JPH06330143A - Treatment of decarburization of chromium-containing molten steel in reduced pressure - Google Patents
Treatment of decarburization of chromium-containing molten steel in reduced pressureInfo
- Publication number
- JPH06330143A JPH06330143A JP11625193A JP11625193A JPH06330143A JP H06330143 A JPH06330143 A JP H06330143A JP 11625193 A JP11625193 A JP 11625193A JP 11625193 A JP11625193 A JP 11625193A JP H06330143 A JPH06330143 A JP H06330143A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- decarburization
- refining
- vacuum
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は含クロム溶鋼の脱炭精錬
において、溶鋼中の[Cr]酸化を抑え、かつ希釈用の
不活性ガスの使用量を抑えて、効率よく脱炭を行う含ク
ロム溶鋼の減圧脱炭処理方法に関する。BACKGROUND OF THE INVENTION The present invention relates to the efficient decarburization in decarburization and refining of molten steel containing chromium by suppressing the [Cr] oxidation in the molten steel and suppressing the amount of the inert gas for dilution. The present invention relates to a vacuum decarburization treatment method for molten chromium steel.
【0002】[0002]
【従来の技術】従来ステンレス鋼のごとき11mass
%以上のクロムを含むような含クロム溶鋼の脱炭法とし
ては、浴面下より酸素ガスまたは酸素ガス(以下、単に
酸素という)と不活性ガスの混合ガスを吹込むAOD法
が広く用いられている。AOD法は脱炭が進行して溶鋼
中の[C]濃度が低下してくると[Cr]が酸化されや
すくなることから、[C]濃度の低下にともない吹込み
ガス中のArやN2 ガスのような不活性ガスの比率を高
く、酸素の比率を低くして、[Cr]の酸化を抑える方
法がとられている。しかし、低[C]濃度域では脱炭速
度が低下するために所望の[C]濃度に到達するのに長
時間を要し、かつ吹込みガス中の不活性ガスの比率を高
くするための不活性ガスの消費量が大幅に増大すること
から経済的にも不利になる。2. Description of the Related Art 11 mass such as conventional stainless steel
As a decarburizing method for molten chromium-containing steel containing more than 50% chromium, the AOD method in which oxygen gas or a mixed gas of oxygen gas (hereinafter simply referred to as oxygen) and an inert gas is blown from below the bath surface is widely used. ing. In the AOD method, when decarburization progresses and the [C] concentration in the molten steel decreases, [Cr] is easily oxidized. Therefore, as the [C] concentration decreases, Ar and N 2 in the blown gas are reduced. A method of suppressing the oxidation of [Cr] by increasing the ratio of inert gas such as gas and decreasing the ratio of oxygen is adopted. However, in the low [C] concentration range, it takes a long time to reach the desired [C] concentration because the decarburization rate decreases, and in order to increase the ratio of the inert gas in the blown gas, It also becomes economically disadvantageous because the consumption of inert gas increases significantly.
【0003】このような低[C]濃度域における脱炭を
促進する方法として、真空精錬法の利用がなされるよう
になった。例えば、特公昭60−10087号公報に
は、高クロム・ステンレス鋼を0.03mass%以下
の低[C]濃度まで脱炭するために、大気圧下での酸素
による脱炭を[C]=0.2〜0.4mass%まで行
い、その後は非酸化性ガスによる攪拌は続けるが酸素吹
込みは停止し、鋼浴上の圧力を約10Torrまで連続
的に低下させボイリングを起こさせることによって所望
の脱炭を行う方法が記載されている。A vacuum refining method has come to be used as a method for promoting decarburization in such a low [C] concentration range. For example, in Japanese Examined Patent Publication No. 60-10087, in order to decarburize high chromium stainless steel to a low [C] concentration of 0.03 mass% or less, decarburization with oxygen under atmospheric pressure [C] = 0.2 to 0.4 mass%, and then continue stirring with a non-oxidizing gas, but stop blowing oxygen, and continuously lower the pressure on the steel bath to about 10 Torr to cause boiling. The method of decarburizing is described.
【0004】該方法は、比較的高[C]濃度より酸素の
供給を止めるために、[Cr]の酸化による損失は少な
くなるが、急激な真空精錬の適用により、COガスが大
量に発生し、爆発の危険を招く。これを回避するために
真空吸引をゆるやかにすれば危険はなくなるが、経過時
間が長くなって溶鋼温度が低下し、かつ反応が遅くな
る。また、圧力を10Torr以下の高真空にすれば、
溶鋼のスプラッシュが激しくなり、合金材料投入用ホッ
パーの閉塞などの問題が生じる。In this method, since the supply of oxygen is stopped at a relatively high [C] concentration, the loss of [Cr] due to oxidation is reduced, but a large amount of CO gas is generated due to the rapid application of vacuum refining. , Risk of explosion. If the vacuum suction is made gentle to avoid this, there is no danger, but the elapsed time becomes long, the molten steel temperature decreases, and the reaction becomes slow. Moreover, if the pressure is set to a high vacuum of 10 Torr or less,
The molten steel splashes violently, causing problems such as clogging of the hopper for feeding the alloy material.
【0005】これらの問題点を解決する方法として、特
開平3−68713号公報および特開平4−25450
9号公報記載の方法が提案されている。これらに記載さ
れている含クロム溶鋼の精錬方法は[C]濃度0.2〜
0.05mass%までは吹込みガスとして非酸化性ガ
スと酸素の混合ガスを使用し、[C]濃度がこの範囲内
に低下した後は、200〜15Torrに減圧し、かつ
吹込みガスとして非酸化性ガスのみを使用するものであ
る。該方法は、比較的低[C]濃度まで大気圧下で精錬
を行うために、[Cr]の酸化損失が大きくなる。また
真空下での脱炭は不活性ガスのみを用いることで[C
r]の酸化は抑えられるが、脱炭の酸素源は溶鋼中の
[O]あるいはスラグ中の酸素となり、酸素の供給速度
が遅くなるために脱炭速度の低下を招き、効率的な脱炭
精錬法とは言えない。As a method for solving these problems, JP-A-3-68713 and JP-A-4-25450 are available.
The method described in Japanese Patent No. 9 has been proposed. The refining method for molten chromium-containing steel described in these documents is [C] concentration 0.2-
A mixed gas of a non-oxidizing gas and oxygen is used as a blowing gas up to 0.05 mass%, and after the [C] concentration falls within this range, the pressure is reduced to 200 to 15 Torr and the blowing gas is not Only oxidizing gas is used. Since this method performs refining under atmospheric pressure to a relatively low [C] concentration, the oxidation loss of [Cr] becomes large. In addition, decarburization under vacuum uses only an inert gas [C
Although the oxidation of r] is suppressed, the oxygen source for decarburization becomes [O] in the molten steel or oxygen in the slag, and the decarburization rate is reduced due to the slow oxygen supply rate, resulting in efficient decarburization. It cannot be called a refining method.
【0006】また、前記の方法はいずれも攪拌用および
CO分圧の低下用に多量の高価な不活性ガスを使用する
ために、ガス・コストの増大を招く。これを回避する手
段として、二酸化炭素ガス(以下、単にCO2 という)
の利用が挙げられる。脱炭精錬にCO2 を使用する方法
としては、例えば、特開昭55−158208号公報に
は、酸素上吹き製鋼法において浴面下よりCO2 を吹込
み、溶鋼の攪拌を促進させて脱炭を促進させる方法が記
載されている。また特開昭57−32316号公報には
転炉において鋼浴下部の羽口より酸素とともにCO2 を
吹込み、CO2 の冷却効果を利用して羽口の溶損を防止
する方法が記載されている。これらの方法ではCO2 は
完全にCOとOに分解するとしており、CO2 の使用の
効果としては攪拌および冷却の効果だけを考えており、
十分な効果は得られていない。Further, both of the above methods use a large amount of expensive inert gas for stirring and for lowering the CO partial pressure, resulting in an increase in gas cost. As a means to avoid this, carbon dioxide gas (hereinafter simply referred to as CO 2 )
The use of is mentioned. As a method of using CO 2 in the decarburization refining, for example, in JP-A-55-158208, and the CO 2 from below the bath surface in the oxygen top-blown steelmaking blow, to promote agitation of the molten steel de A method of promoting charcoal is described. Further, JP-A-57-32316 describes a method in which CO 2 is blown together with oxygen from the tuyere at the bottom of the steel bath in the converter to prevent the melt damage of the tuyere by utilizing the cooling effect of CO 2. ing. According to these methods, CO 2 is completely decomposed into CO and O, and the effect of using CO 2 is only the effect of stirring and cooling.
Not enough effect has been obtained.
【0007】また、特開昭50−37611号公報には
CO2 は分解せず、COの希釈効果をもつためにArガ
スのような不活性ガスの代替として使用する方法が記載
されているが、この方法ではCO2 のCOとOへの分解
率が定量化されていないために、過剰な不活性ガスを使
用する結果となっており、十分な効果が得られていな
い。Further, Japanese Patent Application Laid-Open No. 50-37611 describes a method of using CO 2 as a substitute for an inert gas such as Ar gas because it does not decompose CO 2 and has a CO diluting effect. However, since the decomposition rate of CO 2 into CO and O is not quantified in this method, an excessive amount of inert gas is used, and a sufficient effect cannot be obtained.
【0008】さらに、これらの方法ではCO2 の使用は
大気圧下に限定されており、真空精錬での利用例は示さ
れていない。Further, in these methods, the use of CO 2 is limited to atmospheric pressure, and no example of utilization in vacuum refining is shown.
【0009】[0009]
【発明が解決しようとする課題】本発明はArガスのよ
うな不活性ガスを多量に使用する含クロム溶鋼の脱炭精
錬法において、真空精錬の適用およびCO2 の使用によ
り、溶鋼中の[Cr]酸化を抑え、かつ希釈用の不活性
ガスの使用量を抑えて、効率よく脱炭を行い、精錬コス
トを低減できる含クロム溶鋼の減圧脱炭処理方法を提供
することを目的とするものである。DISCLOSURE OF THE INVENTION The present invention provides a method for decarburizing and refining molten steel containing chromium that uses a large amount of an inert gas such as Ar gas, by applying vacuum refining and using CO 2 [PROBLEM TO BE SOLVED] To provide a vacuum decarburization treatment method for molten chromium-containing steel that suppresses Cr] oxidation and suppresses the amount of an inert gas for dilution to efficiently perform decarburization and reduce refining costs. Is.
【0010】[0010]
【課題を解決するための手段】本発明は前記の課題を有
利に解決したものであり、その要旨とするところは同一
精錬容器内で大気圧下での脱炭処理後、真空下での脱炭
処理を行う含クロム溶鋼の精錬法において、真空下での
脱炭処理は[C]濃度0.7mass%以下で開始し、
真空度は300Torr以下として処理し、さらに
[C]濃度0.05mass%以上の領域においては、
溶鋼1トン当り0.1Nm3 /min以上の二酸化炭素
ガスを、酸素ガスまたは酸素ガスと不活性ガスの混合ガ
スまたは不活性ガスに混合して吹込むことを特徴とする
含クロム溶鋼の減圧脱炭処理方法にある。SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and the gist thereof is to perform decarburization under atmospheric pressure in the same refining vessel and then under vacuum. In the refining method of molten chromium-containing steel for performing charcoal treatment, decarburization treatment under vacuum is started at a [C] concentration of 0.7 mass% or less,
The degree of vacuum is 300 Torr or less, and the [C] concentration is 0.05 mass% or more.
Carbon dioxide gas at a rate of 0.1 Nm 3 / min or more per ton of molten steel is mixed with oxygen gas or a mixed gas of oxygen gas and an inert gas or an inert gas, and the mixture is blown. There is a charcoal treatment method.
【0011】以下本発明について詳細に説明する。本発
明の含クロム溶鋼の脱炭精錬は[C]濃度が0.7ma
ss%以下の範囲において、図1に例示するような精錬
方法である。精錬容器(1)内で含クロム溶鋼(4)中
に底吹き羽口(2)を通して、酸素,CO2 ,および不
活性ガス等の精錬ガス(5)を吹込む。また、精錬容器
(1)は脱着可能な排気フード(3)を有しており、3
00Torr以下の減圧が可能である。The present invention will be described in detail below. The decarburization refining of the chromium-containing molten steel of the present invention has a [C] concentration of 0.7 ma.
In the range of ss% or less, the refining method is as illustrated in FIG. A refining gas (5) such as oxygen, CO 2 , and an inert gas is blown into the molten chromium-containing steel (4) through the bottom blowing tuyere (2) in the refining container (1). The refining vessel (1) also has a removable exhaust hood (3).
A reduced pressure of 00 Torr or less is possible.
【0012】本発明は含クロム溶鋼の減圧脱炭処理にお
いて、CO2 が一定流量以上ではCOとOに分解する比
率が一定となり、CO2 はCOの希釈ガスとしての作用
と酸素を供給する酸化性ガスとしての作用をもつことに
着目し、これらの作用を効率的に利用することを提案す
るものである。また、真空精錬は比較的高[C]濃度の
0.7mass%以下で真空度300Torr以下であ
れば、吹込みガスとしてCO2 を酸素ガスまたは酸素ガ
スと不活性ガスの混合ガスまたは不活性ガスに混合させ
て用いることで、溶鋼中[Cr]の酸化を抑え、脱炭速
度を高位に保つことが可能であることに着目したもので
ある。The present invention in a vacuum decarburization of chromium-containing molten steel, CO 2 degrades the ratio is constant in the CO and O is a constant flow rate over, CO 2 oxidation supplies the action and oxygen as a diluent gas of CO Focusing on the action as a natural gas, we propose to utilize these actions efficiently. Further, in the vacuum refining, if the vacuum concentration is 0.7 mass% or less of a relatively high [C] concentration and the degree of vacuum is 300 Torr or less, CO 2 is used as a blowing gas, oxygen gas or a mixed gas of oxygen gas and an inert gas or an inert gas. It was focused on that the oxidation of [Cr] in the molten steel can be suppressed and the decarburization rate can be maintained at a high level by mixing with and using.
【0013】図2にSUS304ステンレス鋼を処理し
た場合の大気圧下精錬における[C]濃度と脱炭酸素効
率の関係を示す。なお、脱炭酸素効率は吹込み酸素のう
ちで脱炭に使用された酸素の割合を示す。また吹錬前の
[Si]濃度は0.1mass%以下であり、吹込みガ
スとして酸素のみを用いた場合の結果である。図2より
[C]濃度0.7mass%以下で脱炭酸素効率が急激
に低下する。従って、[C]濃度0.7mass%以下
で真空精錬を適用すれば脱炭酸素効率の低下を防止する
ことが可能になることがわかる。FIG. 2 shows the relationship between the [C] concentration and the decarboxylation efficiency in atmospheric pressure refining when SUS304 stainless steel is treated. The decarbonation efficiency represents the proportion of oxygen used for decarburization in the blown oxygen. Further, the [Si] concentration before blowing is 0.1 mass% or less, which is the result when only oxygen is used as the blowing gas. As shown in FIG. 2, the decarbonation efficiency drops sharply when the [C] concentration is 0.7 mass% or less. Therefore, it can be seen that if vacuum refining is applied at a [C] concentration of 0.7 mass% or less, it is possible to prevent a decrease in decarboxylation efficiency.
【0014】図3にSUS304ステンレス鋼をO2 /
Arガス比率=1/1で処理した場合の[C]濃度=
0.5〜0.7mass%の範囲における真空度と脱炭
酸素効率の関係について示す。真空度300Torr以
下で脱炭酸素効率は高位に安定する。従って、真空精錬
で適用する真空度は300Torr以下が必要である。
なお、急激な真空度の上昇は溶鋼スプラッシュを大量に
発生するために、真空精錬では[C]濃度の低下にとも
ない、300Torrから徐々に低下させることが好ま
しい。In FIG. 3, SUS304 stainless steel is O 2 /
[C] concentration when treated with Ar gas ratio = 1/1 =
The relationship between the degree of vacuum and the efficiency of decarboxylation in the range of 0.5 to 0.7 mass% will be shown. At a vacuum degree of 300 Torr or less, the decarboxylation efficiency becomes stable at a high level. Therefore, the degree of vacuum applied in vacuum refining must be 300 Torr or less.
In addition, since a rapid increase in the degree of vacuum causes a large amount of molten steel splash, it is preferable to gradually decrease from 300 Torr along with the decrease in [C] concentration in vacuum refining.
【0015】図4はSUS304ステンレス鋼の脱炭に
CO2 のみを用いた場合のCO2 の吹込み流量とCO2
分解率の関係を示す。CO2 の分解率は吹込んだ全CO
2 量に対するCOとOに分解したCO2 の量の比率であ
り、100よりこの値を引いた残りの値はCO2 がその
ままの状態で存在している量を示す。なお、図中の○印
は大気圧(760Torr)下の結果、△印は真空度約
200Torrでの結果である。図4よりCO2 の分解
率におよぼす真空度の影響は小さく、かつCO 2 吹込み
流量が0.1Nm3 /min・T以上ではCO2 の分解
率は約30%で安定する。つまり、この流量以上では吹
込んだCO2 の3割が酸化性ガスとして作用し、残りの
7割が不活性ガスとして作用する。本発明はこの関係を
用いて効率的な精錬法を提案するものである。FIG. 4 shows decarburization of SUS304 stainless steel.
CO2CO when using only2Flow rate of CO and CO2
The relationship of the decomposition rate is shown. CO2Decomposition rate of all CO blown
2CO decomposed into CO and O2Is the ratio of the amount of
The remaining value after subtracting this value from 100 is CO2But that
Indicates the amount that is present as it is. The circles in the figure
Is the result under atmospheric pressure (760 Torr), △ is the degree of vacuum
The results are at 200 Torr. From Figure 4, CO2Decomposition of
The effect of vacuum on the rate is small, and CO 2Blowing
Flow rate is 0.1 Nm3/ Min ・ T or more CO2Decomposition of
The rate is stable at about 30%. In other words, blowing above this flow rate
CO complicated230% of this acts as oxidizing gas, and the rest
70% acts as an inert gas. The present invention relates this relationship
It proposes an efficient refining method by using it.
【0016】図5にSUS304ステンレス鋼の脱炭に
CO2 とArガスの混合ガスを用いた場合の真空度10
0〜200Torrにおける[C]濃度と溶鋼中の[C
r]の酸化指数を示す。なお、CO2 とArガスの混合
ガスとしてはCO2 /Ar比で1/0,1/1,1/4
の3種類のガスを用いた。また、[Cr]酸化指数はC
O2 /Ar比1/1の混合ガスを用いた場合の[C]濃
度0.1mass%における平均の[Cr]酸化量を
1.0として換算した値である。図5よりいずれの混合
ガスにおいても、[C]濃度0.05mass%未満で
[Cr]の酸化量が急激に増大する。従って、CO2 の
使用は[C]濃度0.05mass%以上に限定する必
要がある。FIG. 5 shows a vacuum degree of 10 when a mixed gas of CO 2 and Ar gas is used for decarburizing SUS304 stainless steel.
[C] concentration from 0 to 200 Torr and [C] in molten steel
r] shows the oxidation index. The mixed gas of CO 2 and Ar gas has a CO 2 / Ar ratio of 1/0, 1/1, 1/4.
3 kinds of gas were used. Also, the [Cr] oxidation index is C
It is a value obtained by converting the average [Cr] oxidation amount at a [C] concentration of 0.1 mass% in the case of using a mixed gas of O 2 / Ar ratio 1/1 to 1.0. As shown in FIG. 5, the oxidation amount of [Cr] sharply increases when the concentration of [C] is less than 0.05 mass% in any of the mixed gases. Therefore, it is necessary to limit the use of CO 2 to a [C] concentration of 0.05 mass% or more.
【0017】以上より、Arガスのような不活性ガスを
多量に使用する含クロム溶鋼の減圧脱炭処理方法におい
て、溶鋼中の[Cr]酸化を抑え、かつ希釈用の不活性
ガスの使用量を抑えて、効率よく高速で脱炭を行うため
には、[C]濃度0.7mass%以下で真空精錬を適
用し、真空度は300Torr以下減圧とし、[C]濃
度0.05mass%以上の領域で0.1Nm3 /mi
n・T以上のCO2 を酸素ガスまたは酸素ガスと不活性
ガスの混合ガスまたは不活性ガスに混合して吹込む必要
がある。From the above, in the vacuum decarburization treatment method for molten chromium-containing steel, which uses a large amount of an inert gas such as Ar gas, the amount of the inert gas used for dilution is suppressed while suppressing [Cr] oxidation in the molten steel. In order to suppress decarburization efficiently and at high speed, vacuum refining is applied at a [C] concentration of 0.7 mass% or less, the vacuum degree is reduced to 300 Torr or less, and the [C] concentration is 0.05 mass% or more. Area is 0.1 Nm 3 / mi
It is necessary to mix and inject CO 2 of n · T or more with oxygen gas or a mixed gas of oxygen gas and an inert gas or an inert gas.
【0018】実操業においては、CO2 の約3割がCO
とOに分解することを考慮することで、任意にCO2 、
酸素および不活性ガスの三者の混合比率を設定すること
が可能である。また、真空精錬の条件と組み合わせるこ
とで種々の精錬操作が可能である。例えば、予定よりも
[Cr]の酸化量が大きく脱炭速度が遅い場合には真空
度を低下させるとともに、酸素の比率を下げ、CO2 お
よび不活性ガスの比率を上げることで[Cr]酸化を抑
えることが可能である。In actual operation, about 30% of CO 2 is CO
By considering the decomposition into O and O, CO 2 ,
It is possible to set the mixing ratio of oxygen and the inert gas. Further, various refining operations can be performed by combining with the conditions of vacuum refining. For example, when the amount of [Cr] oxidation is large and the decarburization rate is slower than expected, the degree of vacuum is lowered, and the ratio of oxygen is decreased and the ratio of CO 2 and inert gas is increased to increase the [Cr] oxidation. Can be suppressed.
【0019】[0019]
【作用】CO2 を鋼浴中に吹込んだ場合、一部に式で
示されるような分解をせずにそのまま浮上するとの知見
が示されているが、一般には下記式で示されるように
COとOに分解されると考えられてきた。 CO2 (g)=CO2 (g) …… CO2 (g)=CO(g)+〔O〕 …… 本発明ではCO2 の分解におよぼす真空度の影響は小さ
く、かつ一定流量以上でCO2 を吹込んだ場合、式で
の反応が約7割、式での反応が約3割進行することを
見出し、これを含クロム溶鋼の脱炭精錬に適用すること
を創案した。脱炭反応は式、反応平衡定数Kは式、
また脱炭と同時に進行する溶鋼中[Cr]の酸化反応は
式で表される。It has been shown that when CO 2 is blown into a steel bath, it partially floats without being decomposed as shown by the formula. Generally, as shown by the formula below, It has been considered to be decomposed into CO and O. CO 2 (g) = CO 2 (g) ...... CO 2 (g) = CO (g) + [O] ...... In the present invention, the influence of the vacuum degree on the decomposition of CO 2 is small, and at a constant flow rate or more. When CO 2 was blown in, it was found that the reaction in the formula proceeded about 70% and the reaction in the formula proceeded about 30%, and it was devised to apply this to the decarburization refining of molten steel containing chromium. Decarburization reaction is an equation, reaction equilibrium constant K is an equation,
Further, the oxidation reaction of [Cr] in molten steel, which proceeds at the same time as decarburization, is expressed by an equation.
【0020】 〔C〕+〔O〕=CO(g) …… K=PCO/ac ・ao …… 2〔Cr〕+3〔O〕=(Cr2 O3 ) …… ここで、ac ,ao は溶鋼中[C],[O]の活量、P
COは雰囲気中COの分圧を示す。[0020] [C] + [O] = CO (g) ...... K = P CO / a c · a o ...... 2 [Cr] +3 [O] = (Cr 2 O 3) ...... Here, a c and a o are the activities of [C] and [O] in the molten steel, P
CO indicates the partial pressure of CO in the atmosphere.
【0021】式で生成した[O]は溶鋼中[C]ある
いは[Cr]と反応して、あるいは式の反応が進行
する。脱炭を効率的に進行させるには式を優先的に進
行させる必要がある。式より式を優先的に進行させ
るにはPCOの低下が有効である。PCOを低下させる手段
としては雰囲気を真空にすることが有効であり、これと
CO2 の使用を組み合わせることで、さらに効果が上が
ることを見出した。CO2 吹込みでは約7割がCO2 の
まま残存するために、PCOの低下にそのまま作用する。
従って、真空度300Torr以下の減圧下でCO2 を
適量、酸素あるいは酸素と不活性ガスとの混合ガスある
いは不活性ガスに混合させて使用することにより、CO
2 の酸化性ガスとしての作用および不活性ガスとしての
作用を有効に利用することができ、かつ高価な不活性ガ
スの低減をはかることができる。[O] generated by the formula reacts with [C] or [Cr] in the molten steel, or the reaction of the formula proceeds. In order to proceed decarburization efficiently, it is necessary to advance the formula preferentially. Decreasing PCO is effective in order to advance the equation preferentially over the equation. It has been found that a vacuum atmosphere is effective as a means for reducing P CO , and the effect is further enhanced by combining this with the use of CO 2 . For CO 2 to about 70 percent by blow remains remains CO 2, as it acts on the lowering of the P CO.
Therefore, by using an appropriate amount of CO 2 under reduced pressure of 300 Torr or less in a mixed gas of oxygen or a mixed gas of oxygen and an inert gas or an inert gas, CO 2
The action of 2 as an oxidizing gas and the action as an inert gas can be effectively utilized, and the expensive inert gas can be reduced.
【0022】含クロム溶鋼の脱炭反応は高[C]濃度域
では酸素供給律速、低[C]濃度域では[C]の移動律
速である。酸素供給律速域では脱炭反応促進のためにP
COの低下は必要なく、CO2 の吹込みも必要ない。本発
明ではこの境界の[C]濃度が0.7mass%である
ことを見出した。また、CO2 は約3割が分解するため
に、低[C]濃度域では却って酸素の供給過剰となり、
溶鋼中[Cr]の酸化を招く。本発明ではCO2 供給限
界の[C]濃度が0.05mass%であることを見出
した。The decarburization reaction of molten steel containing chromium is rate-controlled by oxygen supply in the high [C] concentration range, and is rate-controlled by [C] in the low [C] concentration range. In the oxygen supply rate controlling region, P is used to accelerate the decarburization reaction.
No reduction in CO is required, and no blowing of CO 2 is required. In the present invention, it has been found that the [C] concentration at this boundary is 0.7 mass%. Further, about 30% of CO 2 is decomposed, so that in the low [C] concentration range, oxygen is excessively supplied,
This causes the oxidation of [Cr] in the molten steel. In the present invention, it has been found that the [C] concentration at the CO 2 supply limit is 0.05 mass%.
【0023】[0023]
【実施例】SUS304ステンレス鋼(8mass%N
i−18mass%Cr)60tonの処理を図1に示
す実施態様で実施した。図6に本発明法による実施例−
1を示す。脱炭開始時の[C]濃度は1.5mass%
であり、[C]濃度0.7mass%までは大気圧下で
の脱炭を行い、その後真空精錬を適用した。真空精錬中
CO2 /O2 /Arガスの比率は3/7/0から3/2
/0,2/0/1とし、[C]濃度0.05mass%
未満ではArガスのみとした。また真空度は300から
200,100および50Torrまで低下させて、
[C]0.03mass%まで脱炭した。その後、真空
度を大気圧まで戻しながら、脱炭中に酸化したクロムを
還元するための還元材としてFe−Siを添加して、A
rガスのみの吹込みにより還元処理を行い、取鍋へ出鋼
した。[Example] SUS304 stainless steel (8 mass% N
The i-18 mass% Cr) 60 ton treatment was carried out in the embodiment shown in FIG. FIG. 6 shows an embodiment according to the method of the present invention.
1 is shown. [C] concentration at the start of decarburization is 1.5 mass%
Then, decarburization was performed under atmospheric pressure until the [C] concentration reached 0.7 mass%, and then vacuum refining was applied. The ratio of CO 2 / O 2 / Ar gas during vacuum refining is from 3/7/0 to 3/2
/ 0, 2/0/1, and [C] concentration 0.05 mass%
If it is less than Ar, only Ar gas is used. Also, the degree of vacuum is reduced from 300 to 200, 100 and 50 Torr,
[C] Decarburized to 0.03 mass%. Then, while returning the degree of vacuum to atmospheric pressure, Fe-Si was added as a reducing material for reducing the chromium oxidized during decarburization, and A
Reduction treatment was performed by blowing only r gas, and steel was tapped into a ladle.
【0024】図7には本発明法による実施例−2を示
す。[C]濃度0.7mass%までは実施例−1と同
一の処理を行い、[C]濃度0.7mass%以下で真
空精錬を適用し、[C]濃度の低下にともないCO2 /
O2 /Ar比は3/6/1,4/5/1,1/2/5,
0/0/1、真空度は300,200,100,50T
orrと低下させた。還元処理は実施例−1と同一の方
法で行った。FIG. 7 shows Example-2 according to the method of the present invention. The same treatment as in Example 1 was performed up to a [C] concentration of 0.7 mass%, vacuum refining was applied at a [C] concentration of 0.7 mass% or less, and CO 2 /
O 2 / Ar ratios are 3/6/1, 4/5/1, 1/2/5,
0/0/1, vacuum degree is 300, 200, 100, 50T
orr. The reduction treatment was performed in the same manner as in Example-1.
【0025】図8には従来法として一般に行われている
大気圧下での脱炭法の例(比較例−1)を示す。[C]
濃度の低下にともない、O2 /Ar比を低下させること
で脱炭を行った。図9には従来法として示されている特
開平3−68713号公報記載の方法に従った実施例
(比較例−2)を示す。本方法では[C]濃度0.20
mass%までは大気圧下で精錬し、[C]濃度0.2
0mass%以下で真空度100Torrの条件で、A
rガス吹込みで0.03mass%までの脱炭処理を行
い、その後大気圧下での還元処理を行い、取鍋に出鍋し
た。FIG. 8 shows an example (comparative example-1) of a decarburizing method under atmospheric pressure which is generally performed as a conventional method. [C]
Decarburization was performed by decreasing the O 2 / Ar ratio with the decrease in the concentration. FIG. 9 shows an example (Comparative Example-2) according to the method described in Japanese Patent Application Laid-Open No. 3-68713 as a conventional method. In this method, [C] concentration is 0.20
Refining at atmospheric pressure up to mass%, [C] concentration 0.2
Under 0 mass% or less and a vacuum degree of 100 Torr, A
Decarburization treatment was performed up to 0.03 mass% by blowing r gas, then reduction treatment was performed under atmospheric pressure, and the ladle was put out.
【0026】なお、各実施例では大気圧下処理では全ガ
ス吹込み流量を1.0Nm3 /min・Tとし、真空下
処理ではCO2 の吹込み流量を0.4Nm3 /min・
T以下、酸素吹込み流量を0.4Nm3 /min・T以
下、Arガス吹込み流量を0.3Nm3 /min・Tと
して処理を実施した。図6,7,8,9には各実施例に
おける精錬時間、[C]および[Cr]濃度の推移も示
しているが、比較例に比べ本発明の方が全精錬時間が短
くなり、かつ[Cr]濃度の低下量も小さくなった。こ
れらの精錬結果をまとめて表1に示す。なお、表1の値
は比較例−2による結果を100とした指数で示す。[0026] Incidentally, the total gas blowing flow rate at atmospheric pressure process in each embodiment and 1.0Nm 3 / min · T, 0.4Nm 3 / min · the blowing flow rate of the CO 2 in the vacuum process
The treatment was performed at a temperature of T or less, an oxygen flow rate of 0.4 Nm 3 / min · T or less, and an Ar gas flow rate of 0.3 Nm 3 / min · T. FIGS. 6, 7, 8 and 9 also show changes in the refining time and the [C] and [Cr] concentrations in each Example, but the total refining time of the present invention was shorter than that of the Comparative Example, and The amount of decrease in the [Cr] concentration was also small. The results of these refining are summarized in Table 1. The values in Table 1 are shown as indices with the result of Comparative Example-2 set to 100.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【発明の効果】本発明によると、含クロム溶鋼の減圧脱
炭処理において、酸素原単位、不活性ガス原単位が大幅
に低下し、また脱炭酸素効率が向上するので、還元用S
i原単位が低減し、精錬コストの大幅な低減がはかれ
る。CO2 の供給速度を上げれば、さらに脱炭速度が向
上し、精錬時間の短縮が可能となり、生産性の向上がは
かれる。EFFECTS OF THE INVENTION According to the present invention, in the decarburization treatment of molten steel containing chromium, the oxygen consumption rate and the inert gas consumption rate are significantly reduced, and the decarbonation efficiency is improved.
The i basic unit is reduced, and the refining cost is greatly reduced. If the supply rate of CO 2 is increased, the decarburization rate is further improved, the refining time can be shortened, and the productivity can be improved.
【0029】また、真空処理を用いるのでArガスの代
替として窒素ガスの使用の拡大および、例えば[C]濃
度0.01mass%以下の極低炭素域までの精錬が容
易になる。Further, since the vacuum treatment is used, the use of nitrogen gas as an alternative to Ar gas can be expanded, and refining to an extremely low carbon region having a [C] concentration of 0.01 mass% or less can be facilitated.
【図1】本発明の実施態様例の精錬容器を示す図であ
る。FIG. 1 is a diagram showing a refining vessel according to an embodiment of the present invention.
【図2】本発明の真空精錬の開始[C]濃度の限定理由
を示す図である。FIG. 2 is a diagram showing the reason for limiting the starting [C] concentration of vacuum refining of the present invention.
【図3】本発明の真空精錬時の真空度の限定理由を示す
図である。FIG. 3 is a diagram showing the reason for limiting the degree of vacuum during vacuum refining according to the present invention.
【図4】本発明におけるCO2 の吹込み流量の限定理由
を示す図である。FIG. 4 is a diagram showing the reason for limiting the flow rate of CO 2 blown in the present invention.
【図5】本発明における下限の[C]濃度の限定理由を
示す図である。FIG. 5 is a diagram showing the reason for limiting the lower limit [C] concentration in the present invention.
【図6】本発明の実施例−1の精錬パターンを示す図で
ある。FIG. 6 is a diagram showing a refining pattern of Example-1 of the present invention.
【図7】本発明の実施例−2の精錬パターンを示す図で
ある。FIG. 7 is a diagram showing a refining pattern of Example-2 of the present invention.
【図8】従来法による実施例(比較例−1)の精錬パタ
ーンを示す図である。FIG. 8 is a diagram showing a refining pattern of an example (Comparative Example-1) according to a conventional method.
【図9】従来法による実施例(比較例−2)の精錬パタ
ーンを示す図である。FIG. 9 is a diagram showing a refining pattern of an example (Comparative Example-2) according to a conventional method.
1 精錬容器 2 底吹き羽口 3 排気フード 4 溶鋼 5 ガス 1 Refining container 2 Bottom blowing tuyere 3 Exhaust hood 4 Molten steel 5 Gas
フロントページの続き (72)発明者 岩崎 央 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内Continuation of the front page (72) Inventor, Hiroshi Iwasaki 3434, Shimada, Hikari City, Yamaguchi Prefecture Nippon Steel Works, Ltd.
Claims (1)
後、真空下での脱炭処理を行う含クロム溶鋼の精錬法に
おいて、真空下での脱炭処理は[C]濃度0.7mas
s%以下で開始し、真空度は300Torr以下として
処理し、さらに[C]濃度0.05mass%以上の領
域においては、溶鋼1トン当り0.1Nm3 /min以
上の二酸化炭素ガスを、酸素ガスまたは酸素ガスと不活
性ガスの混合ガスまたは不活性ガスに混合して吹込むこ
とを特徴とする含クロム溶鋼の減圧脱炭処理方法。1. In a refining method for molten chromium-containing steel, which comprises decarburizing treatment under atmospheric pressure in the same refining vessel and then decarburizing treatment under vacuum, the decarburizing treatment under vacuum has a [C] concentration of 0. .7mas
s% or less, the degree of vacuum is set to 300 Torr or less, and in a region of [C] concentration of 0.05 mass% or more, carbon dioxide gas of 0.1 Nm 3 / min or more per ton of molten steel is used as oxygen gas. Alternatively, a method of decarburizing a chromium-containing molten steel under reduced pressure, which comprises mixing oxygen gas and an inert gas or mixing and blowing the mixture with an inert gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11625193A JPH06330143A (en) | 1993-05-18 | 1993-05-18 | Treatment of decarburization of chromium-containing molten steel in reduced pressure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11625193A JPH06330143A (en) | 1993-05-18 | 1993-05-18 | Treatment of decarburization of chromium-containing molten steel in reduced pressure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06330143A true JPH06330143A (en) | 1994-11-29 |
Family
ID=14682510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11625193A Withdrawn JPH06330143A (en) | 1993-05-18 | 1993-05-18 | Treatment of decarburization of chromium-containing molten steel in reduced pressure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06330143A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003096514A (en) * | 2001-09-20 | 2003-04-03 | Nippon Steel Corp | Method for refining molten chromium-containing steel |
US7497987B2 (en) | 2001-09-20 | 2009-03-03 | Nippon Steel Corporation | Refining method and refining apparatus for chromium-contained molten steel |
US9045805B2 (en) | 2013-03-12 | 2015-06-02 | Ati Properties, Inc. | Alloy refining methods |
CN113614255A (en) * | 2019-02-13 | 2021-11-05 | 沙特基础工业全球技术公司 | Decarburization of steel with carbon dioxide |
-
1993
- 1993-05-18 JP JP11625193A patent/JPH06330143A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003096514A (en) * | 2001-09-20 | 2003-04-03 | Nippon Steel Corp | Method for refining molten chromium-containing steel |
US7497987B2 (en) | 2001-09-20 | 2009-03-03 | Nippon Steel Corporation | Refining method and refining apparatus for chromium-contained molten steel |
US9045805B2 (en) | 2013-03-12 | 2015-06-02 | Ati Properties, Inc. | Alloy refining methods |
US9683273B2 (en) | 2013-03-12 | 2017-06-20 | Ati Properties Llc | Alloy refining methods |
CN113614255A (en) * | 2019-02-13 | 2021-11-05 | 沙特基础工业全球技术公司 | Decarburization of steel with carbon dioxide |
US11970748B2 (en) | 2019-02-13 | 2024-04-30 | Sabic Global Technologies B.V. | Steel decarburization using carbon dioxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5743938A (en) | Method of decarburizing refining molten steel containing Cr | |
JPH06330143A (en) | Treatment of decarburization of chromium-containing molten steel in reduced pressure | |
JP3044642B2 (en) | Decarburization refining method of chromium-containing molten steel | |
JP3273205B2 (en) | Decarburization refining method of chromium-containing molten steel | |
JP3441523B2 (en) | Refining method of chromium-containing molten steel | |
JP3273382B2 (en) | Decarburization refining method of chromium-containing molten steel | |
JPH11106823A (en) | Method for refining extra-low carbon and extra-low nitrogen stainless steel | |
JP3439517B2 (en) | Refining method of chromium-containing molten steel | |
JPH07233408A (en) | Method for refining chromium-containing molten steel | |
JPH06330142A (en) | Method for decarburize-refining chromium-containing molten steel | |
JPH0885811A (en) | Method for refining molten chromium-containing steel | |
JP3225327B2 (en) | Vacuum decarburization method for chromium-containing molten steel | |
JP3769777B2 (en) | Method for melting ultra-low nitrogen Cr-containing steel | |
JPS5831012A (en) | Preferential desiliconizing method for molten iron by blowing of gaseous oxygen | |
WO2022259806A1 (en) | Molten steel denitrification method and steel production method | |
US5328658A (en) | Method of refining chromium-containing steel | |
JP2795597B2 (en) | Vacuum degassing and decarburization of molten stainless steel | |
JP3769779B2 (en) | Method for melting ultra-low carbon Cr-containing steel | |
JPH07331321A (en) | Method for decarburizing and refining molten chromium-containing steel | |
JPH05247522A (en) | Refining method of highly clean stainless steel | |
JP3273395B2 (en) | Refining method of chromium-containing molten steel | |
JPH07331322A (en) | Method for decarburization-refining chromium-containing molten steel | |
JPH05195046A (en) | Method for melting high manganese and extremely low carbon steel | |
JP3757435B2 (en) | Method for decarburizing and refining chromium-containing molten steel | |
JPH0987723A (en) | Method for preventing over-oxidation at the end stage of blowing in converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000801 |