JPH06287628A - Decarburization treatment of chromium-containing molten steel in reduced pressure - Google Patents

Decarburization treatment of chromium-containing molten steel in reduced pressure

Info

Publication number
JPH06287628A
JPH06287628A JP7600093A JP7600093A JPH06287628A JP H06287628 A JPH06287628 A JP H06287628A JP 7600093 A JP7600093 A JP 7600093A JP 7600093 A JP7600093 A JP 7600093A JP H06287628 A JPH06287628 A JP H06287628A
Authority
JP
Japan
Prior art keywords
concentration
refining
decarburization
gas
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7600093A
Other languages
Japanese (ja)
Other versions
JP3225327B2 (en
Inventor
Ryuji Nakao
隆二 中尾
Shigenori Tanaka
重典 田中
Mayumi Okimori
麻佑巳 沖森
Hiroshi Iwasaki
央 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07600093A priority Critical patent/JP3225327B2/en
Publication of JPH06287628A publication Critical patent/JPH06287628A/en
Application granted granted Critical
Publication of JP3225327B2 publication Critical patent/JP3225327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide a decarburization-treating method of decarburizing chromium-containing molten steel in reduced pressure, by which the oxidation of chromium in the molten steel is restrained and the decarburization is efficiently executed in high speed. CONSTITUTION:In the refining method of chromium-containing molten steel executing the decarburization in the vacuum after decarburizing in the atmospheric pressure in the same refining vessel, the decarburization in the vacuum is started in the condition of <=0.5mass% [C] concn. and <=30mass% (Cr2O3) concn. in slag and the pressure is reduced to <=200Torr vacuum degree. By using gaseous oxygen or mixed gas of the gaseous oxygen and inert gas as the blowing gas, until the [C[ concn. becomes 0.1mass%, the refining is executed, and after the [C[ concn. lowers to this value or further lower, the refining is executed with only the inert gas. By this method, the oxygen efficiency for decarburization is improved and the decarburizing speed is improved at the same oxygen supplying rate, and the unit consumption of Si for reduction after decarburizing can be reduced, and also as the refining time can be shortened, the productivity is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は含クロム溶鋼の脱炭精錬
において、溶鋼中の[Cr]の酸化を抑え、効率よく、
高速で脱炭を行い、かつ極低炭素濃度まで脱炭を行う含
クロム溶鋼の減圧脱炭処理方法に関する。
FIELD OF THE INVENTION The present invention suppresses the oxidation of [Cr] in molten steel efficiently in the decarburization refining of molten steel containing chromium.
The present invention relates to a vacuum decarburization treatment method for chromium-containing molten steel that decarburizes at high speed and decarburizes to an extremely low carbon concentration.

【0002】[0002]

【従来の技術】ステンレス鋼のごとき11mass%以
上のクロムを含むような含クロム溶鋼の脱炭法として
は、浴面下より酸素ガスまたは酸素ガス(以下、単に酸
素という)と不活性ガスの混合ガスを吹込むAOD法が
広く用いられている。AOD法では、脱炭が進行して溶
鋼中の[C]濃度が低下してくると[Cr]が酸化され
やすくなることから、[C]濃度の低下にともなって吹
込みガス中のArガスなどの不活性ガスの比率を高く
し、酸素の比率を低くして[Cr]の酸化を抑える方法
がとられている。しかし、低[C]濃度域では脱炭速度
が低下するために所望の[C]濃度に到達するのに長時
間を要し、かつ吹込みガス中の不活性ガスの比率を高く
するために不活性ガスの消費量が大幅に増大することか
ら、経済的にも不利になる。
2. Description of the Related Art As a decarburizing method for molten steel containing chromium such as stainless steel containing 11 mass% or more of chromium, oxygen gas or a mixture of oxygen gas (hereinafter simply referred to as "oxygen") and an inert gas is used from below the bath surface. The AOD method of blowing gas is widely used. In the AOD method, when decarburization progresses and the [C] concentration in the molten steel decreases, [Cr] is easily oxidized. Therefore, as the [C] concentration decreases, Ar gas in the blown gas decreases. A method of suppressing the oxidation of [Cr] by increasing the ratio of the inert gas such as the above and decreasing the ratio of the oxygen is adopted. However, in the low [C] concentration range, it takes a long time to reach the desired [C] concentration because the decarburization rate decreases, and in order to increase the ratio of the inert gas in the blown gas. It also becomes economically disadvantageous because the consumption of inert gas increases significantly.

【0003】このような低[C]濃度域における脱炭を
促進する方法として、真空精錬法の利用が挙げられる。
例えば、特公昭60−10087号公報には、高クロム
・ステンレス鋼を0.03mass%以下の低[C]濃
度まで脱炭するために、大気圧下での酸素による脱炭を
[C]=0.2〜0.4mass%まで行い、その後は
非酸化性ガスによる攪拌は続けるが酸素吹込みは停止
し、鋼浴上の圧力を約10Torrまで連続的に低下さ
せ、ボイリングを起こさせることによって所望の脱炭を
行う方法が記載されている。
As a method for promoting decarburization in such a low [C] concentration range, use of a vacuum refining method can be mentioned.
For example, in Japanese Examined Patent Publication No. 60-10087, in order to decarburize high chromium stainless steel to a low [C] concentration of 0.03 mass% or less, decarburization with oxygen under atmospheric pressure [C] = 0.2 to 0.4 mass%, and then the stirring with non-oxidizing gas is continued, but the oxygen blowing is stopped, and the pressure on the steel bath is continuously reduced to about 10 Torr to cause boiling. A method for performing the desired decarburization is described.

【0004】該方法は比較的高[C]濃度より酸素の供
給を止めるために[Cr]の酸化による損失は少なくな
るが、急激な真空精錬の適用によりCOガスを大量に発
生して爆発の危険を招く。このために真空吸引をゆるや
かにすれば危険はなくなるが、経過時間が長くなって溶
鋼温度が低下し、かつ反応が遅くなる。また、圧力を1
0Torr以下の高真空にすれば、溶鋼のスプラッシュ
が激しくなり、合金材料投入用ホッパーの閉塞などの問
題が生じる。
In this method, since the supply of oxygen is stopped compared to a relatively high [C] concentration, the loss due to the oxidation of [Cr] is reduced, but a large amount of CO gas is generated by the rapid vacuum refining, which causes an explosion. Causes danger. For this reason, if the vacuum suction is loosened, there is no danger, but the elapsed time becomes longer, the molten steel temperature decreases, and the reaction becomes slower. Also, set the pressure to 1
If the vacuum is set to a high vacuum of 0 Torr or less, the splash of molten steel becomes violent, causing problems such as clogging of the hopper for feeding the alloy material.

【0005】これらの問題点を解決する方法が、特開平
3−68713号公報および特開平4−254509号
公報に記載されている。これらに記載されている含クロ
ム溶鋼の精錬方法は、[C]濃度0.2〜0.05ma
ss%までは吹込みガスとして非酸化性ガスと酸素の混
合ガスを使用し、[C]濃度がこの範囲内に低下した後
は、200〜15Torrに減圧し、かつ吹込みガスと
して非酸化性ガスのみを使用するものである。
Methods for solving these problems are described in JP-A-3-68713 and JP-A-4-254509. The refining methods for molten chromium-containing steel described in these documents are based on [C] concentration of 0.2 to 0.05 ma.
A mixed gas of a non-oxidizing gas and oxygen is used as a blowing gas up to ss%, and after the [C] concentration falls within this range, the pressure is reduced to 200 to 15 Torr and the blowing gas is a non-oxidizing gas. It uses only gas.

【0006】該方法は、比較的低[C]濃度まで大気圧
下で精錬を行うために[Cr]の酸化損失が大きく、ま
た真空下での脱炭は不活性ガスのみを用いることで[C
r]の酸化は抑えられるが、脱炭の酸素源は溶鋼中の
[O]あるいはスラグ中の酸素となり、特にスラグが固
化した場合には酸素の供給速度が遅くなるために脱炭速
度の低下を招き、効率的な脱炭精錬法とは言えない。
In this method, since refining is performed under atmospheric pressure to a relatively low [C] concentration, the oxidation loss of [Cr] is large, and decarburization under vacuum uses only an inert gas [ C
Oxidation of r] is suppressed, but the oxygen source for decarburization is [O] in the molten steel or oxygen in the slag, and especially when the slag is solidified, the oxygen supply rate slows down and the decarburization rate decreases. Therefore, it is not an efficient decarburization refining method.

【0007】[0007]

【発明が解決しようとする課題】本発明は、真空精錬を
用いる含クロム溶鋼の脱炭精錬において、真空精錬を開
始する[C]濃度、スラグ中(Cr2 3 )濃度、真空
精錬時の真空度および真空精錬時に吹込むガスの種類を
好適な範囲に維持することにより、溶鋼中の[Cr]の
酸化を抑え、効率よく高速で脱炭を行い、併せて還元用
Si原単位の低減、精錬時間の短縮および極低炭素濃度
鋼の精錬を可能にするものである。
DISCLOSURE OF THE INVENTION In the decarburizing refining of molten chromium-containing steel using vacuum refining, the present invention is to start vacuum refining, [C] concentration, slag (Cr 2 O 3 ) concentration, vacuum refining By maintaining the degree of vacuum and the type of gas blown during vacuum refining within a suitable range, oxidation of [Cr] in molten steel is suppressed, decarburization is performed efficiently and at high speed, and at the same time, the reduction of the Si unit for reduction is reduced. It enables shortening of refining time and refining of ultra-low carbon concentration steel.

【0008】[0008]

【課題を解決するための手段】本発明は上述の課題を有
利に解決したものであり、その要旨とするところは.下
記のとおりである。 (1) 同一精錬容器内で吹込みガスを供給しながら大
気圧下での脱炭処理後真空下での脱炭処理を行う含クロ
ム溶鋼の精錬方法において、真空下での脱炭処理の開始
は溶鋼中の[C]濃度が0.5mass%以下、かつス
ラグ中の(Cr 2 3 )濃度が30mass%以下の条
件とし、真空度は200Torr以下とし、吹込みガス
としては[C]濃度0.1mass%までは酸素ガスま
たは酸素ガスと不活性ガスとの混合ガスを用い、[C]
濃度がこの値以下に低下した後は吹込みガスとして不活
性ガスのみを供給することを特徴とする含クロム溶鋼の
減圧脱炭処理方法。
The present invention has the above-mentioned problems.
This is a solution to the problem, and the main point is. under
It is as described. (1) Large while supplying blowing gas in the same refining vessel
Black decarburization that is performed under vacuum and then under vacuum
Start of decarburization treatment under vacuum in refining method of molten steel
Is a [C] concentration in molten steel of 0.5 mass% or less, and
(Cr in the rug 2O3) Articles with a concentration of 30 mass% or less
The degree of vacuum is 200 Torr or less, and the blowing gas is
As for [C] concentration up to 0.1 mass%, oxygen gas or
Or using a mixed gas of oxygen gas and an inert gas, [C]
After the concentration drops below this value, it becomes inactive as blown gas.
Of molten chromium-containing steel, which is characterized by supplying only a reactive gas
Vacuum decarburization treatment method.

【0009】(2) 溶鋼中の[C]濃度が0.5ma
ss%以下、かつスラグ中の(Cr 2 3 )濃度が30
mass%以下の条件で、精錬容器内を200Torr
以下に減圧し、吹込みガス流量を溶鋼1トン当り0.1
Nm3 /min・T以上として吹込みガスを供給しなが
ら脱炭することを特徴とする前項1記載の含クロム溶鋼
の減圧脱炭処理方法。
(2) [C] concentration in molten steel is 0.5 ma
ss% or less, and (Cr 2O3) Concentration is 30
200 Torr in the refining container under the condition of less than mass%
The pressure is reduced to the following, and the flow rate of the blown gas is set to 0.1
Nm3/ Min · T or more, but do not supply blown gas
Decarburized from the chromium-containing molten steel as described in 1 above.
Decompression decarburization treatment method.

【0010】以下本発明について詳細に説明する。本発
明の含クロム溶鋼の脱炭精錬は[C]濃度が0.5ma
ss%以下の範囲において、図1に例示するような製錬
容器を用いる精錬方法である。精錬容器1内で含クロム
溶鋼4中に底吹き羽口2を通して精錬ガス5を吹込む。
また、精錬容器1は脱着可能な排気フード3を有してお
り、200Torr以下の減圧が可能である。
The present invention will be described in detail below. The decarburization refining of the chromium-containing molten steel of the present invention has a [C] concentration of 0.5 ma.
In the range of ss% or less, the refining method uses a smelting vessel as illustrated in FIG. The refining gas 5 is blown into the molten chromium-containing steel 4 in the refining vessel 1 through the bottom blowing tuyere 2.
Further, the refining vessel 1 has a detachable exhaust hood 3 and can reduce the pressure to 200 Torr or less.

【0011】本発明は真空精錬を用いる含クロム溶鋼の
脱炭精錬において、比較的高[C]濃度の0.5mas
s%以下で真空度200Torr以下であれば、吹込み
ガスとして酸素または酸素と不活性ガスの混合ガスを用
いることで、溶鋼中[Cr]の酸化を抑え、脱炭速度を
高位に保つことが可能であり、かつスラグ中(Cr2
3 )濃度を30mass%以下とすれば、さらに脱炭が
促進されることに着目したものである。
The present invention is used for decarburizing and refining molten chromium-containing steel using vacuum refining, which has a relatively high [C] concentration of 0.5 mass.
If the degree of vacuum is s% or less and the degree of vacuum is 200 Torr or less, by using oxygen or a mixed gas of oxygen and an inert gas as a blowing gas, it is possible to suppress the oxidation of [Cr] in molten steel and maintain the decarburization rate at a high level. Possible and in slag (Cr 2 O
3 ) It is focused on that decarburization is further promoted when the concentration is 30 mass% or less.

【0012】図2にSUS304ステンレス鋼を処理し
た場合の大気圧下精錬における[C]濃度と脱炭酸素効
率の関係を示す。なお、脱炭酸素効率は吹込み酸素のう
ちで脱炭に使用された酸素の割合を示す。また、吹錬前
の[Si]濃度は0.1mass%以下であり、吹込み
ガスとして酸素とArガスを用い、O2 /Ar比=4/
1で吹錬を行った場合の結果である。図2より[C]濃
度0.5mass%以下で脱炭酸素効率が急激に低下す
ることが分かる。従って、[C]濃度0.5mass%
以下で真空精錬を適用すれば脱炭酸素効率の低下を防止
することが可能となる。
FIG. 2 shows the relation between the [C] concentration and the decarboxylation efficiency in the refining under atmospheric pressure when SUS304 stainless steel is treated. The decarbonation efficiency represents the proportion of oxygen used for decarburization in the blown oxygen. Further, the [Si] concentration before blowing is 0.1 mass% or less, oxygen and Ar gas are used as the blowing gas, and the O 2 / Ar ratio = 4 /
This is the result when blowing was performed in 1. From FIG. 2, it can be seen that the efficiency of decarboxylation decreases sharply when the [C] concentration is 0.5 mass% or less. Therefore, the [C] concentration is 0.5 mass%
If vacuum refining is applied below, it becomes possible to prevent a decrease in decarboxylation efficiency.

【0013】図3にSUS304ステンレス鋼を真空度
100〜200Torr、吹込みガスとしてArのみを
0.2Nm3 /min・T吹込み、脱炭処理した場合の
[C]濃度0.1〜0.4mass%におけるスラグ中
(Cr2 3 )濃度と脱炭速度指数の関係を示す。な
お、脱炭速度指数は(Cr2 3 )濃度30mass%
での平均脱炭速度を100として換算した値である。図
3より(Cr2 3 )濃度30mass%以下で脱炭速
度は高位に安定することが分かる。
FIG. 3 shows a SUS304 stainless steel having a vacuum degree of 100 to 200 Torr, Ar gas as a blowing gas of 0.2 Nm 3 / min · T, and a [C] concentration of 0.1 to 0. The relationship between the (Cr 2 O 3 ) concentration in slag and the decarburization rate index at 4 mass% is shown. The decarburization rate index is (Cr 2 O 3 ) concentration of 30 mass%.
The average decarburization rate in 100 is a value converted. It can be seen from FIG. 3 that the decarburization rate stabilizes at a high level when the (Cr 2 O 3 ) concentration is 30 mass% or less.

【0014】図4にSUS304ステンレス鋼をO2
Arガス比率=1/1で処理した場合の[C]濃度0.
2〜0.5mass%における真空度と脱炭酸素効率の
関係について示す。なお、この時のスラグ中(Cr2
3 )濃度は15〜25mass%の範囲にあった。図4
より真空度200Torr以下で脱炭酸素効率は高位に
安定することが分かる。
In FIG. 4, SUS304 stainless steel is O 2 /
When the Ar gas ratio = 1/1, the [C] concentration was 0.
The relationship between the degree of vacuum and the efficiency of decarboxylation at 2 to 0.5 mass% will be shown. In the slag at this time (Cr 2 O
3 ) The concentration was in the range of 15 to 25 mass%. Figure 4
It can be seen that the decarboxylation efficiency is stabilized at a high level at a vacuum degree of 200 Torr or less.

【0015】従って、真空精錬で適用する真空度は20
0Torr以下とすることが必要である。なお、急激な
真空度の上昇は溶鋼スプラッシュを大量に発生させるた
めに、真空精錬では[C]濃度の低下にともない200
Torrから徐々に低下させることが好ましい。図5に
SUS304ステンレス鋼を100〜200Torrの
真空下で処理した場合の[C]濃度と脱炭酸素効率の関
係について、吹込みガスのO2 /Ar比率を1/1、1
/4の2水準でふらした結果を示す。なお、全吹込みガ
ス流量は0.3Nm3 /min・Tであり、スラグ中
(Cr2 3 )濃度は15〜25mass%の範囲にあ
った。図5より吹込みガスとして酸素を混合する場合に
は[C]濃度0.1mass%以下で急激に脱炭酸素効
率が低下することが分かる。従って、[C]濃度0.1
mass%以下では吹込みガスとして不活性ガスを用い
た方が効率的な脱炭が可能となる。
Therefore, the degree of vacuum applied in vacuum refining is 20.
It must be 0 Torr or less. It should be noted that a rapid increase in the degree of vacuum causes a large amount of molten steel splash, so in vacuum refining the [C] concentration is reduced to 200
It is preferable to gradually decrease from Torr. Relationship between [C] concentration and decarboxylation oxygen efficiency when the SUS304 stainless steel was treated under vacuum in 100~200Torr Figure 5, the O 2 / Ar ratio of blowing gas 1 / 1,1
The results are shown with two levels of / 4. The total flow rate of blown gas was 0.3 Nm 3 / min · T, and the (Cr 2 O 3 ) concentration in the slag was in the range of 15 to 25 mass%. From FIG. 5, it can be seen that when oxygen is mixed as the blowing gas, the efficiency of decarboxylation decreases sharply at a [C] concentration of 0.1 mass% or less. Therefore, [C] concentration of 0.1
If it is less than mass%, it is possible to efficiently decarburize by using an inert gas as the blowing gas.

【0016】図6にSUS304ステンレス鋼をスラグ
中(Cr2 3 )濃度15〜25mass%で、かつ1
00〜200Torrの真空下でArガスのみを吹込ん
で処理した場合の[C]濃度0.05〜0.15mas
s%の範囲における吹込みガス流量と脱炭速度指数の関
係を示す。なお、脱炭速度指数はガス流量0.2Nm 3
/min・Tでの脱炭速度の平均値を100として換算
した値である。図6よりガス流量0.1Nm3 /min
・T以下では急激に脱炭速度が低下することが分かる。
従って、高速で脱炭を行うには吹込みガス流量として
0.1Nm3 /min・T以上が必要である。
FIG. 6 shows a slag of SUS304 stainless steel.
Medium (Cr2O3) Concentration of 15 to 25 mass% and 1
Blow only Ar gas under a vacuum of 100 to 200 Torr
[C] concentration of 0.05 to 0.15mass when treated with
Relationship between blown gas flow rate and decarburization rate index in the range of s%
Indicates the person in charge. The decarburization rate index is a gas flow rate of 0.2 Nm. 3
Converted with the average value of the decarburization rate at / min · T as 100
It is the value. From Figure 6, gas flow rate 0.1 Nm3/ Min
・ It can be seen that the decarburization rate drops sharply below T.
Therefore, in order to perform decarburization at high speed
0.1 Nm3/ Min · T or more is required.

【0017】以上より、溶鋼中の[Cr]の酸化を抑
え、効率よく高速で含クロム溶鋼の脱炭を行うには
[C]濃度0.5mass%以下、スラグ中(Cr2
3 )濃度30mass%以下で真空精錬を適用し、真空
度200Torr以下に減圧して、吹込みガスとして酸
素または酸素と不活性ガスの混合ガスを0.1Nm3
min・T以上吹込む必要があるが分かる。また、
[C]濃度0.1mass%以下では不活性ガスのみを
用いることで効率的な脱炭が可能である。
From the above, in order to suppress the oxidation of [Cr] in the molten steel and efficiently decarburize the chromium-containing molten steel at a high speed, [C] concentration of 0.5 mass% or less, in the slag (Cr 2 O
3 ) Apply vacuum refining at a concentration of 30 mass% or less, reduce the pressure to a vacuum degree of 200 Torr or less, and use oxygen or a mixed gas of oxygen and an inert gas as 0.1 Nm 3 /
It is understood that it is necessary to blow more than min · T. Also,
When the [C] concentration is 0.1 mass% or less, efficient decarburization is possible by using only an inert gas.

【0018】操業においては粗溶鋼の装入時の溶鋼組成
および溶鋼温度を把握し、真空精錬を開始する時期を予
測する。その後大気圧精錬の終了前にサンプリング等に
より、[C]濃度、(Cr2 3 )濃度および溶鋼温度
を把握する。スラグ中(Cr 2 3 )濃度が30mas
s%を超える場合にはCaO、CaF2 Al2 3
のフラックスを添加して30mass%以下を確保する
ようにする。また、真空精錬中は炉内状況を把握して、
ガス吹込み条件および真空度の条件を決定することが可
能である。該操業方法により、溶鋼のスプラッシュの大
量発生は防止可能であり、安定した高速吹錬操業が可能
である。脱炭精錬終了後は雰囲気を大気圧に戻しなが
ら、(Cr2 3 )中のCrを回収するための還元材を
添加して、還元精錬を行った後に取鍋への出鋼を行う。
In operation, the composition of molten steel at the time of charging the crude molten steel
And the molten steel temperature, and predict when vacuum refining will start.
Measure. After that, before the end of atmospheric pressure refining, such as sampling
From [C] concentration, (Cr2O3) Concentration and molten steel temperature
Figure out. Inside slag (Cr 2O3) Concentration is 30mas
If it exceeds s%, CaO, CaF2, Al2O3 etc
To secure 30 mass% or less by adding the flux of
To do so. Also, during vacuum refining, grasp the situation inside the furnace,
Gas injection conditions and vacuum conditions can be determined
Noh. Depending on the operating method, a large amount of molten steel splash
Amount generation can be prevented and stable high-speed blowing operation is possible
Is. After decarburizing and refining, do not return the atmosphere to atmospheric pressure.
, (Cr2O3) In order to recover the Cr in
After adding and reducing and refining, steel is tapped into the ladle.

【0019】[0019]

【作用】含クロム溶鋼の脱炭精錬では、吹込まれた酸素
は下記式で示される脱炭反応と同時に式で示される
溶鋼中[Cr]の酸化反応にも使用される。なお、式
の反応平衡定数Kは式で表示される。また式で生成
した(Cr2 3 )は条件によっては脱炭反応に作用
し、式の反応が進行する。
In the decarburization refining of molten steel containing chromium, the injected oxygen is used for the decarburization reaction represented by the following formula and simultaneously with the oxidation reaction of [Cr] in the molten steel represented by the formula. The reaction equilibrium constant K of the equation is expressed by the equation. Further, (Cr 2 O 3 ) generated by the formula acts on the decarburization reaction depending on the conditions, and the reaction of the formula proceeds.

【0020】 [C]+[O]=CO(g) … K=PCO/(aC ・aO) … 2[Cr]+3[O]=(Cr23) … (Cr2 3 )+3[C]=3CO(g) … ここで、aC 、aO は溶鋼中[C]、[Cr]の活量を
示し、PCOは雰囲気中のCO分圧を示す。
[C] + [O] = CO (g) ... K = P CO / (a C · a O ) ... 2 [Cr] +3 [O] = (Cr 2 O 3 ) ... (Cr 2 O 3 ) +3 [C] = 3CO (g) Here, a C and a O represent the activities of [C] and [Cr] in the molten steel, and P CO represents the CO partial pressure in the atmosphere.

【0021】脱炭反応は[C]濃度によって律速過程が
変化する。[C]濃度0.7mass%以上の高炭域で
は酸素供給律速、[C]濃度0.3mass%以下の低
炭域では[C]の移動律速と言われ、[C]濃度0.3
〜0.7mass%の領域では混合律速と言われてい
る。従って、[C]濃度0.7mass%以上で真空精
錬を適用しても効果が少ない。本発明では[C]濃度
0.5mass%以下で適用することが効果的な条件で
あることを見出した。低[C]濃度側では酸素の供給速
度が遅くなるために、式の(Cr2 3 )による脱炭
が進行しやすくなる。式の反応はスラグの状態に影響
を受け、スラグが固体化した状態では脱炭反応は殆ど進
行しない。スラグによる脱炭は(Cr2 3 )濃度を3
0mass%以下として、スラグを液体化あるいは半溶
融状態にすることで促進できることを見出した。
In the decarburization reaction, the rate-determining process changes depending on the [C] concentration. It is said that the oxygen supply rate is controlled in a high-carbon area where the [C] concentration is 0.7 mass% or more, and the [C] concentration is 0.3 in the low-carbon area where the [C] concentration is 0.3 mass% or less.
It is said to be mixed rate-determining in the range of 0.7 mass%. Therefore, the effect is small even if the vacuum refining is applied at a [C] concentration of 0.7 mass% or more. In the present invention, it has been found that applying the [C] concentration of 0.5 mass% or less is an effective condition. On the low [C] concentration side, the supply rate of oxygen becomes slow, and therefore decarburization by the formula (Cr 2 O 3 ) easily proceeds. The reaction of the formula is affected by the state of slag, and the decarburization reaction hardly progresses when the slag is solidified. Decarburization with slag reduces the (Cr 2 O 3 ) concentration to 3
It has been found that when the content is 0 mass% or less, it can be promoted by liquefying the slag or making it into a semi-molten state.

【0022】さらに低[C]濃度側で脱炭を促進するに
は、式よりaO を増大させ、P COを低下させること
が有効である。非酸化性ガスのみでは酸素の供給が遅れ
るためにaO が小さくなると考えられ、非酸化性ガスに
酸素を混合する方が有効であることを見出した。また、
酸素は[C]濃度0.1mass%以下での供給は却っ
て式の反応を進行させるために、この濃度以下では不
活性ガスのみの供給が有効である。なお、真空度として
は図4に示したように、200Torr以下で効果的で
あり、[C]濃度の低下にともない真空度を低下させる
ことが好ましいことがわかった。
To promote decarburization at a lower [C] concentration side
Is a from the formulaOTo increase P COTo lower
Is effective. Oxygen supply is delayed only with non-oxidizing gas
In order toOIs considered to be smaller, and
It has been found that mixing oxygen is more effective. Also,
Oxygen is not supplied at a [C] concentration of 0.1 mass% or less.
Below this concentration, the reaction of
Supplying only active gas is effective. In addition, as the degree of vacuum
Is effective below 200 Torr as shown in FIG.
Yes, the degree of vacuum is reduced as the concentration of [C] is reduced.
It turned out that it is preferable.

【0023】[0023]

【実施例】SUS304ステンレス鋼(8mass%N
i−18mass%Cr)60tonの処理を図1に示
す実施態様で実施した。図7に本発明による実施例−1
を示す。脱炭開始時の[C]濃度は1.5mass%で
あり、[C]濃度0.5mass%までは大気圧下での
脱炭を行い、その後真空精錬を適用した。真空精錬中O
2 /Arガスの比率は1/1から1/4、0/1に、真
空度は200Torrから100Torr、50Tor
rまで低下させて、[C]0.04mass%まで脱炭
した。その後、真空度を大気圧まで戻しながら、脱炭中
に酸化したクロムを還元するための還元材としてFe−
Siを添加して、Arガスのみの吹込みにより還元処理
を行い、取鍋へ出鋼した。
[Example] SUS304 stainless steel (8 mass% N
The i-18 mass% Cr) 60 ton treatment was carried out in the embodiment shown in FIG. FIG. 7 shows Example-1 according to the present invention.
Indicates. The [C] concentration at the start of decarburization was 1.5 mass%, and decarburization was performed under atmospheric pressure until the [C] concentration was 0.5 mass%, and then vacuum refining was applied. Vacuum refining O
2 / Ar gas ratio is 1/1 to 1/4, 0/1, vacuum degree is 200 Torr to 100 Torr, 50 Torr
It was lowered to r and decarburized to [C] 0.04 mass%. Then, while reducing the degree of vacuum to atmospheric pressure, Fe-as a reducing material for reducing the chromium oxidized during decarburization.
Si was added, reduction treatment was performed by blowing only Ar gas, and the steel was tapped into a ladle.

【0024】図8には本発明による実施例−2を示す。
[C]濃度0.5mass%までは実施例−1と同一の
処理を行った。[C]濃度0.5mass%の時点でス
ラグ中(Cr2 3 )濃度が30mass%を超えてい
たためにフラックスを添加して、(Cr2 3 )濃度を
28mass%まで低下させた。その後、[C]濃度
0.5mass%以下で真空精錬を適用し、[C]濃度
の低下にともないO2 /Ar比は1/1、1/4、0/
1、真空度は200、100、50Torrと低下させ
た。還元処理は実施例−1と同一の方法で行った。
FIG. 8 shows a second embodiment according to the present invention.
[C] The same treatment as in Example-1 was performed up to a concentration of 0.5 mass%. When the [C] concentration was 0.5 mass%, the (Cr 2 O 3 ) concentration in the slag was over 30 mass%, so a flux was added to reduce the (Cr 2 O 3 ) concentration to 28 mass%. After that, vacuum refining was applied at a [C] concentration of 0.5 mass% or less, and the O 2 / Ar ratio was 1/1, 1/4, 0 /
1. The degree of vacuum was reduced to 200, 100 and 50 Torr. The reduction treatment was performed in the same manner as in Example-1.

【0025】図9には、スラグ中(Cr2 3 )濃度が
本発明の条件を外れる比較例−1を示す。[C]濃度
0.5mass%までは図8の本発明の実施例−2と同
一であったが、スラグ中(Cr2 3 )濃度が30ma
ss%を超えていたにもかかわらず、そのまま真空精錬
に移った。真空精錬の精錬パターンおよび還元処理のパ
ターンは図8と同一の方法で行った。
FIG. 9 shows Comparative Example-1 in which the (Cr 2 O 3 ) concentration in the slag deviates from the conditions of the present invention. The [C] concentration was the same as Example-2 of the present invention up to 0.5 mass%, but the (Cr 2 O 3 ) concentration in the slag was 30 ma.
Even though it exceeded ss%, it proceeded to vacuum refining as it was. The refining pattern of vacuum refining and the pattern of reduction treatment were performed by the same method as in FIG.

【0026】図10には従来法として示されている特開
平3−68713号公報に従った実施例(比較例−2)
を示す。本方法では[C]濃度0.15mass%まで
は大気圧下で精錬し、[C]濃度0.15mass%以
下で真空度100Torrの条件で、Arガス吹込みで
0.04mass%までの脱炭処理を行い、その後大気
圧下での還元処理を行い、取鍋に出鋼した。
FIG. 10 shows an example according to Japanese Patent Laid-Open No. 3-68713 (Comparative Example-2), which is shown as a conventional method.
Indicates. In this method, refining is performed at atmospheric pressure up to a [C] concentration of 0.15 mass%, and decarburization is performed up to 0.04 mass% by Ar gas injection under the condition of a [C] concentration of 0.15 mass% or less and a vacuum degree of 100 Torr. After the treatment, the reduction treatment was performed under the atmospheric pressure, and the steel was tapped in a ladle.

【0027】なお、各実施例では大気圧下処理では全ガ
ス吹込み流量を1.0Nm3 /min・Tとし、真空下
処理では酸素吹込み流量を0.3Nm3 /min・T以
下、Arガス吹込み流量を0.3Nm3 /min・T以
下として処理を実施した。図7、8、9、10には各実
施例における精錬時間、[C]および[Cr]濃度の推
移も示しているが、従来法に比べ本発明の方が全精錬時
間が短くなり、かつ[Cr]濃度の低下量も小さくなっ
た。これらの精錬結果をまとめて表1に示す。なお、表
1の値は比較例−2による結果を100としたときの指
数で示す。
In each of the examples, the total gas injection flow rate was set to 1.0 Nm 3 / min · T in the atmospheric pressure treatment, and the oxygen injection flow rate was set to 0.3 Nm 3 / min · T or less in the vacuum treatment and Ar was set. The treatment was carried out at a gas injection flow rate of 0.3 Nm 3 / min · T or less. FIGS. 7, 8, 9 and 10 also show changes in the refining time and the [C] and [Cr] concentrations in each Example, but the total refining time of the present invention was shorter than that of the conventional method, and The amount of decrease in the [Cr] concentration was also small. The results of these refining are summarized in Table 1. In addition, the value of Table 1 is shown as an index when the result of Comparative Example-2 is 100.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明によると含クロム溶鋼の脱炭精錬
において、脱炭酸素効率が向上するために同一酸素供給
量で脱炭速度の向上がはかれる。また、還元用Si原単
位の低減とともに、精錬時間が短縮できるために、大幅
な精錬コストの低減および生産性の向上がはかれる。
According to the present invention, in the decarburizing refining of molten steel containing chromium, the decarburizing efficiency is improved, and therefore the decarburizing rate can be improved with the same oxygen supply amount. Moreover, since the refining time can be shortened as well as the reduction Si basic unit is reduced, the refining cost can be greatly reduced and the productivity can be improved.

【0030】さらに、真空処理を用いるのでArガスの
代替としての窒素ガスの使用の拡大および、例えば
[C]濃度0.01mass%以下の極低炭素域までの
精錬が容易になる。
Further, since the vacuum treatment is used, the use of nitrogen gas as a substitute for Ar gas can be expanded and refining to an extremely low carbon region having a [C] concentration of 0.01 mass% or less can be facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様例の精錬容器を示す図であ
る。
FIG. 1 is a diagram showing a refining vessel according to an embodiment of the present invention.

【図2】本発明における真空精錬開始時の[C]濃度の
限定理由を示す図である。
FIG. 2 is a diagram showing the reason for limiting the [C] concentration at the start of vacuum refining in the present invention.

【図3】本発明における真空精錬開始時のスラグ中(C
2 3 )濃度の限定理由を示す図である。
[Fig. 3] In the slag at the start of vacuum refining in the present invention (C
r 2 O 3) is a diagram showing the reason for limiting concentration.

【図4】本発明における真空精錬時の真空度の限定理由
を示す図である。
FIG. 4 is a diagram showing the reason for limiting the degree of vacuum during vacuum refining in the present invention.

【図5】本発明における真空精錬時の酸素吹込み下限の
[C]濃度の限定理由を示す図である。
FIG. 5 is a diagram showing the reason for limiting the oxygen blowing lower limit [C] concentration in vacuum refining in the present invention.

【図6】本発明における真空精錬時の吹込みガス流量の
限定理由を示す図である。
FIG. 6 is a diagram showing the reason for limiting the flow rate of blown gas during vacuum refining in the present invention.

【図7】本発明の実施例−1の精錬パターンを示す図で
ある。
FIG. 7 is a diagram showing a refining pattern of Example-1 of the present invention.

【図8】本発明の実施例−2の精錬パターンを示す図で
ある。
FIG. 8 is a diagram showing a refining pattern of Example-2 of the present invention.

【図9】本発明の条件から外れる比較例−1の精錬パタ
ーンを示す図である。
FIG. 9 is a view showing a refining pattern of Comparative Example-1 which is out of the conditions of the present invention.

【図10】従来法による実施例(比較例−2)の精錬パ
ターンを示す図である。
FIG. 10 is a diagram showing a refining pattern of an example (Comparative Example-2) according to a conventional method.

【符号の説明】[Explanation of symbols]

1…精錬容器 2…底吹き羽口 3…排気フード 4…溶鋼 5…精錬ガス 1 ... Refining container 2 ... Bottom blowing tuyere 3 ... Exhaust hood 4 ... Molten steel 5 ... Refining gas

フロントページの続き (72)発明者 岩崎 央 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内Continuation of the front page (72) Inventor, Hiroshi Iwasaki 3434, Shimada, Hikari City, Yamaguchi Prefecture Nippon Steel Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 同一精錬容器内で吹込みガスを供給しな
がら大気圧下での脱炭処理後真空下での脱炭処理を行う
含クロム溶鋼の精錬方法において、真空下での脱炭処理
の開始は溶鋼中の[C]濃度が0.5mass%以下、
かつスラグ中の(Cr2 3 )濃度が30mass%以
下の条件とし、真空度は200Torr以下とし、吹込
みガスとしては[C]濃度0.1mass%までは酸素
ガスまたは酸素ガスと不活性ガスとの混合ガスを用い、
[C]濃度がこの値以下に低下した後は吹込みガスとし
て不活性ガスのみを供給することを特徴とする含クロム
溶鋼の減圧脱炭処理方法。
1. A refining method for molten chromium-containing steel, which comprises decarburizing at atmospheric pressure and then performing decarburizing under vacuum while supplying a blowing gas in the same refining vessel. Is started when the [C] concentration in the molten steel is 0.5 mass% or less,
In addition, the (Cr 2 O 3 ) concentration in the slag is set to 30 mass% or less, the degree of vacuum is set to 200 Torr or less, and the blowing gas is oxygen gas or oxygen gas and an inert gas up to a [C] concentration of 0.1 mass%. Using a mixed gas of
A method for decarburizing decarburization of molten chromium-containing steel, which comprises supplying only an inert gas as a blowing gas after the [C] concentration has dropped below this value.
【請求項2】 溶鋼中の[C]濃度が0.5mass%
以下、かつスラグ中の(Cr2 3 )濃度が30mas
s%以下の条件で、精錬容器内を200Torr以下に
減圧し、吹込みガス流量を溶鋼1トン当り0.1Nm3
/min・T以上として吹込みガスを供給しながら脱炭
することを特徴とする請求項1記載の含クロム溶鋼の減
圧脱炭処理方法。
2. The [C] concentration in the molten steel is 0.5 mass%.
Below, and (Cr 2 O 3 ) concentration in the slag is 30mass
Under the condition of s% or less, the inside of the refining vessel is depressurized to 200 Torr or less, and the blowing gas flow rate is 0.1 Nm 3 per ton of molten steel.
The method for decarburizing a chromium-containing molten steel under reduced pressure according to claim 1, wherein decarburization is performed while supplying a blowing gas at a rate of not less than / min · T.
JP07600093A 1993-04-01 1993-04-01 Vacuum decarburization method for chromium-containing molten steel Expired - Lifetime JP3225327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07600093A JP3225327B2 (en) 1993-04-01 1993-04-01 Vacuum decarburization method for chromium-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07600093A JP3225327B2 (en) 1993-04-01 1993-04-01 Vacuum decarburization method for chromium-containing molten steel

Publications (2)

Publication Number Publication Date
JPH06287628A true JPH06287628A (en) 1994-10-11
JP3225327B2 JP3225327B2 (en) 2001-11-05

Family

ID=13592541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07600093A Expired - Lifetime JP3225327B2 (en) 1993-04-01 1993-04-01 Vacuum decarburization method for chromium-containing molten steel

Country Status (1)

Country Link
JP (1) JP3225327B2 (en)

Also Published As

Publication number Publication date
JP3225327B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
JPS6150122B2 (en)
EP0690137B1 (en) Method of decarburizing refining molten steel containing Cr
JP3606170B2 (en) Method for producing low nitrogen-containing chromium steel
JP3044642B2 (en) Decarburization refining method of chromium-containing molten steel
JP3273205B2 (en) Decarburization refining method of chromium-containing molten steel
JP3752801B2 (en) Method for melting ultra-low carbon and ultra-low nitrogen stainless steel
JP3441523B2 (en) Refining method of chromium-containing molten steel
JPH06287628A (en) Decarburization treatment of chromium-containing molten steel in reduced pressure
JPH09165615A (en) Denitrifying method for molten metal
JPH06330143A (en) Treatment of decarburization of chromium-containing molten steel in reduced pressure
JP3273382B2 (en) Decarburization refining method of chromium-containing molten steel
JPH08260030A (en) Method for vacuum-refining extra-low carbon stainless steel
JP3439517B2 (en) Refining method of chromium-containing molten steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
WO2022259806A1 (en) Molten steel denitrification method and steel production method
JPH07173515A (en) Decarburization refining method of stainless steel
JPH06330142A (en) Method for decarburize-refining chromium-containing molten steel
JP3273395B2 (en) Refining method of chromium-containing molten steel
JPH07233408A (en) Method for refining chromium-containing molten steel
JPH0885811A (en) Method for refining molten chromium-containing steel
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JP2000026913A (en) Method for refining high nitrogen, low oxygen and chromium-containing molten steel
JP2678779B2 (en) Manufacturing method of ultra-low nitrogen and ultra-low carbon molten steel
JPH07331321A (en) Method for decarburizing and refining molten chromium-containing steel
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12