weight or less, and one or more kinds of rare earth metals and Y: 0.01 to 0.2.
A high-Al ferritic stainless steel with excellent high-temperature oxidation resistance, containing 0.1% by weight and containing Mg at 0.015% by weight or less.
JP2002122141A 2002-04-24 2002-04-24 HIGH Al FERRITE STAINLESS STEEL HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE Pending JP2002339048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002122141A JP2002339048A (en) 2002-04-24 2002-04-24 HIGH Al FERRITE STAINLESS STEEL HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002122141A JP2002339048A (en) 2002-04-24 2002-04-24 HIGH Al FERRITE STAINLESS STEEL HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26253493A Division JP3319832B2 (en) 1993-10-20 1993-10-20 Manufacturing method of high Al ferritic stainless steel

Publications (1)

Publication Number Publication Date
JP2002339048A true JP2002339048A (en) 2002-11-27

Family

ID=19194156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122141A Pending JP2002339048A (en) 2002-04-24 2002-04-24 HIGH Al FERRITE STAINLESS STEEL HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE

Country Status (1)

Country Link
JP (1) JP2002339048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031790A (en) * 2005-07-28 2007-02-08 Sanyo Special Steel Co Ltd Secondary refining method for high aluminum steel
JP2013079428A (en) * 2011-10-04 2013-05-02 Jfe Steel Corp METHOD FOR MANUFACTURING HOT-ROLLED FERRITIC STAINLESS STEEL STRIP CONTAINING Al, HOT-ROLLED FERRITIC STAINLESS STEEL STRIP CONTAINING Al, STAINLESS STEEL FOIL, AND CATALYST CARRIER FOR AUTOMOTIVE EXHAUST EMISSION CONTROL SYSTEM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031790A (en) * 2005-07-28 2007-02-08 Sanyo Special Steel Co Ltd Secondary refining method for high aluminum steel
JP2013079428A (en) * 2011-10-04 2013-05-02 Jfe Steel Corp METHOD FOR MANUFACTURING HOT-ROLLED FERRITIC STAINLESS STEEL STRIP CONTAINING Al, HOT-ROLLED FERRITIC STAINLESS STEEL STRIP CONTAINING Al, STAINLESS STEEL FOIL, AND CATALYST CARRIER FOR AUTOMOTIVE EXHAUST EMISSION CONTROL SYSTEM

Similar Documents

Publication Publication Date Title
JP6611236B2 (en) Fe-Cr-Ni-Mo alloy and method for producing the same
JPH09263820A (en) Production of cluster-free aluminum killed steel
WO2023062856A1 (en) Ni-based alloy having excellent surface properties and production method thereof
CA2868278C (en) Cost-effective ferritic stainless steel
JP3247162B2 (en) Fe-Cr-Al-based alloy excellent in oxidation resistance and foil thereof
JP6762414B1 (en) Stainless steel with excellent surface properties and its manufacturing method
JP5047477B2 (en) Secondary refining method for high Al steel
JP3319832B2 (en) Manufacturing method of high Al ferritic stainless steel
JP2002339048A (en) HIGH Al FERRITE STAINLESS STEEL HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE
JP5637081B2 (en) Mold flux for continuous casting of high Mn steel and continuous casting method
JP2001049322A (en) Production of ferritic stainless steel excellent in ridging resistance
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
KR100436506B1 (en) Ladle heat-insulating material for ultra-low carbon special molten steel, excellent in heat keeping ability, alumina absorptivity, and corrosion-resistance to magnesia refractory
JP4295836B2 (en) High cleaning method for Al-containing stainless steel
JP2868810B2 (en) Method for producing ferritic stainless steel with excellent oxidation resistance at high temperatures
JP7438435B1 (en) Stainless steel with excellent surface quality
JPH08311620A (en) Stainless steel excellent in hot workability and molten salt corrosion resistance
JP3353969B2 (en) Melting method of high Al ferritic stainless steel
JPH11279623A (en) Method for melting ferritic stainless steel containing high aluminum capable of suppressing erosion of refractory of refining container, and excellent in manufacture
JP2024061288A (en) Fe-Cr-Ni alloy with excellent surface properties and manufacturing method thereof
JP2000273585A (en) Ferritic stainless steel and its manufacture
JP3007696B2 (en) Fe-Cr-Al alloy that has excellent oxidation resistance and suppresses the formation of oxide whiskers that reduce the adhesion of γAl2O3
JP3027217B2 (en) Refining method for removing impurities in high-concentration Cu-containing iron
JPH06170507A (en) Surface insulating material for molten steel
JP2000160229A (en) Production of ferritic stainless steel excellent in ridging resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117