JPS59166617A - Refining of molten steel containing chromium - Google Patents
Refining of molten steel containing chromiumInfo
- Publication number
- JPS59166617A JPS59166617A JP4044183A JP4044183A JPS59166617A JP S59166617 A JPS59166617 A JP S59166617A JP 4044183 A JP4044183 A JP 4044183A JP 4044183 A JP4044183 A JP 4044183A JP S59166617 A JPS59166617 A JP S59166617A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- blown
- molten steel
- lance
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/005—Manufacture of stainless steel
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は含クロム溶鋼の精錬方法に係り、詳しくは、溶
鋼量対比の炉体容量を大きくせずに吹込酸素量を太きく
して脱炭速度を速めるとともに、酸素吹込みによる脱炭
反応時の生成熱を有効に利用できる含クロム溶鋼の精錬
方法に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for refining chromium-containing molten steel, and more particularly, the present invention relates to a method for refining chromium-containing molten steel, and more particularly, it increases the decarburization rate by increasing the amount of oxygen blown into the furnace without increasing the capacity of the furnace relative to the amount of molten steel. The present invention relates to a method for refining chromium-containing molten steel that can effectively utilize the heat generated during decarburization reaction.
現在、ステンレス鋼等の含クロム溶鋼σ)脱炭プロセス
としてAOD法が広く用いられている。Currently, the AOD method is widely used as a decarburization process for chromium-containing molten steel such as stainless steel.
しかしながら、AOD法で脱炭速度を速めて作業効率を
改善するには、炉体容量の増大化等の設備的問題があり
、これら問題のない精錬方法の開発が望まれている。However, in order to increase the decarburization rate and improve work efficiency using the AOD method, there are equipment problems such as an increase in the furnace capacity, and it is desired to develop a refining method that does not have these problems.
すなわち、第1図はAOD法を実施する精錬容器の一例
の断面図であって、この容器1の底部には二重羽口2が
設けら几ている。AOD法では羽口2から不活性ガスと
酸素の混合ガス3を含クロム溶@4の中に底吹きし、炭
素−クロムの平衡条件を規制するP c o値を低下さ
せ。That is, FIG. 1 is a sectional view of an example of a refining vessel for carrying out the AOD method, and a double tuyere 2 is provided at the bottom of this vessel 1. In the AOD method, a mixed gas 3 of inert gas and oxygen is bottom-blown into the chromium-containing solution @ 4 from the tuyere 2 to lower the P co value that regulates the carbon-chromium equilibrium condition.
これによって、クロム(以下、Crという。)を優先酸
化させろことなく、脱炭を行なう。脱炭完了後は更に仕
上げ精錬を行ない、このときVCは、けい素などの還元
剤や1石灰、ホタル石等の浴剤を添加し0羽口2からに
不活性ガスのみを吹込んで溶鋼とスラグとを攪拌して精
錬が行なわ几る。As a result, decarburization is performed without preferentially oxidizing chromium (hereinafter referred to as Cr). After the completion of decarburization, further finishing refining is carried out. At this time, VC adds a reducing agent such as silicon, a bath agent such as 1 lime, and fluorite, and blows only inert gas through the 0 tuyere 2 to form molten steel. Refining is performed by stirring the slag and cooling.
この また、7−A OD法では、溶鋼中の炭素(以下。this In addition, in the 7-A OD method, carbon in molten steel (hereinafter referred to as carbon) is used.
Cという。)の高い高C領域(例えば、Cr 18%程
度の溶鋼ではC0,4%以上)においては。It's called C. ) in the high C region (for example, in molten steel with a Cr content of about 18%, C0.4% or more).
吹込酸素量に比例して脱炭速度が速められろ。The decarburization rate will increase in proportion to the amount of oxygen blown.
従って、精錬時間σ)短縮ならびに作業能率の改善の上
では、多量の酸素を吹込んで脱炭速度を速めろσ)が好
ましい。Therefore, in order to shorten the refining time σ) and improve work efficiency, it is preferable to blow a large amount of oxygen to increase the decarburization rate σ).
しかし、実際には炉底からの酸素吹込量σ)増加は炉壁
面1火物の溶損を招来するほか、鋼浴表面から飛散する
スプラッシュの発生量が増大すると共f、スプラツンユ
σ)発生高さが高くなり。However, in reality, an increase in the amount of oxygen blown from the bottom of the furnace σ) not only leads to melting of the refractory on the furnace wall surface, but also increases the amount of splash generated from the steel bath surface. becomes higher.
これ1で対応するよう精錬容器σ)容量な大きくする必
要がある。このため、築炉θ)ためσ)耐火物σ)必安
量は増大し、そitに耐火物溶損量が多くなることも加
わって、耐火物原単位力−著しく高くなる、。In order to cope with this, it is necessary to increase the capacity of the refining container σ). For this reason, the required amount of refractories σ) for furnace construction θ) increases, and in addition to this, the amount of refractory erosion increases, resulting in a significant increase in the unit power of refractories.
こσ)点から、AOD法では通常、0.7〜1?”l+
イ02/l/分程度に設計さ几た精錬容器h;用いられ
、この設備的制約から吹込酸素量を増大することが困難
である。From this point (σ), the AOD method usually has a value of 0.7 to 1? "l+
A refining vessel h designed to have a flow rate of approximately 02/l/min is used, and it is difficult to increase the amount of blown oxygen due to equipment constraints.
本発明を工、上記σ)如き設備的制約下にあっても吹込
酸素量を1例えば2Nn?02/l/分の如く増大でき
、鋼浴表面から発生するスプラッシュの発生量や高さを
低(おさえろことができ。With the present invention, even under the equipment constraints such as σ) above, the amount of oxygen blown can be reduced to 1, for example, 2Nn? 02/l/min, and the amount and height of splash generated from the steel bath surface can be suppressed.
更に、脱炭反応時の生成熱を有効に利用できろ含Cr溶
鋼の精錬方法を提案する。Furthermore, we propose a method for refining Cr-containing molten steel that can effectively utilize the heat generated during the decarburization reaction.
すなわち1本発明方法は鋼浴下面から酸素と不活性ガス
の混合ガスまたは酸素ならびに不活性ガスを吹込むと共
に、炉頂の上吹ランスから酸素を吹込んで含クロム溶鋼
を精錬する際に。That is, one method of the present invention is to blow a mixed gas of oxygen and inert gas or oxygen and inert gas from the bottom of the steel bath, and to blow oxygen from the top blowing lance at the top of the furnace to refine chromium-containing molten steel.
この上吹ランスは昇降自在に構成し、鋼浴中の炭素量の
推移に応じて上吹ランスの高さまたは上吹き酸素量のう
ち一方又は両方を制御して精錬することを特徴とする。This top-blowing lance is configured to be able to move up and down, and is characterized in that one or both of the height of the top-blowing lance and the amount of top-blowing oxygen are controlled in accordance with changes in the amount of carbon in the steel bath for refining.
以下1本発明方法について詳しく説明する。Below, one method of the present invention will be explained in detail.
まず、第2図は本発明方法を実施する精錬容器の一例の
断面図である。この精錬容器10の底部に第1図で示す
ものと同様に羽口11を設けるが、炉頂部に上吹ランス
12を設げ、この上吹ランス12はランス昇降装置13
によって昇降自在に構成する、この精錬容器101Cお
いて含Cr溶鋼4中のCを脱炭処理する際に1羽口11
から不活性ガスと酸素の混合ガス3を底吹きし、これに
併せて上吹ランス12から酸素14を上吹きする。この
場合、上吹ランス12の溶鋼面よりのランス高さく以下
、ランス高さという。)、上吹酸素量の双方若しくは一
方は含Cr溶鋼中のC量の推移、つまり、含Cr溶鋼中
におけろ脱炭反応の進行度合に応じて制御して精錬する
。First, FIG. 2 is a sectional view of an example of a refining vessel in which the method of the present invention is carried out. A tuyere 11 is provided at the bottom of the refining vessel 10 in the same manner as shown in FIG. 1, but a top blowing lance 12 is provided at the top of the furnace.
When decarburizing C in the Cr-containing molten steel 4 in this refining vessel 101C, which can be raised and lowered by
A mixed gas 3 of inert gas and oxygen is blown from the bottom from the bottom, and at the same time, oxygen 14 is blown from the top from the top blowing lance 12. In this case, the height of the top blowing lance 12 from the molten steel surface is referred to as the lance height. ) and the amount of top-blown oxygen, or both or one of them, are controlled in accordance with the change in the amount of C in the Cr-containing molten steel, that is, the degree of progress of the decarburization reaction in the Cr-containing molten steel.
すなわち1羽口11からの底吹ガス3の慣性エネルギー
によって鋼浴表面からスプラッシュが発生する。しかし
、こσ)スプラッシュは上吹ランス12からの酸素ジェ
ットの下降エネルギーによっておさえられろことから、
この酸素ジェットによりスプラッシュの盛上り高さは制
御でき、設備的に制約された条件でも、酸素量を増すこ
とができる。つまり、上吹ランス12のランス高さ又は
/および上吹酸素量を制御すると、上吹きによる酸素運
動量が制御でき1例えば、上吹酸素量を増大させるか、
またはランス高さを低くするかによって、上吹酸素の運
動量は増加でき、底吹きによるスプラッシュは効果的に
制御できる。That is, splash is generated from the steel bath surface by the inertial energy of the bottom blowing gas 3 from the tuyere 11. However, since this σ) splash is suppressed by the downward energy of the oxygen jet from the top blowing lance 12,
With this oxygen jet, the height of the splash can be controlled, and the amount of oxygen can be increased even under equipment-limited conditions. In other words, by controlling the lance height and/or the amount of top-blown oxygen of the top-blowing lance 12, the oxygen momentum due to top-blowing can be controlled.1 For example, by increasing the top-blowing oxygen amount,
Alternatively, by lowering the lance height, the momentum of the top-blown oxygen can be increased, and the splash caused by the bottom-blown oxygen can be effectively controlled.
また、精錬反応からみると、上吹ランスからの酸素ジェ
ットの運動量が増大するほど、所謂ハードプローの条件
になり、脱炭反応効率が向上する。これに反し、酸素ジ
ェットの運動量が低い場合は、所謂ソフトプローの条件
となり。In addition, from the perspective of the refining reaction, the greater the momentum of the oxygen jet from the top blowing lance, the more conditions are met for so-called hard plow, and the efficiency of the decarburization reaction improves. On the other hand, if the momentum of the oxygen jet is low, this is a so-called soft pull condition.
上吹酸素の鋼浴表面に達する割合が少なくなるが、この
上吹酸素によって脱炭反応により生成放出されろCOガ
スが有効に再燃焼されろ。Although the proportion of the top-blown oxygen reaching the steel bath surface is reduced, the CO gas produced and released by the decarburization reaction is effectively re-burned by this top-blown oxygen.
なお、この再燃焼によって、CO++0*→CO2の式
により反応熱が生成し1反応熱は有効に鋼浴面に伝達さ
れて鋼浴温度が上昇し、脱炭反応は改善さnる。This re-combustion generates reaction heat according to the formula CO++0*→CO2, and the reaction heat is effectively transferred to the steel bath surface, raising the steel bath temperature and improving the decarburization reaction.
また、上記の如く溶鋼中のC量の推移に応じて上吹ラン
スのランス高さや上吹酸素量を制御する場合に、所謂ハ
ードプローの条件からソフトプローの条件に連続的に変
化させるのが好ましい。Furthermore, when controlling the lance height of the top blowing lance and the amount of top blowing oxygen according to changes in the amount of C in molten steel as described above, it is best to continuously change the conditions from so-called hard plow conditions to soft plow conditions. preferable.
一般に、含Cr溶鋼の脱炭酸素効率は溶鋼中のC量に依
存する。例えば、Cr18%を含む溶鋼を底吹きによっ
て脱炭処理した場合を示すと、第3図に示す通りに示さ
れる。第3図から明らかな通り、溶鋼中σ)C量の低下
にともなって脱炭酸素効率は低下するが、CI、0%以
上の高炭素領域ではその低下割合が比較的緩やかである
のに対し、C1,0%以下の低炭素領域に達すると、低
下割合は著しくなり、とくに、C0640%以下では脱
炭酸素効率は一層低下する。Generally, the decarburization oxygen efficiency of Cr-containing molten steel depends on the amount of C in the molten steel. For example, the case where molten steel containing 18% Cr is decarburized by bottom blowing is shown in FIG. 3. As is clear from Figure 3, the decarburization oxygen efficiency decreases as the amount of σ)C in molten steel decreases, but the rate of decrease is relatively gradual in the high carbon region of CI 0% or more. When reaching the low carbon region of , C1.0% or less, the rate of decrease becomes remarkable, and in particular, the decarburization oxygen efficiency further decreases at C0640% or less.
すなわち、AOD法の如く底吹き処理する場合には、ガ
ス吹込時に羽目近傍にクロム酸化物が生成し、このクロ
ム酸化物が溶鋼中で上昇ガス気泡の界面で炭素と反応し
て脱炭が進行する。In other words, in the case of bottom blowing treatment such as the AOD method, chromium oxide is generated near the siding during gas injection, and this chromium oxide reacts with carbon at the interface of rising gas bubbles in molten steel, resulting in progress of decarburization. do.
この際の脱炭酸素効率は、Cのガス気泡界面への移動量
とガス気泡界面上の脱炭反応量のバランスで決まる。従
って、脱炭反応が進行すると。The decarburization oxygen efficiency at this time is determined by the balance between the amount of C transferred to the gas bubble interface and the amount of decarburization reaction on the gas bubble interface. Therefore, as the decarburization reaction progresses.
C量の減少によりバランスがくず扛て61分の酸化反応
が優勢になり、このため、低C域に近づくに従って脱炭
酸素効率が第3図に示す如(低下する。従って1本発明
法によって含Cr溶鋼を処理する場合に、上吹ランスの
ランス高さ上吹酸素量は溶鋼中のC量に応じて最適範囲
に設定するのが好ましい。更に詳しく説明すると、C1
,0%以上の高炭素領域ではランス条件を所謂ハードブ
ローの条件、ランス高さを低くして酸素吹込量を増大す
ることに選択し、溶鋼中のCを直接酸化すると共に、C
Oの再燃焼も行なう。As the amount of C decreases, the balance is disrupted and the 61-minute oxidation reaction becomes predominant, and as a result, as the low C region approaches, the decarburization oxygen efficiency decreases as shown in FIG. When processing Cr-containing molten steel, it is preferable to set the lance height of the top blowing lance and the top blowing oxygen amount to an optimal range according to the amount of C in the molten steel.
, in the high carbon range of 0% or more, the lance conditions are so-called hard blow conditions, the lance height is lowered, and the amount of oxygen blown is increased to directly oxidize the C in the molten steel and to
Reburning of O is also carried out.
これに対し、C1,0%以下の低炭素領域では。On the other hand, in the low carbon region of C1.0% or less.
むしろ溶鋼中のCの直接酸化を起させることなく、主と
してCOの再燃焼を行なう条件、所謂ソフトブローの条
件に上吹ランスの高さや酸素吹込量を制御して精錬する
のが好ましい。従って、理想的には上吹ランスに鋼浴中
のC量に応じてハードブローの条件からソフトブローの
条件に連続的に変化させるのが好ましい。Rather, it is preferable to carry out refining under conditions that mainly re-combust CO without causing direct oxidation of C in molten steel, that is, so-called soft blow conditions, by controlling the height of the top blowing lance and the amount of oxygen blown. Therefore, ideally, it is preferable to continuously change the conditions of the top blowing lance from hard blowing to soft blowing according to the amount of C in the steel bath.
次に、実施例について説明する。Next, examples will be described.
まず、18%Cr、8%Ni、2.5%Cを含む5us
−3Q4 溶鋼55トンに対し1本発明法によって脱
炭精錬し、これに併せて比較のために、従来法によって
底吹き精錬σ)みによって脱炭精錬を行なった。これら
何れσ)方法でも。First, 5us containing 18% Cr, 8% Ni, 2.5% C
-3Q4 55 tons of molten steel was decarburized by the method of the present invention, and for comparison, decarburized by bottom blowing σ) by the conventional method. Any of these σ) methods.
C0,40%まで脱炭し、各方法につき、脱炭速度、精
錬完了時の金属酸化分の還元に消費されたSi原単位を
示すと、第1表の通りであった。Table 1 shows the decarburization rate and Si consumption for reduction of metal oxides upon completion of refining for each method after decarburization to 40% CO.
この際1両方法はアルコ゛ン、酸素の混合ガス(0□/
At−=4/1)を底吹きし9本発明法によって上吹き
する場合には、上吹きランスとして径1インチのストレ
ートランスを昇降自在に構成して使用し、とくに、ラン
ス高さは、はじめが2000でであり、C0,4%の終
了点で35001Mlになるよう、連続的に変化させ、
更に、上吹酸素量は溶鋼中のC量に応じて第1表の通り
に変化させた。In this case, both methods use a mixed gas of alkon and oxygen (0□/
At-=4/1) is bottom-blown and top-blown according to the method of the present invention, a straight lance with a diameter of 1 inch is used as the top-blowing lance and is configured to be movable up and down. In particular, the lance height is as follows: The starting point was 2000, and it was changed continuously so that it became 35001 Ml at the end point of C0.4%,
Furthermore, the amount of top-blown oxygen was varied as shown in Table 1 depending on the amount of C in the molten steel.
第1表から本発明法により連続的に上吹ランスの条件を
脱炭操作の進行とともに、ノ・−ドブローからソフトプ
ローの条件に変イヒさせて脱炭すると、酸素効率、脱炭
速度、操業時間(C2,5%から0.4%までの脱炭時
間)、Si原単位が大巾に改善され、精錬工程の安定化
が達成できる。Table 1 shows that when decarburizing is carried out by continuously changing the conditions of the top blowing lance from nod blow to soft plow as the decarburization operation progresses, oxygen efficiency, decarburization speed, operation The time (decarburization time from 5% to 0.4% C) and Si basic unit are greatly improved, and the refining process can be stabilized.
以上詳しく説明した通り1本発明法は、底吹きすると同
時に酸素を上吹きし、しかも、この上吹きの条件を溶鋼
の脱炭精錬の進行に合わせて調節して脱炭する方法であ
る。従って、設備的制約のもとで供給酸素量の増加をは
かることができ、こt′Lによって脱炭速度の改善が達
成できろ。また1発生するCOガスは完全に再燃焼でき
、熱効率の改善も達成できる。As explained in detail above, the method of the present invention is a method in which oxygen is top-blown at the same time as bottom-blowing, and the conditions of this top-blowing are adjusted in accordance with the progress of decarburization refining of molten steel. Therefore, it is possible to increase the amount of oxygen supplied under equipment constraints, and the decarburization rate can be improved by this t'L. Furthermore, the CO gas generated can be completely re-combusted, and thermal efficiency can also be improved.
第1図は従来例のAOD法で使用する精錬容器の断面図
、第2図は本発明法を実施する精錬容器の一例の断面図
、第3図は含Cr溶鋼の底吹き脱炭時の溶鋼中のC量と
脱炭酸素効率との関係を示すグラフである。
符号 1・・・・・・精錬容器 2・・す・・二重羽
口3・・・・・・混合ガス 4・・・・・・含Cr溶
鋼10・・・・・・精@答器 11・・・・・・羽 口
12・・・・・・上吹ランス
13・・・・・・ランス昇降装置
14・・・・・・酸素
特許出願人 日本冶金工業株式会社
代理人弁理士松下義勝
弁護士副島文雄
第7図
渠
?jグ
第2図 率
り
第3図
う各祇中9C〆Fig. 1 is a cross-sectional view of a refining vessel used in the conventional AOD method, Fig. 2 is a cross-sectional view of an example of a refining vessel in which the method of the present invention is carried out, and Fig. 3 is a cross-sectional view of a refining vessel used in the conventional AOD method. It is a graph showing the relationship between the amount of C in molten steel and decarburization oxygen efficiency. Code 1: Refining vessel 2: Double tuyere 3: Mixed gas 4: Cr-containing molten steel 10: Refining vessel 11...Tuyere 12...Top blow lance 13...Lance lifting device 14...Oxygen patent applicant Nippon Yakin Kogyo Co., Ltd. Representative patent attorney Matsushita Lawyer Yoshikatsu Fumio Soejima Figure 7 Ditch? Figure 2 Lead Figure 3 Each Ginchu 9C end
Claims (1)
素と不活性ガスの混合ガスまたは酸素ならびに不活性ガ
スを吹込むと共に、炉頂の上吹ランスから炉内に酸素を
吹込んで含クロム溶鋼を精錬する際に、この上吹ランス
を昇降自在に構成し、鋼浴中の炭素量の推移に応じてよ
吹ランスの溶銅面よりの高さまたは上吹き酸素量のうち
一方又は両方を制御して精錬することを特徴とする含ク
ロム溶鋼の精錬方法。In an out-of-furnace refining method for chromium-containing molten steel, a mixed gas of oxygen and inert gas or oxygen and inert gas is blown from the bottom of the steel bath, and oxygen is blown into the furnace from the top blowing lance at the top of the furnace to refine chromium-containing molten steel. When refining steel, the top-blowing lance is configured to be able to move up and down, and one or both of the height of the top-blowing lance above the molten copper surface and the amount of top-blowing oxygen can be adjusted according to changes in the amount of carbon in the steel bath. A method for refining chromium-containing molten steel characterized by controlled refining.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4044183A JPS59166617A (en) | 1983-03-11 | 1983-03-11 | Refining of molten steel containing chromium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4044183A JPS59166617A (en) | 1983-03-11 | 1983-03-11 | Refining of molten steel containing chromium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59166617A true JPS59166617A (en) | 1984-09-20 |
Family
ID=12580727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4044183A Pending JPS59166617A (en) | 1983-03-11 | 1983-03-11 | Refining of molten steel containing chromium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59166617A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059547A (en) * | 1991-06-27 | 1993-01-19 | Nippon Steel Corp | Method for devarbonize-refining molten chromium-containing steel |
JPH06192719A (en) * | 1992-12-24 | 1994-07-12 | Nippon Steel Corp | Method for removing impurity in chromium-containing molten steel |
-
1983
- 1983-03-11 JP JP4044183A patent/JPS59166617A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059547A (en) * | 1991-06-27 | 1993-01-19 | Nippon Steel Corp | Method for devarbonize-refining molten chromium-containing steel |
JPH06192719A (en) * | 1992-12-24 | 1994-07-12 | Nippon Steel Corp | Method for removing impurity in chromium-containing molten steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5902374A (en) | Vacuum refining method for molten steel | |
KR910002950B1 (en) | Method for controlling secondary top-blown oxygen in subsurface pneumatic steel refining | |
JP3167888B2 (en) | Decarburization refining method of chromium-containing molten steel and upper blowing lance for refining gas | |
US4272287A (en) | Process for refining molten steel containing chromium | |
JPS59166617A (en) | Refining of molten steel containing chromium | |
JP3410553B2 (en) | Decarburization refining method of chromium-containing molten steel | |
JP6726777B1 (en) | Method for producing low carbon ferromanganese | |
JP2582316B2 (en) | Melting method of low carbon steel using vacuum refining furnace | |
JP2767674B2 (en) | Refining method of high purity stainless steel | |
JP3044642B2 (en) | Decarburization refining method of chromium-containing molten steel | |
JPH0153329B2 (en) | ||
JPH11131122A (en) | Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy | |
JPS59177314A (en) | Refining method of molten chromium-containing steel | |
KR100225249B1 (en) | Remaining slag control method of of slopping control | |
WO2021177021A1 (en) | Method for producing low-carbon ferromanganese | |
JP4895446B2 (en) | Method for refining chromium-containing molten steel | |
JPS6010087B2 (en) | steel smelting method | |
JP2004256854A (en) | Method for decarbonization-refining stainless steel | |
JP3167902B2 (en) | Decarburization refining method for Cr-containing molten steel | |
JPH01316437A (en) | Manufacture of medium-low carbon ferromanganese | |
JP3914611B2 (en) | Decarburizing and refining method for stainless steel | |
JPH11293332A (en) | Decarburize-refining of molten ferro-manganese | |
JPH01252708A (en) | Method for operating iron bath type smelting reduction furnace | |
JPH04180512A (en) | Method for smelting dead soft steel | |
JPS62120418A (en) | Method for refining molten steel in ladle |