JPH06323629A - Main body structure of boiler - Google Patents

Main body structure of boiler

Info

Publication number
JPH06323629A
JPH06323629A JP26682191A JP26682191A JPH06323629A JP H06323629 A JPH06323629 A JP H06323629A JP 26682191 A JP26682191 A JP 26682191A JP 26682191 A JP26682191 A JP 26682191A JP H06323629 A JPH06323629 A JP H06323629A
Authority
JP
Japan
Prior art keywords
cylinder
combustion
heat exchange
boiler
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26682191A
Other languages
Japanese (ja)
Other versions
JP2506011B2 (en
Inventor
Kaoru Hosono
馨 細野
Haruo Arakawa
春生 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nepon KK
Original Assignee
Nepon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nepon KK filed Critical Nepon KK
Priority to JP3266821A priority Critical patent/JP2506011B2/en
Publication of JPH06323629A publication Critical patent/JPH06323629A/en
Application granted granted Critical
Publication of JP2506011B2 publication Critical patent/JP2506011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a boiler main body structure in which a high heat exchanging rate can be exhibited and at the same time its structure is simple and being in expensive. CONSTITUTION:A combustion cylinder 13 is constituted so that a burner is axially fixed, it is communicated with 2 to 4 heat exchanger cylinders 14 through a communication passage 15. Combustion gas produced by the combustion cylinder 13 passes through the communication passage 15, passes through two to four heat exchanger cylinder 14 and then discharged. The combustion cylinder 13 and the 2 to 4 heat exchanger cylinders 14 are arranged in the cylinder enclosed by an outer frame filled with boiler water 12. The heat exchanger cylinders 14 have a flow regulating cylinder 17 in each of them. The flow regulating cylinder 17 has a thermal insulating material therein and the combustion gas coming from the combustion cylinder 13 passes through the communication passage 15, moves along the flow regulating plate between the heat exchanger cylinder 14 and the flow regulating cylinder 17 and then the gas is discharged through the chimney connection port.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボイラ本体構造に関し、
より詳しくは、良好な熱交換効率を維持しつつボイラ本
体を簡素な筒構造として製造コストを低減させたボイラ
本体構造に関する。本発明は、例えば小型ボイラや簡易
ボイラなどに好適に利用することができるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler body structure,
More specifically, the present invention relates to a boiler body structure in which a good heat exchange efficiency is maintained and a manufacturing cost is reduced by using the boiler body as a simple tubular structure. INDUSTRIAL APPLICABILITY The present invention can be suitably used for, for example, a small boiler and a simple boiler.

【0002】[0002]

【従来の技術】図6、図7、図8はそれぞれ従来のボイ
ラ本体断面図である。図中、31はバーナ、32はボイラ
水、33は燃焼筒、34は熱交換筒、37は整流筒、38は外
枠、39は燃焼室、40は煙突接続口、44は煙管、45は給水
口、46は出湯口を示す。従来のボイラ本体構造、例えば
図6に示す現在のボイラの主流を占める炉筒煙管式の場
合は、燃焼筒33上部から多数の煙管44が水密性・気密性
良く溶接接続され、これらの缶体と外枠38の間はボイラ
水32で満たされている。オイルまたはガスなどをバーナ
31により燃焼室39で燃焼させて生ずる高温の燃焼ガス
を、燃焼筒33および煙管44でボイラ水32と熱交換してボ
イラ水の温度を上昇させ、燃焼ガスは同図の矢印方向に
進んで煙突接続口40へ送られ、そこから図示しない煙突
を経て排出される。ボイラ水32は順次外枠38の下部に設
けられた給水口45から供給され、熱交換されたボイラ水
は湯となって上部の出湯口46から送り出される。この炉
筒煙管式は、燃焼筒33に多数の煙管44が接続されている
ので熱交換効率は優れているが、煙管が多数のためボイ
ラ本体構造が複雑となり水密性・気密性を要求される溶
接部分が多く、制作に高度の技術を要し、またコストが
高くなる。図7に示す単筒式は、燃焼筒33と熱交換筒34
を一体化することによってボイラ本体構造を簡素化し、
溶接部分を少なくしてコストを安くできるが、煙突接続
口40から出る燃焼ガス温度は約400 ℃程度と高く熱交換
効率が悪いことを示す。さらに、整流筒37のBで示す底
部はボイラ水で冷却されず、燃焼室39内の火炎輻射を受
けて高温となるため高い耐熱性を備えたものでないと耐
久性が悪くなる。
2. Description of the Related Art FIGS. 6, 7, and 8 are sectional views of conventional boiler bodies. In the figure, 31 is a burner, 32 is boiler water, 33 is a combustion tube, 34 is a heat exchange tube, 37 is a rectification tube, 38 is an outer frame, 39 is a combustion chamber, 40 is a chimney connection port, 44 is a smoke pipe, 45 is A water supply port and 46 are tap holes. In the case of a conventional boiler main body structure, for example, a furnace tube smoke tube type which occupies the mainstream of the present boiler shown in FIG. The space between the outer frame 38 and the outer frame 38 is filled with the boiler water 32. Burner such as oil or gas
The high temperature combustion gas generated by burning in the combustion chamber 39 by 31 exchanges heat with the boiler water 32 in the combustion tube 33 and the smoke pipe 44 to raise the temperature of the boiler water, and the combustion gas advances in the direction of the arrow in the figure. It is sent to the chimney connection port 40 and is discharged from there through a chimney (not shown). The boiler water 32 is sequentially supplied from a water supply port 45 provided in the lower portion of the outer frame 38, and the heat-exchanged boiler water becomes hot water and is sent out from a hot water outlet 46 in the upper portion. This furnace tube smoke tube type is excellent in heat exchange efficiency because many smoke tubes 44 are connected to the combustion tube 33, but since there are many smoke tubes, the boiler body structure is complicated and watertightness / airtightness is required. There are many welded parts, high technology is required for production, and the cost is high. The single cylinder type shown in FIG. 7 has a combustion cylinder 33 and a heat exchange cylinder 34.
Simplifies the boiler body structure by integrating
Although the cost can be reduced by reducing the number of welded parts, the temperature of the combustion gas emitted from the chimney connection port 40 is high at about 400 ° C, indicating that the heat exchange efficiency is poor. Further, the bottom of the rectifying cylinder 37, which is indicated by B, is not cooled by the boiler water and receives flame radiation in the combustion chamber 39 to reach a high temperature, so that durability is deteriorated unless it has high heat resistance.

【0003】そこで単筒式の改良型として図8に示す例
の如く、整流筒37のB部分に火炎輻射を直接受けないよ
う燃焼筒33と熱交換筒34をC部分で絞ってボイラ水の水
冷壁を作り過熱を抑えるようにすると、逆にC部分を絞
るために構造が複雑化してコストが高くなる。従来型の
ボイラ本体は共通して燃焼筒33上に熱交換筒34または煙
管44を配するので縦方向に長くなるが、ボイラの設置場
所やメンテナンスの都合でそれほど高くできず、またバ
ーナ31を図6〜図8に示されるように横方向から燃焼さ
せる場合が多い。このため、図6ないし図8に示す如
く、燃焼室39は燃焼に必要な容積を確保する必要から高
さL2 を抑えて径D2 を比較的大きくとり、L2 /D2
を1〜1.5 程度とした。しかし、径D2 が大きくなれば
なるほど外からの水圧に弱くなり、燃焼室のボイラ水に
対する耐圧力を増すため、バルジと称するひだを燃焼筒
につけて補強したり、筒自体の肉厚を増すことなどが行
われる。
Therefore, as shown in FIG. 8 as an improved type of the single cylinder type, the combustion cylinder 33 and the heat exchange cylinder 34 are squeezed at the C portion so that the B portion of the rectifying cylinder 37 is not directly exposed to the flame radiation, and the boiler water is discharged. If a water cooling wall is formed to suppress overheating, the structure is complicated because the C portion is constricted, and the cost increases. In the conventional boiler body, since the heat exchange tube 34 or the smoke tube 44 is arranged on the combustion tube 33 in common, it becomes long in the vertical direction, but it cannot be so high due to the installation location of the boiler and the convenience of maintenance, and the burner 31 is used. In many cases, combustion is performed from the lateral direction as shown in FIGS. Therefore, as shown in FIGS. 6 to 8, since the combustion chamber 39 needs to secure a volume necessary for combustion, the height L 2 is suppressed and the diameter D 2 is made relatively large, so that L 2 / D 2
Was set to about 1 to 1.5. However, the larger the diameter D 2 becomes, the weaker it becomes against water pressure from the outside, and the pressure resistance against the boiler water in the combustion chamber increases. Things are done.

【0004】[0004]

【発明が解決しようとする課題】上記した如く、従来の
ボイラ本体構造は炉筒煙管式や単筒式およびその改良型
などにみられるように、熱交換部分の伝熱面積を広くと
って熱交換効率を上げようとすると構造が複雑化してコ
ストが高くなり、逆に単筒式のように単純な構造でコス
トを安くしようとすると熱交換効率が悪くなる問題があ
った。このようにボイラ本体構造において、製造コスト
の低減と熱交換効率の向上という相反する要請を両立さ
せることが容易でないのが現状である。また、従来型ボ
イラの燃焼室39は高さL2 に比べて径D2 を大きくとる
必要から (従来はL2/D2=1〜1.5)ボイラ水の水圧に対
する耐圧力を増すためバルジを入れたり、燃焼筒の肉厚
を増すことが行われ、そうするとコストがかさむという
問題がある。本発明は上記問題点に鑑みて創作されたも
ので、耐圧力を備え、熱交換効率が高く、かつ構造が簡
単で製造コストの安いボイラ本体構造を提供することを
目的とする。
As described above, the conventional boiler main body structure has a large heat transfer area in the heat exchange portion as seen in the furnace tube type, the single tube type and its improved type. If the exchange efficiency is increased, the structure becomes complicated and the cost increases, and conversely, if the cost is reduced with a simple structure such as a single cylinder type, the heat exchange efficiency deteriorates. As described above, in the boiler body structure, it is not easy to satisfy the contradictory requirements of reduction of manufacturing cost and improvement of heat exchange efficiency. Further, since the combustion chamber 39 of the conventional boiler needs to have a diameter D 2 larger than the height L 2 (L 2 / D 2 = 1 to 1.5 in the past), the bulge is increased to increase the pressure resistance against the water pressure of the boiler water. There is a problem in that the cost is increased by putting it in or increasing the thickness of the combustion cylinder. The present invention has been made in view of the above problems, and an object of the present invention is to provide a boiler main body structure having pressure resistance, high heat exchange efficiency, simple structure, and low manufacturing cost.

【0005】[0005]

【課題を解決するための手段】上記問題点は、バーナを
燃焼室の軸方向に取り付けた燃焼筒と該燃焼筒を熱交換
部に連絡する連絡路を備えるボイラ本体において、該熱
交換部は燃焼筒と独立し燃焼筒からの燃焼ガスを熱交換
させる2〜4個の熱交換筒から成り、それぞれの熱交換
筒内には、内部に断熱材を備え、外側表面に螺旋状に整
流板を配設した着脱可能な整流筒が装着されてなること
を特徴とするボイラ本体構造を提供することによって解
決される。
SUMMARY OF THE INVENTION The above-mentioned problem is that in a boiler main body having a combustion tube having a burner attached in the axial direction of the combustion chamber and a communication path for connecting the combustion tube to the heat exchange section, the heat exchange section is It is composed of 2 to 4 heat exchange tubes that are independent of the combustion tubes and exchange heat with the combustion gas from the combustion tubes. Inside each heat exchange tube, a heat insulating material is provided, and on the outer surface, a straightening plate is spirally formed. It is solved by providing a boiler main body structure characterized in that a detachable rectifying cylinder having the above-mentioned is mounted.

【0006】[0006]

【作用】本発明のボイラ本体構造は、燃焼筒13にバーナ
11を燃焼室の軸方向に取り付け、さらに燃焼筒13と熱交
換筒14とを独立させることによって、燃焼筒13および熱
交換筒14の (筒の長さ)/ (筒の径) を4〜6と小径化で
きるため簡単で圧力に強い構造が容易に得られ、コスト
を低減することができ、燃焼室13と熱交換筒14を別個に
してその間を連絡路15で連結させるので、整流筒17は直
接火炎幅射を受けず、このため整流筒に耐圧処理を施す
必要がなく低コストにでき、熱交換筒14内の整流筒17
は、着脱可能に装着されているためメンテナンス等が容
易に行え、内部に断熱材24を入れた整流筒17の外側表面
に螺施状に整流板16を配設することにより、燃焼ガスが
筒抜けにならずに熱交換壁で効率よく熱交換できるとい
うことに加えて、2〜4個の熱交換筒を使用することに
より、熱出力を増加し、熱交換率を高め、ファーネスロ
ード(FL)を高めるのである。
The function of the boiler body of the present invention is such that the combustion cylinder 13 is provided with a burner.
11 is attached in the axial direction of the combustion chamber, and the combustion cylinder 13 and the heat exchange cylinder 14 are made independent of each other, so that (cylinder length) / (cylinder diameter) of the combustion cylinder 13 and the heat exchange cylinder 14 is 4 to Since the diameter can be reduced to 6, a simple and pressure-resistant structure can be easily obtained, the cost can be reduced, and the combustion chamber 13 and the heat exchange cylinder 14 are separated and are connected to each other by the communication passage 15. 17 does not directly receive flame radiation, so that it is not necessary to perform pressure resistance treatment on the rectifying cylinder, and the cost can be reduced.
Is detachably mounted, so that maintenance and the like can be easily performed. By disposing the flow straightening plate 16 in a spiral shape on the outer surface of the flow straightening cylinder 17 having the heat insulating material 24 inside, the combustion gas can escape from the cylinder. In addition to efficiently exchanging heat with the heat exchange wall without increasing the number of heat exchange walls, it also increases the heat output and heat exchange rate by using 2 to 4 heat exchange cylinders to increase the furnace load (FL). Increase.

【0007】[0007]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図3を参照すると、バーナ11の燃焼熱を熱
媒体12と熱交換させるボイラ本体構造において、バーナ
11を燃焼室19の軸方向に取り付けた燃焼筒13、燃焼筒13
と独立し燃焼筒13からの燃焼ガスを熱交換させる2個の
熱交換筒14、燃焼筒13と熱交換筒14間を連絡する連絡路
15を備え、熱交換筒14内には外側に螺旋状に整流板16を
配設し内部に断熱材24をつめた着脱可能な整流筒17が装
着されてなる構成となる。バーナ11は、ボイラの熱源と
なる燃焼手段であり、例えばオイルバーナやガスバーナ
などを好ましく用いることができ、熱媒体12は、ボイラ
水として水が一般に用いられ、燃焼筒13は、バーナ11に
連結された筒状容器でこの中の空間が燃焼室19となって
いるもので、燃焼筒13はボイラ水の水圧を受けるため耐
圧構造の円筒形またはこれに類する構造にする。バーナ
11を燃焼室の軸方向に取り付けるとは、円筒形またはこ
れに類する形状の燃焼室の軸と同方向 (円筒形であれば
筒方向) にバーナの吹き出し口を取り付けることをい
う。燃焼室内で作られる炎を細長い炎とすることによっ
て燃焼室の径を小さくできる。熱交換筒14は、燃焼筒13
からの燃焼ガスの熱を熱媒体12と熱交換させる筒であ
る。熱交換筒14は燃焼筒13から独立した筒構造を持って
いる。この熱交換筒内には着脱可能に整流筒17が装着さ
れている。整流筒17は、燃焼ガスが熱交換部分、すなわ
ち整流筒17と熱交換筒14の間の部分を素通りしないよう
に、整流筒17の外側に螺旋状に配設した整流板16で燃焼
ガスを効率良く熱交換させる。すなわち、螺旋状に設け
られた整流板16に沿って燃焼ガスが回転することによっ
て遠心力が働き、燃焼ガスが外側の熱交換筒14をなめる
ように接触するため、この面の熱伝達が良くなり熱交換
を高効率化する。整流筒17の好ましい構造例としては、
内部に保温材や断熱材を入れ、整流筒17と熱交換筒14と
の隙間をできるだけ小さくし (例えば17mm程度) 、その
隙間部分に整流板16を螺旋状に配置する。整流板16は熱
交換筒14内部の整流筒17に設けられるため、溶接に水密
性・気密性が要求されず加工が容易である。整流板16の
螺旋のピッチ幅は、燃焼ガスの冷却による体積の減少に
応じて変化させ、ガスの流速を一定に保つよう設計する
ことが望ましい。整流板の螺旋は2重以上にすることが
できる。連絡路15は、独立した燃焼筒13と熱交換筒14間
を連絡して燃焼ガスを送る管である。図3において、例
えばオイルを使用するバーナ11を円筒形の燃焼室19の上
から燃焼室の軸方向 (ここでは下方) に向けて設置す
る。燃焼筒13および2個の熱交換筒14は、図1に示され
るように、ボイラ本体の外枠18内に円筒形の筒を2本平
行に立てるように配置され、外枠18との間は熱媒体 (ボ
イラ水)12 で満たされる。燃焼筒13および熱交換筒14間
は、下部にて連絡路15で連絡され燃焼ガスがここを通っ
て熱交換筒14に運ばれる。熱交換筒14内に装着される整
流筒17は図4に示す如く、その上部に吊具21、蓋22、把
手23を付けて熱交換筒14に対する着脱を容易にし、内部
に断熱材24を備え、その表面にはこの場合2重の螺旋状
に17mm幅の整流板16を点付接着する構成とした。これら
の構成によるボイラ本体構造の動作を以下具体的に説明
する。 バーナ11からのガスまたはオイルは燃焼室19 で燃
焼され高温の燃焼ガスが発生する。 燃焼ガスは燃焼室19の底部の水冷壁に当たって熱交
換して冷却されながら連絡路15を通って熱交換筒14に入
る。このため火炎輻射による整流筒17の過熱は問題とな
らない。 燃焼ガスは熱交換筒14と整流筒17の間を整流筒17の
外側に配置した整流板16にガイドされながら回転して上
昇する。この際、燃焼ガスに働く遠心力により燃焼ガス
は外側の熱交換筒14をなめるように接触して効率の良い
熱交換が行われる。このように簡単な構造で従来の単筒
式と異なり熱交換率を向上させることができる。整流板
16のピッチの間隔は燃焼ガスの冷却による体積の減少に
対応して徐々に小さくしてあるため、燃焼ガスの流速を
一定に保って効率の良い熱交換ができる。 充分に熱交換されて冷却された燃焼ガスは、煙突接
続口20を経て排出される。 一方、熱交換され温度が上昇したボイラ水12は、ボ
イラ本体上部の出湯口26から送り出され、水は下部の給
水口25から供給される。 このようにして本発明実施例のボイラ本体構造は簡単な
構造としたため低コストで製造することができ、メンテ
ナンスも容易に行うことができるとともに、高い熱交換
効率を提供するものである。
Embodiments of the present invention will now be described in detail with reference to the drawings. Referring to FIG. 3, in the boiler body structure for exchanging the combustion heat of the burner 11 with the heat medium 12,
Combustion cylinder 13 in which 11 is attached in the axial direction of the combustion chamber 19, combustion cylinder 13
And two heat exchange tubes 14 for independently exchanging heat with the combustion gas from the combustion tube 13, and a communication path connecting the combustion tube 13 and the heat exchange tube 14
The heat exchange cylinder 14 is provided with a rectifying plate 16 arranged spirally on the outside and a detachable rectifying cylinder 17 having a heat insulating material 24 packed therein. The burner 11 is a combustion means serving as a heat source of the boiler, and for example, an oil burner or a gas burner can be preferably used, the heat medium 12 is generally water as boiler water, and the combustion cylinder 13 is connected to the burner 11. This is a cylindrical container in which the space therein is a combustion chamber 19, and the combustion cylinder 13 has a pressure-resistant cylindrical shape or a similar structure because it receives the water pressure of boiler water. Burner
Attaching 11 in the axial direction of the combustion chamber means attaching the outlet of the burner in the same direction as the axis of the combustion chamber having a cylindrical shape or a similar shape (in the case of a cylindrical shape, the cylinder direction). The diameter of the combustion chamber can be reduced by making the flame produced in the combustion chamber into an elongated flame. The heat exchange cylinder 14 is the combustion cylinder 13
This is a cylinder for exchanging the heat of the combustion gas from the heat medium 12 with the heat medium 12. The heat exchange tube 14 has a tube structure independent of the combustion tube 13. A rectifying cylinder 17 is detachably mounted in the heat exchange cylinder. The rectifying cylinder 17 has a rectifying plate 16 spirally arranged outside the rectifying cylinder 17 so that the combustion gas does not pass through a heat exchange portion, that is, a portion between the rectifying cylinder 17 and the heat exchanging cylinder 14. Allows for efficient heat exchange. That is, when the combustion gas rotates along the straightening plate 16 provided in a spiral shape, a centrifugal force acts, and the combustion gas comes into contact with the outer heat exchange cylinder 14 so as to lick it. Improves heat exchange efficiency. As a preferable structure example of the flow straightening cylinder 17,
A heat insulating material or a heat insulating material is put inside, the gap between the flow straightening cylinder 17 and the heat exchange cylinder 14 is made as small as possible (for example, about 17 mm), and the flow straightening plate 16 is spirally arranged in the gap. Since the straightening vane 16 is provided in the straightening vane 17 inside the heat exchange barrel 14, the welding is not required to be watertight and airtight, and the work is easy. The pitch width of the spiral of the straightening vanes 16 is preferably changed according to the reduction in volume of the combustion gas due to cooling, and is designed to keep the gas flow velocity constant. The spiral of the baffle plate can be double or more. The communication passage 15 is a pipe that connects the independent combustion cylinder 13 and the heat exchange cylinder 14 and sends combustion gas. In FIG. 3, a burner 11 using, for example, oil is installed from above the cylindrical combustion chamber 19 in the axial direction (here, downward) of the combustion chamber. As shown in FIG. 1, the combustion cylinder 13 and the two heat exchange cylinders 14 are arranged in such a manner that two cylindrical cylinders are erected in parallel inside the outer frame 18 of the boiler main body, and between them and the outer frame 18. Is filled with heating medium (boiler water) 12. The lower part between the combustion cylinder 13 and the heat exchange cylinder 14 is connected by a communication path 15, and the combustion gas is conveyed to the heat exchange cylinder 14 through this. As shown in FIG. 4, the rectifying cylinder 17 mounted in the heat exchange cylinder 14 is provided with a lifting tool 21, a lid 22 and a handle 23 on the upper part thereof to facilitate attachment / detachment to / from the heat exchange cylinder 14, and an insulating material 24 inside. In this case, on the surface thereof, a straightening plate 16 having a width of 17 mm and having a width of 17 mm is point-bonded in a double spiral shape. The operation of the boiler body structure having these configurations will be specifically described below. Gas or oil from the burner 11 is burned in the combustion chamber 19 to generate high temperature combustion gas. Combustion gas hits the water cooling wall at the bottom of the combustion chamber 19 and exchanges heat to be cooled and then enters the heat exchange tube 14 through the communication passage 15. Therefore, overheating of the rectifying cylinder 17 due to flame radiation does not pose a problem. The combustion gas rotates and rises while being guided between the heat exchange cylinder 14 and the rectifying cylinder 17 by the rectifying plate 16 arranged outside the rectifying cylinder 17. At this time, due to the centrifugal force acting on the combustion gas, the combustion gas comes into contact with the outer heat exchange cylinder 14 so as to lick it, and efficient heat exchange is performed. With such a simple structure, the heat exchange rate can be improved unlike the conventional single cylinder type. rectifier
Since the pitch of 16 pitches is gradually reduced in accordance with the decrease in volume due to cooling of the combustion gas, efficient heat exchange can be performed while keeping the flow velocity of the combustion gas constant. The combustion gas that has been sufficiently heat-exchanged and cooled is discharged through the chimney connection port 20. On the other hand, the boiler water 12 that has undergone heat exchange and whose temperature has risen is sent out from the hot water outlet 26 in the upper part of the boiler body, and the water is supplied from the water supply port 25 in the lower part. In this way, the boiler main body structure of the embodiment of the present invention has a simple structure, so that it can be manufactured at low cost, maintenance can be easily performed, and high heat exchange efficiency is provided.

【0008】本発明実施例では、熱交換筒14を2個とし
て熱出力 7.8×104 Kcal/hのボイラとした。図1に示す
如く、本発明では1個の燃焼筒13に対して2個の熱交換
筒14をV字型に配して、連絡路15で連絡させている。こ
のように燃焼筒13の熱出力を大きくして熱交換筒14を増
やすことで、20×104 Kcal/h程度のボイラも容易に制作
することが可能となる。図2は図1に示す例の上面図で
ある。この実施例は熱交換筒14が1個の場合に比べて多
少ボイラ本体構造は異なるが、従来例と比較しても充分
に安いコストで制作が可能であり、メンテナンスが容易
な上、高い熱交換率を提供する。これを具体例で比較す
ると、図6の従来例の炉筒煙管式ボイラは、熱出力 7.0
×104 Kcal/h、燃焼室径D2 =390 mm,燃焼室長さL2
=550mm ,外枠高=1030mmであるのに対し、本発明実施
例のボイラは熱出力 7.8×104 Kcal/h、燃焼室径D2
200mm , 燃焼室長さL2 =1100mm, 外枠高=1030mmとな
った。燃焼ガスの熱交換筒の高さに応じた温度変化を図
5の折れ線図で見ると(点線と実線は2個の熱交換筒そ
れぞれの温度である)、熱交換筒に入ってきた燃焼ガス
は 700〜800 ℃であったが熱交換を終えたガス温度は約
240℃程度に冷却されている。これをほぼ同規模の従来
型ボイラと比較すると、単筒式では排出ガス温度は約40
0 ℃程度と高く、単筒式の改良型なども300 ℃程度であ
るため本発明実施例のボイラ本体構造の効率が優れてい
ることが理解される。さらにファーネスロード(FL)によ
っても従来例との効率の比較を行うことができる。ファ
ーネスロードとは、入力を燃焼室容積で割った値をいい
次式で表される。
In the embodiment of the present invention, the number of heat exchange tubes 14 is two, and the boiler has a heat output of 7.8 × 10 4 Kcal / h. As shown in FIG. 1, in the present invention, two heat exchange cylinders 14 are arranged in a V shape with respect to one combustion cylinder 13 and are connected to each other through a communication path 15. By increasing the heat output of the combustion cylinder 13 and increasing the heat exchange cylinder 14 in this manner, it is possible to easily manufacture a boiler of about 20 × 10 4 Kcal / h. FIG. 2 is a top view of the example shown in FIG. In this embodiment, the structure of the boiler main body is slightly different from the case where there is only one heat exchange tube 14, but it can be manufactured at a sufficiently low cost compared to the conventional example, maintenance is easy, and high heat is required. Provides exchange rate. Comparing this with a concrete example, the furnace tube smoke tube type boiler of the conventional example of FIG.
× 10 4 Kcal / h, combustion chamber diameter D 2 = 390 mm, combustion chamber length L 2
= 550 mm and outer frame height = 1030 mm, the boiler of the present invention has a heat output of 7.8 × 10 4 Kcal / h and a combustion chamber diameter D 2 =
200 mm, combustion chamber length L 2 = 1100 mm, outer frame height = 1030 mm. Looking at the temperature change according to the height of the heat exchange tube of the combustion gas in the line diagram of FIG. 5 (the dotted line and the solid line are the temperatures of the two heat exchange tubes), the combustion gas entering the heat exchange tube Was 700-800 ° C, but the gas temperature after heat exchange was about
It is cooled to about 240 ° C. Comparing this with a conventional boiler of almost the same scale, the exhaust gas temperature of the single cylinder type is about 40
It is understood that the efficiency of the boiler main body structure of the embodiment of the present invention is excellent because the temperature is as high as about 0 ° C., and the improved single cylinder type is also about 300 ° C. Furthermore, the efficiency can be compared with the conventional example by using the furnace load (FL). The furnace load is a value obtained by dividing the input by the combustion chamber volume and is represented by the following equation.

【数1】 入力および燃焼室容積は次式で求められる。[Equation 1] Input and combustion chamber volume are calculated by the following equation.

【数2】 [Equation 2]

【数3】 上記の式より算出したファーネスロードの値は、 従来型の場合 : 80〜120 ×104 Kcal/h/m3 本発明実施例の場合: 200〜300 ×104 Kcal/h/m3 となった。このファーネスロードの値が大きいと、燃焼
室容積が小さい割に大きな出力を出せることを意味する
ため、本発明実施例は従来例に比べて燃焼室の単位容積
あたり約2倍程度の高い出力を得ることができることに
なる。また同じ出力であればコンパクトなボイラの本体
構造とすることができる。本発明実施例は、ボイラ本体
構造において熱交換筒14を2個使用するものとして説明
したが、燃焼筒13から3〜4個の熱交換筒14を連絡路15
によって接続することもできる。熱交換筒14は2個以上
の数をとることができるが、数は少ない方が好ましく実
用的である。しかし、5個以上の数になると構造が複雑
化してコスト低減の効果が少なくなる。
[Equation 3] The value of the furnace load calculated from the above formula is 80 to 120 × 10 4 Kcal / h / m 3 for the conventional type and 200 to 300 × 10 4 Kcal / h / m 3 for the embodiment of the present invention. It was If the value of the furnace load is large, it means that a large output can be output despite the small combustion chamber volume. Therefore, the embodiment of the present invention provides about twice as high output per unit volume of the combustion chamber as compared with the conventional example. You will be able to get it. If the output is the same, a compact boiler body structure can be obtained. Although the embodiment of the present invention has been described as using two heat exchange tubes 14 in the boiler body structure, three to four heat exchange tubes 14 are connected from the combustion tube 13 to the connecting path 15.
You can also connect by. The number of heat exchange tubes 14 can be two or more, but a smaller number is preferable and practical. However, if the number is five or more, the structure becomes complicated and the effect of cost reduction is reduced.

【0009】[0009]

【発明の効果】以上述べてきたように、本発明のボイラ
本体構造は、缶体部分の径を小さくできるため構造上の
耐圧力が増して材料コストが安く、ボイラ本体は簡単な
缶体構造としてメンテナンスが容易でかつ製造コストを
低減することができると共に、熱交換率の高いものとす
ることができた。
As described above, in the boiler body structure of the present invention, since the diameter of the can body portion can be made small, the structural pressure resistance increases and the material cost is low, and the boiler body has a simple can body structure. As a result, the maintenance can be easily performed, the manufacturing cost can be reduced, and the heat exchange rate can be high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の横断面図である。1 is a cross-sectional view of an embodiment of the present invention.

【図2】本発明実施例の上面図である。FIG. 2 is a top view of an embodiment of the present invention.

【図3】本発明実施例ボイラ本体構造の縦断面図であ
る。
FIG. 3 is a vertical sectional view of a boiler body structure according to an embodiment of the present invention.

【図4】熱交換筒の部分断面図である。FIG. 4 is a partial cross-sectional view of a heat exchange tube.

【図5】燃焼ガス温度の熱交換筒の高さによる温度変化
を示す折れ線図である。
FIG. 5 is a polygonal diagram showing a temperature change of a combustion gas temperature depending on a height of a heat exchange tube.

【図6】従来のボイラ本体断面図である。FIG. 6 is a cross-sectional view of a conventional boiler body.

【図7】従来のボイラ本体断面図である。FIG. 7 is a cross-sectional view of a conventional boiler body.

【図8】従来のボイラ本体断面図である。FIG. 8 is a sectional view of a conventional boiler body.

【符号の説明】[Explanation of symbols]

11 バーナ 12 熱媒体(ボイラ水) 13 燃焼筒 14 熱交換筒 15 連絡路 16 整流板 17 整流筒 18 外枠 19 燃焼室 20 煙突接続口 21 吊具 22 蓋 23 把手 24 断熱材 31 バーナ 32 ボイラ水 33 燃焼筒 34 熱交換筒 37 整流筒 38 外枠 39 燃焼室 40 煙突接続口 44 煙管 45 給水口 46 出湯口 11 Burner 12 Heat medium (boiler water) 13 Combustion tube 14 Heat exchange tube 15 Communication path 16 Straightening plate 17 Rectification tube 18 Outer frame 19 Combustion chamber 20 Chimney connection port 21 Lifting tool 22 Lid 23 Handle 24 Insulation material 31 Burner 32 Boiler water 33 Combustion tube 34 Heat exchange tube 37 Rectification tube 38 Outer frame 39 Combustion chamber 40 Chimney connection port 44 Smoke pipe 45 Water inlet 46 Hot water outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 バーナ(11)を燃焼室(19)の軸方向に取り
付けた燃焼筒(13)と該燃焼筒(13)を熱交換部に連絡する
連絡路(15)を備えるボイラ本体において、 該熱交換部は燃焼筒(13)と独立し燃焼筒(13)からの燃焼
ガスを熱交換させる2個の熱交換筒(14)から成り、 それぞれの熱交換筒(14)内には、内部に断熱材(24)を備
え、外側表面に螺旋状に整流板(16)を配設した着脱可能
な整流筒(17)が装着されてなることを特徴とするボイラ
本体構造。
1. A boiler main body comprising a combustion tube (13) having a burner (11) attached in the axial direction of a combustion chamber (19) and a communication path (15) for connecting the combustion tube (13) to a heat exchange section. The heat exchange section is composed of two heat exchange tubes (14) that are independent of the combustion tubes (13) and exchange heat of the combustion gas from the combustion tubes (13). A boiler main body structure comprising a heat insulating material (24) inside, and a detachable rectifying cylinder (17) having a rectifying plate (16) arranged spirally on the outer surface thereof.
【請求項2】 上記熱交換筒(14)が3〜4個である請求
項(1) 記載のボイラ本体構造。
2. The boiler body structure according to claim 1, wherein the number of the heat exchange tubes (14) is 3 to 4.
JP3266821A 1991-09-19 1991-09-19 Boiler body structure Expired - Fee Related JP2506011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3266821A JP2506011B2 (en) 1991-09-19 1991-09-19 Boiler body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3266821A JP2506011B2 (en) 1991-09-19 1991-09-19 Boiler body structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3801087A Division JPS63207949A (en) 1987-02-23 1987-02-23 Structure of boiler body

Publications (2)

Publication Number Publication Date
JPH06323629A true JPH06323629A (en) 1994-11-25
JP2506011B2 JP2506011B2 (en) 1996-06-12

Family

ID=17436134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3266821A Expired - Fee Related JP2506011B2 (en) 1991-09-19 1991-09-19 Boiler body structure

Country Status (1)

Country Link
JP (1) JP2506011B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718238U (en) * 1971-03-31 1972-10-31
JPS6043845U (en) * 1983-08-25 1985-03-28 松下電工株式会社 hot water boiler
JPS6127053U (en) * 1984-07-19 1986-02-18 東陶機器株式会社 hot water boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718238U (en) * 1971-03-31 1972-10-31
JPS6043845U (en) * 1983-08-25 1985-03-28 松下電工株式会社 hot water boiler
JPS6127053U (en) * 1984-07-19 1986-02-18 東陶機器株式会社 hot water boiler

Also Published As

Publication number Publication date
JP2506011B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US4368777A (en) Gas-liquid heat exchanger
KR100879189B1 (en) Condensation heat exchanger with double bundle of tubes
US20090223655A1 (en) Heat exchanger particularly for thermal generators
KR950002487B1 (en) Heat exchanger for gas boiler
HU215823B (en) Device for heating water
JPH06323629A (en) Main body structure of boiler
RU2327083C1 (en) Hot water boiler
WO2021057677A1 (en) Condensing boiler
KR100446883B1 (en) Heat exchanger of gas boiler
EP0759527A1 (en) Heat exchanger
JPS6039921B2 (en) Spiral water tube boiler
IE48624B1 (en) Improvements in and relating to boilers
JPS63207949A (en) Structure of boiler body
RU2327082C1 (en) Hot water boiler
KR950007455Y1 (en) Boiler
JPH04132357U (en) Boiler body structure
JP3127036B2 (en) Absorption refrigerator regenerator
CN105737381B (en) A kind of biomass-burning heat-conducting oil furnace
JPS609527Y2 (en) boiler
JPH0416681B2 (en)
CN2369142Y (en) Oil/gas boiler
JPH10325603A (en) Hot water storage type hot water boiler
JPH03225164A (en) Direct fired generating device
SU1434215A1 (en) Boiler heating surface
CN2407234Y (en) Boiler for steaming or boiling water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees