JPH06192719A - Method for removing impurity in chromium-containing molten steel - Google Patents

Method for removing impurity in chromium-containing molten steel

Info

Publication number
JPH06192719A
JPH06192719A JP34486592A JP34486592A JPH06192719A JP H06192719 A JPH06192719 A JP H06192719A JP 34486592 A JP34486592 A JP 34486592A JP 34486592 A JP34486592 A JP 34486592A JP H06192719 A JPH06192719 A JP H06192719A
Authority
JP
Japan
Prior art keywords
molten steel
decarburization
chromium
refining
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34486592A
Other languages
Japanese (ja)
Inventor
Ryuji Nakao
隆二 中尾
Shigenori Tanaka
重典 田中
Takashi Yanai
隆司 柳井
Yuji Yoshimura
裕二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34486592A priority Critical patent/JPH06192719A/en
Publication of JPH06192719A publication Critical patent/JPH06192719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To efficiently remove impurities of Pb, Zn, Bi, Sn, etc., in molten steel and to reduce the load in the pre- and the post-processes by controlling the supplying of oxygen according to C concn. in the chromium-containing molten steel to execute decarburize-refining. CONSTITUTION:At the time of decarburize-refining the chromium-containing molten steel, the decarburization is started at >=1.2mass% C in the molten steel, and while supplying the oxygen in a range satifying the inequality OT/(OT +OB)>=0.2 (wherein, OT: top-blowing oxygen supplying velocity Nm<3>/hr, OB: bottom-blowing oxygen supplying velocity Nm<3>/hr) in the range of >=0.5mass% C, the decarburize-refining is executed. By this method, the removal of the impurities of Pb, Zn, Bi, Sn, etc., in the molten steel is promoted and the regulation of the impurity concn. and the using quantity of the melting raw material is released and the concn. aimed values of Pb, Zn, Bi, Sn, etc., at the final- refining stage are achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は含クロム溶鋼の脱炭精錬
時に、鋼の熱間加工性に悪影響を及ぼすPb、Zn、B
i、Sn等の不純物を効率よく除去する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to Pb, Zn, B which adversely affects the hot workability of steel when decarburizing and refining molten steel containing chromium.
The present invention relates to a method for efficiently removing impurities such as i and Sn.

【0002】[0002]

【従来の技術】従来、ステンレス鋼のごとき11wt%
以上のクロムを含むような含クロム溶鋼中のPb、Z
n、Bi、Sn等の不純物の除去に関する定量的な知見
はない。Pb、Zn、Bi、Sn等は一般的に鋼の熱間
加工性を悪化させるために、出来るだけ低下させること
が望ましく、鋼種によっては上限が定められている。
2. Description of the Related Art Conventionally, 11 wt% such as stainless steel
Pb, Z in molten chromium-containing steel containing the above chromium
There is no quantitative knowledge regarding the removal of impurities such as n, Bi, and Sn. Generally, Pb, Zn, Bi, Sn, etc. are desired to be lowered as much as possible in order to deteriorate the hot workability of steel, and an upper limit is set depending on the steel type.

【0003】普通鋼においては、例えば、「材料とプロ
セス」、vol.1、 No.4、page1169〜11
72(1988年)に示されているように、Pb、Zn
は攪拌ガス流量の増大により除去が促進されること、お
よびSnは若干の除去が可能であることが示されてい
る。しかし、含クロム溶鋼については、多量に含まれる
クロムの影響が不明なために、脱炭精錬時の除去および
除去限界値を求めるような定量的な知見はない。
In ordinary steel, for example, “Materials and Processes”, vol. 1, No. 4, page 1169-11
72 (1988), Pb, Zn
Indicates that the removal is promoted by increasing the flow rate of the stirring gas, and that Sn can be slightly removed. However, regarding the chromium-containing molten steel, since the effect of chromium contained in a large amount is unknown, there is no quantitative knowledge to determine the removal and removal limit value during decarburization refining.

【0004】そのため、溶解原料の不純物濃度を規制し
たり、スラグ中のクロム酸化物の還元および溶鋼成分お
よび温度の調整を行う最終精錬期に添加する還元材、成
分調整材および、冷却材については、Pb、Zn、B
i、Sn等の濃度管理を徹底し、かつ濃度の低い材料を
優先的に使用すると共に、過剰のガス吹込みを行ってい
た。
Therefore, regarding the reducing material, the component adjusting material, and the cooling material to be added in the final refining period in which the impurity concentration of the molten raw material is regulated, the chromium oxide in the slag is reduced, and the molten steel composition and the temperature are adjusted, , Pb, Zn, B
Thorough control of the concentrations of i, Sn, etc., preferential use of low-concentration materials, and excessive gas injection were carried out.

【0005】しかし、このような操業管理を行っても、
目標のPb、Zn、Bi、Sn濃度の規制値を外れるこ
とがある。また、Pb、Zn、Bi、Snの濃度の低い
材料は価格が高く、コスト高を招く。さらに、Pb、Z
n、Bi、Snの濃度を下げるために、過剰のガス吹込
みでもコストを上げることになり、効率的な精錬法とは
言えない。
However, even if such operation management is performed,
The target Pb, Zn, Bi, and Sn concentration values may deviate from the regulation values. In addition, a material having a low concentration of Pb, Zn, Bi, and Sn is expensive and causes high cost. Furthermore, Pb, Z
Since the concentration of n, Bi, and Sn is lowered, the cost is increased even if the gas is blown in excessively, which is not an efficient refining method.

【0006】[0006]

【発明が解決しようとする課題】本発明は含クロム溶鋼
の脱炭精錬時にPb、Zn、Bi、Sn等の不純物の除
去を促進させることにより、溶解原料の不純物濃度およ
び使用量の規制を緩和し、かつ最終精錬時にPb、Z
n、Bi、Sn濃度の目標値を達成することを課題とす
る。
DISCLOSURE OF THE INVENTION The present invention facilitates the removal of impurities such as Pb, Zn, Bi and Sn during decarburization refining of molten chromium-containing steel, thereby relaxing the regulation of the impurity concentration and the amount of use of the molten raw material. And at the time of final refining Pb, Z
The object is to achieve the target values of n, Bi, and Sn concentrations.

【0007】[0007]

【課題を解決するための手段】本発明は上述の課題を有
利に解決したものであり、含クロム溶鋼の脱炭時に溶鋼
中のPb、Zn、Bi、Sn等の不純物の除去を促進す
るために、〔C〕濃度1.2mass%以上で脱炭を開
始し、かつ〔C〕濃度0.5mass%以上の領域で、
下記式を満足する条件で送酸しながら、脱炭精錬を行
うことを特徴とする含クロム溶鋼の不純物除去方法を要
旨とするものである。
The present invention advantageously solves the above-mentioned problems, and is intended to promote the removal of impurities such as Pb, Zn, Bi and Sn in molten steel during decarburization of molten steel containing chromium. In the region where [C] concentration is 1.2 mass% or more and decarburization is started, and [C] concentration is 0.5 mass% or more,
The gist is a method for removing impurities from molten chromium-containing steel, which is characterized in that decarburization refining is performed while feeding oxygen under conditions satisfying the following formula.

【0008】 OT /(OT +OB )≧0.2 ………………… OT ;上吹き送酸速度(Nm3 /Hr) OB ;底吹き送酸速度(Nm3 /Hr) 以下本発明について詳細に説明する。本発明は図1に例
示するような含クロム溶鋼の精錬法に適用するものであ
り、図1(a)はAOD法、(b)は上底吹き転炉法と
よばれている吹錬法である。これらの吹錬法では、スク
ラップ、合金等を電気炉で溶解した溶鋼を酸素あるいは
酸素と不活性ガスの吹込みによって脱炭精錬を行う。脱
炭精錬は高〔C〕濃度側では酸素ガスの比率が高く、そ
の後、溶鋼中のクロムの酸化を防止するために酸素ガス
の比率を下げていくパターンがとられ、最終的には
〔C〕0.1mass%以下まで脱炭される。続いて、
脱炭時に酸化しスラグ中に移行したクロム酸化物を還元
すると同時に、溶鋼の成分、温度の調整を行うための最
終精錬期が設けられている。
O T / (O T + O B ) ≧ 0.2 …………………… O T ; Top-blown acid transfer rate (Nm 3 / Hr) O B ; Bottom-blown acid transfer rate (Nm 3 / Hr) ) The present invention will be described in detail below. The present invention is applied to a refining method for molten chromium-containing steel as illustrated in FIG. 1. FIG. 1 (a) is an AOD method, and FIG. 1 (b) is an upper-bottom blowing converter method. Is. In these blowing methods, molten steel obtained by melting scraps, alloys and the like in an electric furnace is decarburized by blowing oxygen or oxygen and an inert gas. In the decarburization refining, the proportion of oxygen gas is high on the high [C] concentration side, and then the pattern of decreasing the proportion of oxygen gas is taken in order to prevent the oxidation of chromium in the molten steel. ] It is decarburized to 0.1 mass% or less. continue,
A final refining period is provided to reduce the chromium oxide that has been oxidized during decarburization and has migrated into the slag, and at the same time adjust the composition and temperature of the molten steel.

【0009】本発明は含クロム溶鋼中のPb、Zn、B
i、Snの不純物が脱炭精錬時、特に〔C〕濃度0.5
mass%以上の高炭域で除去が顕著に進行することに
着目したものである。含クロム溶鋼の脱炭反応は式あ
るいは式で表される。 =CO(g) ………………… (Cr2 3 )+3=2Cr+3CO(g) ………… 脱炭時は多量の酸素ガスが吹込まれるとともに、多量の
COガスが発生する。このために、不純物の除去が促進
される。
The present invention relates to Pb, Zn, B in molten steel containing chromium.
When the impurities of i and Sn are decarburized and refined, [C] concentration is 0.5.
The focus is on the remarkable progress of the removal in the high coal area of mass% or more. The decarburization reaction of molten steel containing chromium is represented by the equation or the equation. C + O = CO (g) ……………… (Cr 2 O 3 ) +3 O = 2 Cr + 3CO (g) ………… At the time of decarburization, a large amount of oxygen gas is blown and a large amount of CO gas is generated. Therefore, the removal of impurities is promoted.

【0010】図2に60tAOD炉を用いて、SUS3
04ステンレス鋼の脱炭精錬を行った場合の脱炭精錬開
始時の〔C〕濃度とPb、Zn、Bi、Snの不純物の
除去率ηの関係を示す。なお、この時の上吹き送酸量比
率〔OT /(OT +OB 〕は0.3〜0.5の範囲であ
った。また、不純物の除去率ηは式を用いて算出した
値であり、図においては除去率の最小の値を結んだ線で
表している。
In FIG. 2, SUS3 was used with a 60t AOD furnace.
4 shows the relationship between the [C] concentration at the start of decarburization refining of 04 stainless steel and the removal rate η of impurities of Pb, Zn, Bi, and Sn. Incidentally, the oxygen-flow amount ratio blown over when the [O T / (O T + O B ] was in the range of 0.3 to 0.5. The value is η removal rate of impurities was calculated using the formula And is represented by a line connecting the minimum removal rates.

【0011】 η=100×(〔M〕0 −〔M〕f )/〔M〕0 …………… 図より、特に、Pb、Zn、Biの除去率は脱炭開始時
の〔C〕濃度1.2mass%までは直線的に、〔C〕
濃度の増大にともない増加し、〔C〕濃度1.2mas
s%以上では除去率は90%以上で飽和する傾向とな
る。また、Snの除去率は他の元素に比べ非常に小さい
が、〔C〕濃度1.2mass%で約10%の除去率と
なり、〔C〕濃度1.2mass%以上では飽和する傾
向になる。
Η = 100 × ([M] 0 − [M] f ) / [M] 0 ...... From the figure, in particular, the removal rates of Pb, Zn, and Bi are [C] at the start of decarburization. Linearly up to a concentration of 1.2 mass%, [C]
Increased with increasing concentration, [C] concentration 1.2mas
If it is s% or more, the removal rate tends to be saturated at 90% or more. Further, although the removal rate of Sn is much smaller than that of other elements, the removal rate is about 10% at a [C] concentration of 1.2 mass% and tends to be saturated at a [C] concentration of 1.2 mass% or more.

【0012】これより、不純物の効率的な除去をはかる
には脱炭開始時の〔C〕濃度を1.2mass%以上と
することが必要であることがわかる。図3に60tAO
D炉を用いて、SUS304ステンレス鋼の脱炭精錬を
行った場合の脱炭精錬開始時の上吹き送酸量比率〔OT
/(OT +OB 〕とPbの除去率の関係を示す。なお、
この時の脱炭開始時の〔C〕濃度は1.2〜1.5ma
ss%の範囲であり、上吹きは〔C〕0.5mass%
以上の領域に適用した。また、Pbの除去率は最小の値
を結んだ線で表している。図より、Pbの除去率は、上
吹き送酸量比率が0から0.2の範囲では上吹き送酸量
比率の増大とともに増大する傾向を示し、上吹き送酸量
比率0.2以上では飽和する。また、上吹き送酸量比率
0.6以上では若干低下する傾向を示す。なお、上吹き
は〔C〕0.5mass%以上に適用することが一般的
であり、それ未満の濃度では脱炭促進の効果は小さい。
このため、Pbの除去率も上吹きを〔C〕0.5mas
s%未満の領域に適用しても、向上代は小さいことが確
認された。
From this, it is understood that the [C] concentration at the start of decarburization must be 1.2 mass% or more in order to efficiently remove impurities. 60tAO in Figure 3
Using D furnace, on blowing oxygen-flow amount ratio at the start of decarburization refining in the case of performing decarburization refining of SUS304 stainless steel [O T
/ (O T + O B] and showing the removal rate relationship Pb. Incidentally,
At this time, the [C] concentration at the start of decarburization is 1.2 to 1.5 ma.
ss% range, top blowing is [C] 0.5 mass%
Applied to the above areas. Further, the removal rate of Pb is represented by a line connecting minimum values. From the figure, the removal rate of Pb shows a tendency to increase with an increase in the upper blowing acid amount ratio in the range of the upper blowing acid amount ratio of 0 to 0.2. Saturate. In addition, when the upper blowing acid amount ratio is 0.6 or more, it tends to be slightly decreased. Note that the upper blowing is generally applied to [C] 0.5 mass% or more, and at a concentration lower than that, the effect of promoting decarburization is small.
Therefore, the removal rate of Pb is [C] 0.5mas
It was confirmed that the improvement margin was small even when applied to a region of less than s%.

【0013】以上より、Pbの効率的な除去をはかるに
は〔C〕0.5mass%以上の領域で上吹き送酸量比
率を0.2以上とする必要があることが確認された。ま
た、他のZn、Bi、Snについても同様の傾向が認め
られ、これらを総括すると前述の式となる。以上の知
見をまとめると、含クロム溶鋼の脱炭時に、溶鋼中のP
b、Zn、Bi、Sn等の不純物の除去を促進するに
は、〔C〕濃度1.2mass%以上で脱炭を開始し、
かつ〔C〕濃度0.5mass%以上の領域で上吹き送
酸量比率0.2以上で送酸しながら、脱炭精錬を行うこ
とが必要である。
From the above, it has been confirmed that in order to efficiently remove Pb, it is necessary to set the upper blowing acid amount ratio to 0.2 or more in the region of [C] 0.5 mass% or more. The same tendency is observed for the other Zn, Bi, and Sn, and the above equations can be summed up. To summarize the above findings, when decarburizing molten steel containing chromium,
In order to accelerate the removal of impurities such as b, Zn, Bi, and Sn, decarburization is started at a [C] concentration of 1.2 mass% or more,
In addition, it is necessary to carry out decarburization refining while feeding oxygen in the region of [C] concentration of 0.5 mass% or more at a top blowing acid feeding ratio of 0.2 or more.

【0014】なお、脱炭開始時の〔C〕濃度は高ければ
高いほど好ましいが、図2に示したように、除去率の向
上代は小さいために、溶解原料の構成および脱炭精錬の
負荷を考えて設定する必要がある。
The higher the [C] concentration at the start of decarburization, the more preferable it is. However, as shown in FIG. 2, since the removal rate of the removal rate is small, the composition of the molten raw material and the load of decarburization refining It is necessary to set it in consideration.

【0015】[0015]

【作用】図4に溶鋼温度と各種金属元素の純金属状態で
の蒸気圧の関係を示す。Pb、Zn、Bi、SnはF
e、Cr、Niに比べ蒸気圧が高く、1450〜175
0℃の溶鋼温度状態では蒸発による除去が進行すると考
えられる。また、蒸発除去速度は蒸気圧の高いZn、B
i、Pb、Snの順に大きいものと考えられる。
FIG. 4 shows the relationship between the molten steel temperature and the vapor pressure of various metal elements in the pure metal state. Pb, Zn, Bi and Sn are F
e, Cr, Ni has a higher vapor pressure than 1450 to 175
It is considered that the removal by evaporation proceeds in the molten steel temperature state of 0 ° C. In addition, the removal rate by evaporation is Zn, B with high vapor pressure.
It is considered that i, Pb, and Sn are larger in this order.

【0016】この蒸発除去反応は、溶鋼内での蒸発元素
の反応界面への移動あるいは蒸発元素の反応界面から気
相側への離脱が反応の律速過程と考えられている。この
反応を促進させる要因としては、下記が挙げられる。 1)溶鋼温度を上昇させる。 2)雰囲気を減圧あるいは真空状態にする。
In this evaporation removal reaction, it is considered that the rate-determining process of the reaction is the movement of the evaporation element to the reaction interface in the molten steel or the separation of the evaporation element from the reaction interface to the gas phase side. Factors that accelerate this reaction include the following. 1) Increase the molten steel temperature. 2) The atmosphere is depressurized or vacuumed.

【0017】3)反応界面積を大きくするために、ガス
発生速度を大きくする。 AOD法および上底吹き転炉法で行う含クロム溶鋼の脱
炭精錬は大気圧下で行うために、2)の効果を享受する
ことはできない。また、これらの精錬法での脱炭は脱炭
初期の溶鋼温度は低いが、その後、溶鋼中のクロムの酸
化を防止するために、1650℃以上の溶鋼温度で脱炭
を行うので、溶鋼温度パターンを変化させることは少な
い。従って、3)が蒸発除去反応を促進させるポイント
となる。
3) The gas generation rate is increased in order to increase the reaction interface area. Since the decarburization refining of molten chromium-containing steel by the AOD method and the top-bottom blowing converter method is performed under atmospheric pressure, the effect of 2) cannot be enjoyed. Further, decarburization by these refining methods has a low molten steel temperature at the initial stage of decarburization, but thereafter, in order to prevent oxidation of chromium in the molten steel, decarburization is performed at a molten steel temperature of 1650 ° C or higher. It rarely changes the pattern. Therefore, 3) is a point to accelerate the evaporation removal reaction.

【0018】従来より、3)の効果は定性的に示されて
いたが、特にクロムを多量に含む含クロム溶鋼の分野に
ついてはクロムの蒸発除去に及ぼす影響が不明なため
に、定量的な知見はなかった。本発明では、脱炭期にお
ける蒸発除去が大きいことを見出し、またPb、Zn、
Bi、Snの除去率が蒸気圧の高いZn、Bi、Pb、
Snの順に大きいこと、除去率が脱炭開始時の〔C〕濃
度に依存し、〔C〕濃度1.2mass%以上では飽和
すること、〔C〕濃度0.5mass%以上の領域で上
吹き送酸量比率を0.2以上で蒸発除去が促進されるこ
とを見出した。
Conventionally, the effect of 3) has been qualitatively shown, but in the field of chromium-containing molten steel containing a large amount of chromium in particular, the effect on evaporation and removal of chromium is unknown, so a quantitative finding is obtained. There was no. In the present invention, it was found that evaporation removal in the decarburization period is large, and Pb, Zn,
Zn, Bi, Pb, which have a high vapor pressure for removing Bi and Sn,
Sn is larger in the order, the removal rate depends on the [C] concentration at the start of decarburization, saturation occurs when the [C] concentration is 1.2 mass% or more, and upper blowing is performed in the region where the [C] concentration is 0.5 mass% or more. It has been found that evaporative removal is promoted when the acid transfer rate is 0.2 or more.

【0019】含クロム溶鋼の脱炭精錬は、特に〔C〕濃
度0.5mass%以上の高炭域は酸素供給律速域であ
り、急激な脱炭反応が進行し、COガスが多量に発生す
る。COガスの発生でバブル・バースト等の効果によ
り、気−液界面が増大し、不純物の除去が促進される。
そのため、脱炭開始時の〔C〕濃度が不純物の除去率を
決定する要因となり、本発明で示されたように、脱炭開
始時の〔C〕濃度を1.2mass%以上にすれば効率
的な除去が行える。
In the decarburization refining of molten chromium-containing steel, especially in the high carbon area where the concentration of [C] is 0.5 mass% or more, the oxygen supply rate-determining area, the rapid decarburization reaction proceeds, and a large amount of CO gas is generated. . The gas-liquid interface increases due to the effect of bubble burst and the like due to the generation of CO gas, and the removal of impurities is promoted.
Therefore, the [C] concentration at the start of decarburization becomes a factor that determines the removal rate of impurities, and as shown in the present invention, if the [C] concentration at the start of decarburization is 1.2 mass% or more, the efficiency is high. Can be removed effectively.

【0020】また、上底吹き複合吹錬では、上吹きを付
加することで底吹きのみに比べ、上吹きによって210
0℃以上の高温火点が形成され、脱炭反応が促進される
とともに、二次燃焼反応により、気相側への移動が促進
される。そのため、上吹き送酸量比率の上昇にともな
い、不純物の除去率が向上し、本発明における上吹き送
酸量比率0.2以上で効率的な除去が行える。
In addition, in the top-bottom blowing composite blowing, by adding the top blowing, the top blowing 210
A high-temperature hot spot of 0 ° C. or higher is formed, the decarburization reaction is promoted, and the secondary combustion reaction promotes the movement to the gas phase side. Therefore, the removal rate of impurities is improved with an increase in the upper blowing acid amount ratio, and efficient removal can be performed at the upper blowing acid amount ratio of 0.2 or more in the present invention.

【0021】なお、鋼の熱間加工性等より、不純物の含
有量は一般的に、鋼種毎に上限が規制されており、規制
値を満足するために、脱炭精錬時に効率的除去を行うこ
とが、前後の工程への負荷を減らすことにつながる。
Due to the hot workability of steel and the like, the upper limit of the content of impurities is generally regulated for each steel type, and in order to satisfy the regulation value, efficient removal is performed during decarburization refining. This reduces the load on the front and rear processes.

【0022】[0022]

【実施例】60tonAOD炉を用いて、SUS304
ステンレス鋼(8mass%Ni−18mass%C
r)を対象として行った実施例について説明する。表1
に実施した結果を本発明法と従来法と比較して示す。本
実施例はいずれも、最終精錬後の目標値は〔Pb〕≦
5.0ppm、〔Zn〕≦15.0ppm、〔Bi〕≦
5.0ppm、〔Sn〕≦200ppmの鋼種に適用
し、上底吹き複合吹錬は〔C〕濃度0.5mass%以
上に適用した。また、脱炭精錬後からのクロム酸化物の
還元および、溶鋼の成分および温度調整期でのピック・
アップは〔Pb〕で1.0〜3.0ppm、〔Zn〕で
2.0〜5.0ppm、〔Bi〕で1.0〜3.0pp
m、〔Sn〕で5〜10ppmの範囲であった。
[Example] Using a 60 ton AOD furnace, SUS304
Stainless steel (8 mass% Ni-18 mass% C
An example performed for r) will be described. Table 1
The results of the above are shown in comparison with the method of the present invention and the conventional method. In all the examples, the target value after the final refining is [Pb] ≦
5.0 ppm, [Zn] ≦ 15.0 ppm, [Bi] ≦
The present invention was applied to steel types of 5.0 ppm and [Sn] ≦ 200 ppm, and the upper-bottom blowing composite blowing was applied to [C] concentration of 0.5 mass% or more. In addition, the reduction of chromium oxides after decarburization and refining, the composition of molten steel and the picking during temperature control
Up is 1.0 to 3.0 ppm for [Pb], 2.0 to 5.0 ppm for [Zn], 1.0 to 3.0 pp for [Bi]
m and [Sn] were in the range of 5 to 10 ppm.

【0023】本発明例では脱炭精錬時の不純物除去量が
半定量化されているために、脱炭精錬開始時、つまり溶
解後の不純物濃度は高濃度状態にした。すなわち、低品
位の原料を用いて溶解を行った。一方、比較例では不純
物除去量が不明確なために、脱炭開始時の濃度が低めに
なるように、溶解原料を選択して用いた。実施例の結果
を表2に示す。表中の原料コストは No.1の例を100
として換算した値である。比較例では除去が十分でない
ために、精錬終了後の目標値を達成していない場合があ
り、何らかの救済処置が必要であった。
In the example of the present invention, the amount of impurities removed during decarburization refining was semi-quantified, so the concentration of impurities at the start of decarburization refining, that is, after dissolution, was set to a high concentration state. That is, the dissolution was performed using a low-quality raw material. On the other hand, in the comparative example, since the amount of impurities removed is unclear, the melting raw material was selected and used so that the concentration at the start of decarburization would be low. The results of the examples are shown in Table 2. The raw material cost in the table is 100 for the No. 1 example
It is the value converted as. In the comparative example, since the removal was not sufficient, the target value after completion of refining could not be achieved in some cases, and some kind of rescue treatment was necessary.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明によると、含クロム溶鋼の最終精
錬期において、Pb、Zn、Bi、Snの製品段階での
目標値外れをなくし、安定な不純物除去が可能となる。
さらに、Pb、Zn、Bi、Snの規制値外れを防止す
るために、原料配合段階での規制を緩和できるので、大
幅な精錬コストの低減が可能となる。
EFFECTS OF THE INVENTION According to the present invention, in the final refining period of molten chromium-containing steel, it is possible to eliminate the deviation of the target values of Pb, Zn, Bi, and Sn at the product stage and to stably remove impurities.
Further, in order to prevent the Pb, Zn, Bi, and Sn from deviating from the regulation values, the regulation at the raw material mixing stage can be relaxed, so that the refining cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用する精錬法の例に関する図で、
(a)はAOD法、(b)は上底吹き転炉法を示す。
FIG. 1 is a diagram relating to an example of a refining method to which the present invention is applied,
(A) shows an AOD method, (b) shows a top-bottom blowing converter method.

【図2】本発明における脱炭開始時の〔C〕濃度と不純
物除去率の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the [C] concentration at the start of decarburization and the impurity removal rate in the present invention.

【図3】本発明法における上吹き送酸量比率とPbの除
去率の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the upper blowing acid amount ratio and the Pb removal ratio in the method of the present invention.

【図4】不純物元素の純金属状態での蒸気圧と溶鋼温度
の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a vapor pressure of an impurity element in a pure metal state and a molten steel temperature.

【符号の説明】[Explanation of symbols]

1 横吹き羽口 2 上吹きランス 3 底吹き羽口 4 溶鋼 5 スラグ 6 上吹き火点部 1 Side blowing tuyeres 2 Top blowing lances 3 Bottom blowing tuyeres 4 Molten steel 5 Slag 6 Top blowing fire point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉村 裕二 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Yoshimura 3434 Shimada, Hikari City, Yamaguchi Prefecture Nippon Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 含クロム溶鋼の脱炭時に溶鋼中のPb、
Zn、Bi、Sn等の不純物の除去を促進するために、
〔C〕濃度1.2mass%以上で脱炭を開始し、かつ
〔C〕濃度0.5mass%以上の領域で、下記式を
満足する条件で送酸しながら、脱炭精錬を行うことを特
徴とする含クロム溶鋼の不純物除去方法。 OT /(OT +OB )≧0.2 ………………… OT ;上吹き送酸速度(Nm3 /Hr) OB ;底吹き送酸速度(Nm3 /Hr)
1. Pb in molten steel during decarburization of molten steel containing chromium,
In order to accelerate the removal of impurities such as Zn, Bi and Sn,
[C] Decarburization and refining are performed while starting decarburization at a concentration of 1.2 mass% or more, and in the region of [C] concentration of 0.5 mass% or more, while feeding oxygen under conditions satisfying the following formula: Method for removing impurities from molten chromium-containing steel. O T / (O T + O B) ≧ 0.2 ..................... O T; top-blown oxygen-flow-rate (Nm 3 / Hr) O B ; bottom-blown oxygen-flow-rate (Nm 3 / Hr)
JP34486592A 1992-12-24 1992-12-24 Method for removing impurity in chromium-containing molten steel Pending JPH06192719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34486592A JPH06192719A (en) 1992-12-24 1992-12-24 Method for removing impurity in chromium-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34486592A JPH06192719A (en) 1992-12-24 1992-12-24 Method for removing impurity in chromium-containing molten steel

Publications (1)

Publication Number Publication Date
JPH06192719A true JPH06192719A (en) 1994-07-12

Family

ID=18372594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34486592A Pending JPH06192719A (en) 1992-12-24 1992-12-24 Method for removing impurity in chromium-containing molten steel

Country Status (1)

Country Link
JP (1) JPH06192719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959170A (en) * 2022-05-31 2022-08-30 达力普石油专用管有限公司 Method for reducing Pb content in carbon manganese steel produced by smelting all scrap steel in electric arc furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166617A (en) * 1983-03-11 1984-09-20 Nippon Yakin Kogyo Co Ltd Refining of molten steel containing chromium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166617A (en) * 1983-03-11 1984-09-20 Nippon Yakin Kogyo Co Ltd Refining of molten steel containing chromium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959170A (en) * 2022-05-31 2022-08-30 达力普石油专用管有限公司 Method for reducing Pb content in carbon manganese steel produced by smelting all scrap steel in electric arc furnace
CN114959170B (en) * 2022-05-31 2023-08-25 达力普石油专用管有限公司 Method for reducing Pb content in carbon manganese steel produced by smelting full scrap steel in electric arc furnace

Similar Documents

Publication Publication Date Title
JP3333795B2 (en) Method for denitrification of molten metal and method for denitrification and decarburization
JPH06192719A (en) Method for removing impurity in chromium-containing molten steel
JPH09165615A (en) Denitrifying method for molten metal
JP3230067B2 (en) Method for removing impurities from chromium-containing molten steel
JP6726777B1 (en) Method for producing low carbon ferromanganese
JP3044642B2 (en) Decarburization refining method of chromium-containing molten steel
JP3099152B2 (en) Raw material blending method and smelting method for chromium-containing molten steel
JPH07173515A (en) Decarburization refining method of stainless steel
JPS62230953A (en) Manufacture of medium-or low-carbon ferromanganese
JP2515059B2 (en) Decarburization refining method for molten steel containing chromium
KR100191010B1 (en) Oxygen refining method of low carbon steel
JP3441523B2 (en) Refining method of chromium-containing molten steel
JP3439517B2 (en) Refining method of chromium-containing molten steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JP3305313B2 (en) Decarburization method using RH degasser
JPH06330143A (en) Treatment of decarburization of chromium-containing molten steel in reduced pressure
JP2795513B2 (en) Decarburization refining method of chromium-containing molten steel
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JP3143764B2 (en) Method for removing impurities from chromium-containing molten steel
JP3282544B2 (en) Demanganese method for high chromium molten iron alloy
JPH0885815A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JPH05195046A (en) Method for melting high manganese and extremely low carbon steel
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JPH11158525A (en) Method for melting nickel-contining steel