JPS63207949A - Structure of boiler body - Google Patents

Structure of boiler body

Info

Publication number
JPS63207949A
JPS63207949A JP3801087A JP3801087A JPS63207949A JP S63207949 A JPS63207949 A JP S63207949A JP 3801087 A JP3801087 A JP 3801087A JP 3801087 A JP3801087 A JP 3801087A JP S63207949 A JPS63207949 A JP S63207949A
Authority
JP
Japan
Prior art keywords
heat
cylinder
combustion
heat exchange
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3801087A
Other languages
Japanese (ja)
Inventor
Kaoru Hosono
細野 馨
Haruo Arakawa
荒川 春生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nepon KK
Original Assignee
Nepon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nepon KK filed Critical Nepon KK
Priority to JP3801087A priority Critical patent/JPS63207949A/en
Publication of JPS63207949A publication Critical patent/JPS63207949A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the structure of a boiler body of pressure-resistant, of highly heat- exchanging efficiency, simply manufactured, and of low manufacturing cost, by composing a boiler body of a combustion cylinder to which a burner is installed in the axial direction of a combustion chamber, of a heat-exchanging cylinder to exchange the heat of combustion gas, and of a connecting passage, and by fitting a detachable straightening cylinder in which straightening plates are spirally disposed in the heat-exchanging cylinder. CONSTITUTION:A combustion gas exchanges heat by hitting against the water cooling wall consisting of the bottom of a combustion cylinder 19, being cooled, and is fed into a heat- exchanging cylinder 14, passing through a connecting passage 15. Therefore there is no possibility of overheating of a straightening cylinder 17 which may be caused by the radiation of flames. The combustion gas rises up along the heat-exchanging cylinder 14, rotating, guided by the straightening plates 16 of a rectifying cylinder 17. At that time efficient heat-exchanging can be performed because the gas contacts to the outside of a heat-exchanging cylinder 14 so as to lick the cylinder by the centrifugal force acting on the combustion gas. The distance of the pitch of straightening plates 16 are gradually decreased in accordance with the decrease of the volume of combustion gas as it is cooled, so that highly efficient heat- exchanging can be performed, keeping the flowing rate of combustion gas constant, and the combustion gas is discharged from the port 20 connected to a stack.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラ本体構造に関し、より詳しくは、良好な
熱交換効率を維持しつつボイラ本体を簡素な筒構造とし
て製造コストを低減させたボイラ本体構造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a boiler body structure, and more specifically, to a boiler body that has a simple cylindrical structure to reduce manufacturing costs while maintaining good heat exchange efficiency. Regarding the main body structure.

本発明は、例えば小型ボイラや簡易ボイラなどに好適に
利用することができる。
INDUSTRIAL APPLICATION This invention can be suitably utilized for a small boiler, a simple boiler, etc., for example.

〔従来の技術〕[Conventional technology]

第8図、第9図、第10図は、従来のボイラ本体断面図
である。図中31はバーナ、32はボイラ水、33は燃
焼筒、34は熱交換筒、37は整流筒、38は外枠、3
9は燃焼室、40は煙突接続口、44ば煙管を示す。
FIG. 8, FIG. 9, and FIG. 10 are sectional views of a conventional boiler main body. In the figure, 31 is a burner, 32 is boiler water, 33 is a combustion cylinder, 34 is a heat exchange cylinder, 37 is a rectifier cylinder, 38 is an outer frame, 3
Reference numeral 9 indicates a combustion chamber, 40 indicates a chimney connection port, and 44 indicates a smoke pipe.

従来のボイラ本体構造、例えば第8図に示す如く、現在
のボイラの主流をしめる炉筒煙管式の場合は、燃焼筒3
3(燃焼室39)上部から複数の煙管44が水密性・気
密性良く溶接接続され、これらの缶体と外枠38の間は
ボイラ水32で満たされている。
In the case of a conventional boiler main body structure, for example, the furnace tube smoke tube type that connects the main stream of the current boiler, as shown in Fig. 8, the combustion tube 3
3 (combustion chamber 39) A plurality of smoke pipes 44 are welded and connected from the upper part with good watertightness and airtightness, and the space between these can bodies and the outer frame 38 is filled with boiler water 32.

オイルまたはガスなどをバーナ31により燃焼室39で
燃焼させ、生ずる高温の燃焼ガスを燃焼筒33及び煙管
44でボイラ水32に熱交換してボイラ水の温度を上昇
させる。ボイラ水32は順次外枠38の下部に設けられ
た給水口から供給され、熱交換されたボイラ水は上部の
出湯口から送り出される。
Oil or gas is combusted in a combustion chamber 39 by a burner 31, and the resulting high-temperature combustion gas is heat exchanged with boiler water 32 through a combustion tube 33 and a smoke pipe 44 to raise the temperature of the boiler water. The boiler water 32 is sequentially supplied from a water supply port provided at the bottom of the outer frame 38, and the heat-exchanged boiler water is sent out from the tap at the top.

この炉筒煙管式は、燃焼筒33に複数の熱交換筒34が
接続されているので熱交換効率は優れているが、ボイラ
本体構造が複雑なため水密性・気密性を要求される溶接
部分が多く、制作に高度の技術を要し、またコストが高
くなってしまう。
This furnace and smoke tube type has a plurality of heat exchange tubes 34 connected to the combustion tube 33, so it has excellent heat exchange efficiency, but since the boiler body structure is complicated, the welded parts require watertightness and airtightness. There are many cases, requiring advanced technology to produce and increasing costs.

第9図に示す単筒式は、燃焼筒33と熱交換筒34を同
一の筒内とすることによってボイラ本体構造を簡素化し
、溶接部分を少なくしてコストを安(できるが、煙導接
続口40から出る燃焼ガス温度は約400℃程度と高く
熱交換効率が悪い。さらに整流筒37のBで示す底部は
ボイラ水で冷却されず、燃焼室39内の火炎輻射を受け
て高温となるため高い耐熱性を備えていないと耐久性が
悪くなってしまう。
The single-tube type shown in Fig. 9 simplifies the structure of the boiler body by placing the combustion tube 33 and the heat exchange tube 34 in the same cylinder, and reduces the cost by reducing the number of welded parts (although it is possible to The temperature of the combustion gas coming out of the port 40 is about 400°C, which is high and has poor heat exchange efficiency.Furthermore, the bottom of the rectifying tube 37, indicated by B, is not cooled by boiler water and becomes high temperature as it receives flame radiation in the combustion chamber 39. Therefore, unless it has high heat resistance, durability will deteriorate.

そこで単筒式の改良型として第10図に示す如く、整流
筒37のB部分に火炎輻射を直接受けないよう燃焼筒3
3(熱交換筒34)をC部分で絞ってボイラ水の水冷壁
を作り、過熱を抑えることができるが、逆にC部分を絞
るために構造が複雑化してコストが高くなってしまう。
Therefore, as an improved version of the single cylinder type, as shown in FIG.
3 (heat exchange cylinder 34) at the C part to create a water-cooled wall for the boiler water and suppress overheating, but conversely, constricting the C part complicates the structure and increases costs.

従来型のボイラ本体は共通して燃焼筒33上に熱交換筒
34又は煙管44を配するので縦方向に長くなり易いが
、ボイラの設置場所やメンテナンスの都合でそれほど高
くできず、またバーナ31を横方向から燃焼させるもの
が多い。このため第8図乃至第10図に示す如く、燃焼
室39は燃焼に必要な容積を確保する必要から高さL2
を抑えて径D2を比較的大きくとってLxloxが1〜
1.5程度であった。径D2が大きくなればなるほど外
からの水圧に弱くなり、燃焼室のボイラ水に対す不耐圧
力を増すため、バルジと称するひだを燃焼筒につけて補
強したり、筒口体の肉厚を増すことなどが行われていた
Conventional boiler bodies commonly have a heat exchange tube 34 or a smoke tube 44 arranged on the combustion tube 33, so they tend to be long in the vertical direction, but due to the boiler installation location and maintenance considerations, it cannot be made that long, and the burner 31 There are many types that burn from the side. For this reason, as shown in FIGS. 8 to 10, the combustion chamber 39 has a height L2 in order to secure the volume necessary for combustion.
By suppressing the diameter D2 and making it relatively large, Lxlox is
It was about 1.5. The larger the diameter D2, the weaker it becomes against external water pressure, and in order to increase the intolerance pressure of the combustion chamber against boiler water, it is necessary to strengthen the combustion tube by adding folds called bulges, or to increase the thickness of the tube mouth body. etc. were being carried out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した如く、従来のボイラ本体構造は炉筒煙管式や単
筒式の改良型などにみられるように熱交換部分の伝熱面
積を広くとって熱交換効率を上げようとすると構造が複
雑化してコストが高くなり、逆に単筒式のように単純な
構造でコストを安くしようとすると熱交換効率が悪くな
ってしまうという問題があうた。このようにボイラ本体
構造において、製造コストの低減と熱交換効率の向上と
いう相反する要請を両立させることが容易でないのが現
状である。
As mentioned above, the structure of conventional boiler bodies becomes complicated when trying to increase the heat exchange efficiency by widening the heat transfer area of the heat exchange part, as seen in the improved smoke tube type and single tube type. On the other hand, if you try to reduce the cost with a simple structure like a single cylinder type, the heat exchange efficiency becomes poor. As described above, in the boiler body structure, it is currently not easy to satisfy the conflicting demands of reducing manufacturing costs and improving heat exchange efficiency.

また従来型ボイラの燃焼室39は高さL2に比べて径D
tを大きくとる必要から(従来はLxlox =1〜1
.5)ボイラ水の水圧に対する耐圧力を増すためバルジ
を入れたり、燃焼筒の肉厚を増すとコストがかさむとい
う問題がある。
Also, the combustion chamber 39 of the conventional boiler has a diameter D compared to the height L2.
Because it is necessary to take a large t (conventionally, Lxlox = 1 to 1
.. 5) If a bulge is inserted to increase the pressure resistance against boiler water pressure, or if the thickness of the combustion tube is increased, the cost increases.

本発明は上記問題点に鑑みて創作されたもので、耐圧力
を備え、熱交換効率が高く、かつ構造が簡単で製造コス
トの安いボイラ本体構造を提供することを目的とする。
The present invention was created in view of the above-mentioned problems, and an object thereof is to provide a boiler main body structure that has pressure resistance, high heat exchange efficiency, simple structure, and low manufacturing cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するため第1図乃至第4図
に示す如く、バーナ11の燃焼熱を熱媒体12と熱交換
させるボイラ本体構造において、前記バーナ11を燃焼
室の軸方向に取り付けた燃焼筒13°、該燃焼筒13と
独立し燃焼筒13からの燃焼ガスを熱交換させる1個の
熱交換筒14、前記燃焼筒13と前記熱交換筒14間を
連絡する連絡路15を備え、上記熱交換筒14内には螺
旋状に整流板16を配設した着脱可能な整流筒17が装
着されてなる構成をとる。
In order to solve the above-mentioned problems, the present invention provides a boiler body structure in which combustion heat of a burner 11 is exchanged with a heat medium 12, as shown in FIGS. An attached combustion tube 13°, one heat exchange tube 14 that is independent of the combustion tube 13 and exchanges heat with the combustion gas from the combustion tube 13, and a communication path 15 that connects the combustion tube 13 and the heat exchange tube 14. A removable rectifying cylinder 17 having a rectifying plate 16 spirally disposed therein is installed in the heat exchange cylinder 14.

上記バーナ11は、ボイラの熱源となる燃焼具であり、
例えばオイルバーナやガスバーナなどを好上記熱媒体1
2は、ボイラ水が一般に用いられる。
The burner 11 is a combustion device that serves as a heat source for a boiler,
For example, oil burners, gas burners, etc. are preferable as the heat medium 1.
2, boiler water is generally used.

ハ 上記燃焼筒13は、バーナ11を燃焼させる筒状容器で
この中の空間を燃焼室19という。燃焼筒13はボイラ
水の水圧を受けるため耐圧構造の円筒形またはこれに類
する構造を備えている。そしてバーナ11を燃焼室の軸
方向に取り付けるとは、円筒形またはこれに類する形状
の燃焼室の軸と同方向(円筒形であれば部方向)にバー
ナの吹き出し口を取り付けることをいう。細長い炎とす
ることによって燃焼室の径を小さくできる。
C. The combustion tube 13 is a cylindrical container in which the burner 11 is combusted, and the space therein is called a combustion chamber 19. The combustion cylinder 13 has a pressure-resistant cylindrical shape or a similar structure to receive the water pressure of boiler water. Mounting the burner 11 in the axial direction of the combustion chamber means that the burner outlet is mounted in the same direction as the axis of a cylindrical or similarly shaped combustion chamber (in the direction of the cylindrical shape). By making the flame elongated, the diameter of the combustion chamber can be reduced.

上記熱交換筒14は、燃焼筒13からの燃焼ガスの熱を
熱媒体12と熱交換させる筒をいう。熱交換筒14は燃
焼筒13から独立した筒構造を持っている。
The heat exchange cylinder 14 is a cylinder that exchanges heat of the combustion gas from the combustion cylinder 13 with the heat medium 12. The heat exchange cylinder 14 has a cylinder structure independent from the combustion cylinder 13.

この熱交換筒内には着脱可能に整流筒17が装着されて
いる。整流筒17は、燃焼ガスが熱交換部分で素通りし
ないように、整流筒17に螺旋状に配設した整流板16
で燃焼ガスを効率良く熱交換させるものである。これは
螺旋状に設けられた整流板16に沿って燃焼ガスが回転
することによって遠心力が働き、燃焼ガスが外側の熱交
換筒14をなめるように接触するため、この面の熱伝達
が良くなり高効率にさせるためのものである。整流筒1
7の好ましい構造例としては、内部に保温材や断熱材を
入れ、整流筒17と熱交換筒14との隙間をできるだけ
小さくシ(例えば17mm程度)、その隙間部分に整流
板16を螺旋状に配置したものである。整流板16は熱
交換筒14内部の整流筒17に設けられるため、溶接に
水密性・気密性が要求されず加工が容易である。整流板
16の螺旋のピッチ幅は、燃焼ガスの冷却による体積の
減少に応じて変化させ、ガスの流速を一定に保つことが
望ましい。整流板の螺旋は2重以上にすることができる
A rectifying cylinder 17 is removably mounted within this heat exchange cylinder. The rectifier tube 17 includes a rectifier plate 16 spirally arranged in the rectifier tube 17 so that the combustion gas does not pass through the heat exchange section.
This allows the combustion gas to exchange heat efficiently. This is because centrifugal force acts as the combustion gas rotates along the spiral straightening plate 16, and the combustion gas comes into contact with the outer heat exchange cylinder 14, so heat transfer on this surface is good. This is to increase efficiency. Rectifier tube 1
7, a preferable structure is to insert a heat insulating material or a heat insulating material inside, make the gap between the straightening cylinder 17 and the heat exchange cylinder 14 as small as possible (for example, about 17 mm), and install the straightening plate 16 in a spiral shape in the gap. This is what was placed. Since the rectifier plate 16 is provided in the rectifier cylinder 17 inside the heat exchange cylinder 14, watertightness and airtightness are not required for welding, and processing is easy. It is desirable that the pitch width of the spiral of the baffle plate 16 be changed in accordance with the reduction in volume due to cooling of the combustion gas, and that the flow velocity of the gas be kept constant. The current plate may have two or more spirals.

上記連絡路15は、独立した燃焼筒13と熱交換筒14
間を連絡して燃焼ガスを送る管である。
The communication path 15 has an independent combustion tube 13 and a heat exchange tube 14.
This is a pipe that communicates between the two and sends combustion gas.

もう一方の発明の構成は、第1図、第2図、第5図、第
6図に示す如く、バーナ11の燃焼熱を熱媒体12と熱
交換させるボイラ本体構造において、前記バーナ11を
燃焼室の軸方向に取り付けた燃焼筒13、該燃焼筒13
と独立し燃焼筒13からの燃焼ガスを熱交換させる複数
個の熱交換筒14a、前記燃焼筒13と前記複数個の熱
交換筒14a間を夫々に連絡する連絡路15aを備え、
上記各熱交換筒14a内には螺旋状に整流板16を配設
した着脱可能な整流筒17が装着されてなるものである
The configuration of the other invention is, as shown in FIGS. 1, 2, 5, and 6, in a boiler body structure in which combustion heat of a burner 11 is exchanged with a heat medium 12, the burner 11 is Combustion tube 13 installed in the axial direction of the chamber, the combustion tube 13
a plurality of heat exchange cylinders 14a that independently exchange heat with the combustion gas from the combustion cylinder 13, and a communication path 15a that communicates between the combustion cylinder 13 and the plurality of heat exchange cylinders 14a, respectively,
Inside each of the heat exchange tubes 14a, a removable rectifying tube 17 having a helically arranged rectifying plate 16 is installed.

上記複数個の熱交換筒14aは、熱出力に応じて2個以
上の数とすることができるが、好ましくは2〜4個程度
であり、実際にはこれ以上の数になると構造が複雑化し
コスト面などのメリットが少な(なる。
The number of the plurality of heat exchange cylinders 14a can be two or more depending on the heat output, but it is preferably about 2 to 4, and in reality, if the number is more than this, the structure will become complicated. There are few benefits such as cost.

この発明は、先の発明が燃焼筒に対して1個の熱交換筒
であったものを、所望の出力に応じて複数個の熱交換筒
を備えることができるものである。
This invention can provide a plurality of heat exchange cylinders depending on the desired output, whereas the previous invention had one heat exchange cylinder for each combustion cylinder.

構成要件の説明については先の発明と類領する。The explanation of the constituent elements is similar to the previous invention.

〔作用〕[Effect]

本発明のボイラ本体構造は、燃焼筒13にバーナ11を
燃焼室の軸方向に取り付け、さらに燃焼筒13と熱交換
筒14とを独立させることによって、燃焼筒13および
熱交換筒14の(筒の長さ)/(筒の径)を4〜6と小
径化できるため簡単で圧力に強い構造が容易に得られ、
低コストで製造ができる。
The boiler body structure of the present invention has the burner 11 attached to the combustion tube 13 in the axial direction of the combustion chamber, and the combustion tube 13 and the heat exchange tube 14 being made independent. Since the ratio (length)/(diameter of cylinder) can be reduced to 4 to 6, a simple and pressure-resistant structure can be easily obtained.
Can be manufactured at low cost.

燃焼筒13と熱交換筒14を個別にしてその間を連連絡
路15で連結させるので、整流筒17は直接火炎輻射を
受けない。このため整流筒に耐熱処理を施す必要がなく
低コストにできる。
Since the combustion tube 13 and the heat exchange tube 14 are separated and connected by the communication passage 15, the rectifier tube 17 is not directly exposed to flame radiation. Therefore, there is no need to perform heat-resistant treatment on the rectifier tube, and costs can be reduced.

熱交換筒14内の整流筒17は、着脱可能に装着されて
いるためメンテナンス等が容易に行える。
The rectifier tube 17 inside the heat exchange tube 14 is removably attached, so that maintenance and the like can be easily performed.

整流筒17に螺旋状に整流板16を配設することにより
、燃焼ガスが筒抜けにならずに熱交換壁で効率よく熱交
換できる。
By arranging the baffle plate 16 spirally in the baffle tube 17, the combustion gas can efficiently exchange heat with the heat exchange wall without leaking through the tube.

もう1つの発明においては、上記作用以外に熱出力に対
応して熱交換筒を複数個にすることによって、容易に対
応することができる。
In another aspect of the invention, in addition to the above-mentioned effects, it is possible to easily cope with the above-mentioned effects by providing a plurality of heat exchange cylinders corresponding to the heat output.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

なお本発明はボイラ本体構造に関して熱交換筒が1個の
場合と複数の場合の2発明からなるが、本実施例では先
ず熱交換筒が1個の場合のボイラ本体構造を実施例1で
説明し、次に熱交換筒が複数の場合に特有な部分につい
てのみ実施例2で説明する。(第1図、第2図は両発明
の実施例に共通の図面とする。) 第1図は本実施例のボイラ本体縦断面図、第2図は整流
筒の部分断面図、第3図は実施例1の第1図A−A線断
面図、第4図は実施例1の上面図、第5図は実施例2の
第1図A−A線断面図、第6図は実施例2の上面図、第
7図は燃焼ガス温度の熱交換筒の高さによる温度変化を
示す折れ線図である。
Note that the present invention consists of two inventions regarding the boiler main body structure, one in which there is one heat exchange cylinder and the other in the case that there are multiple heat exchange cylinders. Next, only the parts specific to the case where there are a plurality of heat exchange cylinders will be explained in Example 2. (Figures 1 and 2 are drawings common to the embodiments of both inventions.) Figure 1 is a vertical sectional view of the boiler main body of this embodiment, Figure 2 is a partial sectional view of the rectifier tube, and Figure 3 is a cross-sectional view taken along the line A-A in FIG. 1 of Example 1, FIG. 4 is a top view of Example 1, FIG. 5 is a cross-sectional view taken along the line A-A in FIG. 1 of Example 2, and FIG. 6 is an example The top view of No. 2 and FIG. 7 are line diagrams showing the temperature change of the combustion gas temperature depending on the height of the heat exchange cylinder.

実施例1 実施例1は簡易ボイラとして実施したものである。Example 1 Example 1 was implemented as a simple boiler.

実施例1のボイラ本体縦断面を示す第1図において、オ
イルを使用するバーナ11を円筒形の燃焼室19の上か
ら燃焼室の軸方向(ここでは下方)に向けて設置する。
In FIG. 1, which shows a longitudinal section of the boiler main body of Example 1, a burner 11 using oil is installed from above a cylindrical combustion chamber 19 toward the axial direction of the combustion chamber (in this case, downward).

個別の燃焼筒13および熱交換筒14はボイラ本体の外
枠18内に円筒形の筒を2本手行に立てるように配置さ
れ、外枠18との間には熱媒体(ボイラ水)12でみた
される。燃焼筒13および熱交換筒14間は、下部にて
連絡路15で連絡され燃焼ガスがここを通って熱交換筒
14に運ばれる。
The individual combustion tubes 13 and heat exchange tubes 14 are arranged so that two cylindrical tubes are erected in the outer frame 18 of the boiler body, and a heat medium (boiler water) 12 is placed between the outer frame 18 and the outer frame 18. Filled with The combustion tube 13 and the heat exchange tube 14 are connected at the lower part by a communication path 15, and the combustion gas is conveyed to the heat exchange tube 14 through this.

熱交換筒14内に装着される整流筒17は第2図に示す
如く、その上部に吊具2L 1i22.把手23を付け
て熱交換筒14から着脱を容易にし、内部に断熱材24
を備え、その表面にはこの場合2重の螺旋状に17mm
幅の整流板16a、 16bを煮付接着する構成とした
As shown in FIG. 2, the rectifier tube 17 installed in the heat exchange tube 14 has a hanging tool 2L 1i22. A handle 23 is attached to facilitate attachment and detachment from the heat exchange tube 14, and a heat insulating material 24 is provided inside.
In this case, a double spiral pattern of 17 mm is provided on its surface.
The width of the rectifier plates 16a and 16b are bonded together by boiling.

これらの構成よるボイラ本体構造の動作を以下具体的に
説明する。
The operation of the boiler main body structure based on these configurations will be specifically explained below.

■バーナ11からのオイルは燃焼室19で燃焼され高温
の燃焼ガスが発生する。
■The oil from the burner 11 is burned in the combustion chamber 19, generating high-temperature combustion gas.

■燃焼ガスは燃焼室19の底部の水冷壁に当たって熱交
換して冷却されながら連絡路15を通って熱交換筒14
に入る。このため火炎輻射による整流筒17の過熱は問
題とならない。
■The combustion gas hits the water-cooled wall at the bottom of the combustion chamber 19, exchanges heat, and is cooled while passing through the communication path 15 and passing through the heat exchange cylinder 14.
to go into. Therefore, overheating of the rectifier cylinder 17 due to flame radiation does not pose a problem.

■燃焼ガスは熱交換筒14を整流筒17の整流板16に
ガイドされながら回転して上昇する。この際、燃焼ガス
に働く遠心力が外側の熱交換筒14をなめるように接触
して効率の良い熱交換が行われる。
(2) The combustion gas rotates through the heat exchange cylinder 14 while being guided by the rectifier plate 16 of the rectifier cylinder 17 and rises. At this time, the centrifugal force acting on the combustion gas comes into contact with the outer heat exchange cylinder 14 so that efficient heat exchange is performed.

このため構造は簡単であるが従来の単筒式と異なり熱交
換効率を向上させることができる。整流板16のピッチ
の間隔は燃焼ガスの冷却による体積の減少に対応して徐
々に小さくしであるため、燃焼ガスの流速を一定に保っ
て効率の良い熱交換ができる。
Therefore, although the structure is simple, unlike the conventional single cylinder type, it is possible to improve heat exchange efficiency. Since the pitch of the baffle plates 16 is gradually reduced in response to the reduction in volume due to cooling of the combustion gas, the flow rate of the combustion gas can be kept constant and efficient heat exchange can be performed.

■充分に熱交換されて冷却された燃焼ガスは、煙突接続
口20から排出される。
(2) The combustion gas that has been sufficiently heat exchanged and cooled is discharged from the chimney connection port 20.

■一方、熱交換され温度が上昇したボイラ水12は、ボ
イラ本体上部の出湯口から送り出され、下部の給水口か
ら供給される。
(2) On the other hand, the boiler water 12 whose temperature has increased due to heat exchange is sent out from the outlet at the top of the boiler main body and supplied from the water supply port at the bottom.

このようにして実施例1のボイラ本体構造は簡単な構造
としたため低コストで制作でき、メンテナンスも容易に
行うことができると共に、高い熱交換効率を備えている
In this way, the boiler main body structure of Example 1 has a simple structure, so it can be manufactured at low cost, maintenance can be performed easily, and it has high heat exchange efficiency.

実施例・2 実施例2の基本的な構成は実施例1と同様であるが、燃
焼筒13から複数個の熱交換筒14aが連絡路15aに
よって接続されている点が異なる。
Example 2 The basic configuration of Example 2 is the same as Example 1, except that a plurality of heat exchange cylinders 14a are connected to combustion cylinder 13 by a communication path 15a.

熱交換筒14aは2個以上の数をとることができるが、
なかでも2個から4個の範囲が好まし〈実施できる。こ
れ以上の数になると構造が複雑化してコスト低減の効果
が少なくなるからである。
Although the number of heat exchange cylinders 14a can be two or more,
Among these, a range of 2 to 4 is preferred (and can be implemented). This is because if the number is greater than this, the structure will become complicated and the cost reduction effect will be reduced.

実施例2は第1図、第2図、第5図、第6図に見られる
如く、熱交換筒14aを2個として熱出力?、8 XI
O’ Kcal/hのボイラとした。
In the second embodiment, as shown in FIGS. 1, 2, 5, and 6, two heat exchange tubes 14a are used to increase the heat output. , 8 XI
The boiler was O' Kcal/h.

第5図に示す如く、1個の燃焼筒13に対して2個の熱
交換筒14をv字型に配して、連絡路15aで連絡させ
ている。このように燃焼筒13の熱出力を大きくして熱
交換筒14aを増やすことで20 X 10’Kcal
/h程度のボイラも容易に制作することが可能となる。
As shown in FIG. 5, two heat exchange cylinders 14 are arranged in a V-shape for one combustion cylinder 13, and are connected to each other by a communication passage 15a. In this way, by increasing the heat output of the combustion tube 13 and increasing the number of heat exchange tubes 14a, 20 x 10'Kcal
/h boiler can be easily manufactured.

実施例2は実施例1の場合に比べて多少ボイラ構造は複
雑化するが、従来例と比較しても充分に安いコストで制
作が可能であり、メンテナンスが容易な上、高い熱交換
効率を備えることができる。
Although the boiler structure of Example 2 is somewhat more complicated than that of Example 1, it can be manufactured at a sufficiently low cost compared to the conventional example, is easy to maintain, and has high heat exchange efficiency. You can prepare.

これを以下第8図の従来例の炉筒煙管式ボイラ(熱出カ
フ、OXIO’ Kcal/h、燃焼室径Dg = 3
90m1l11燃焼室長さL z = 55On+m、
外枠高=1030mm )と本発明実施例2のボイラ(
熱出カフ、8 X 10’Kcal/h。
This is shown below in Fig. 8, which is a conventional example of a furnace and smoke tube boiler (heat output cuff, OXIO' Kcal/h, combustion chamber diameter Dg = 3).
90ml1l11 Combustion chamber length L z = 55On+m,
outer frame height = 1030 mm) and the boiler of Example 2 of the present invention (
Fever cuff, 8 X 10'Kcal/h.

燃焼室径D z ”” 200mn+、燃焼室長さL 
t = 1100mn+。
Combustion chamber diameter Dz ”” 200mm+, combustion chamber length L
t = 1100mn+.

外枠高=1030mm )とを比較して具体的に説明す
る。
This will be explained in detail by comparing with the outer frame height = 1030 mm.

燃焼ガスの熱交換筒の高さに応じた温度変化を第7図の
折れ線図で見ると(点線と実線は2個の熱交換筒それぞ
れの温度である)、熱交換筒に入ってきた燃焼ガスは7
00〜800℃であったが熱交換を終えたガス温度は約
240℃程度に冷却されている。これをほぼ同規模の従
来型ボイラと比較すると、単筒式では排出ガス温度は約
400℃程度と高く、単筒式の改良型などでも300℃
程度であるため実施例2のボイラ本体構造の効率が優れ
ていることがわかる。
If we look at the temperature change of the combustion gas according to the height of the heat exchange cylinder in the line diagram in Figure 7 (the dotted line and the solid line are the temperatures of the two heat exchange cylinders), we can see that the combustion gas entering the heat exchange cylinder gas is 7
The temperature of the gas was 00 to 800°C, but after the heat exchange, the gas temperature was cooled to about 240°C. Comparing this with a conventional boiler of approximately the same size, the exhaust gas temperature is as high as approximately 400°C in a single-tube type, and 300°C in an improved type of single-tube type.
It can be seen that the efficiency of the boiler main body structure of Example 2 is excellent.

さらにファーネスロード(FL)によっても従来例との
効率の比較を行うことができる。
Furthermore, the efficiency can be compared with the conventional example using the furnace load (FL).

ファーネスロードとは、入力を燃焼室容積で割った値を
いい次式で表される。
Furnace load is the value obtained by dividing the input by the combustion chamber volume, and is expressed by the following formula.

入力および燃焼室容積は次式で求められる。The input and combustion chamber volume are determined by the following formula.

上記の式より算出したファーネスロードの値は、従来型
の場合 : 80〜120 XIO’ Kcal/h/
 m3実施例2の場合:200〜300 XIO’ K
cal/h/ m’となった。このファーネスロードの
値が大きいと燃焼室容積が小さい割には、大きな出力を
出せることを意味するため、実施例2は従来例に比べて
2燃焼室の単位容積あたり約2倍程度の高い出力を得る
ことができる。また同じ出力であればコンパクトなボイ
ラの本体構造とすることができる。
The furnace load value calculated from the above formula is: 80 to 120 XIO' Kcal/h/
For m3 Example 2: 200-300 XIO'K
cal/h/m'. If the value of this furnace load is large, it means that a large output can be produced even though the combustion chamber volume is small. Therefore, in Example 2, the output per unit volume of two combustion chambers is about twice as high as that of the conventional example. can be obtained. Also, if the output is the same, the boiler body structure can be made more compact.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明のボイラ本体構造は、缶
体部分の径を小さくできるため構造上の耐圧力が増して
材料コストが安く、ボイラ本体は簡単な缶体構造として
メンテナンスが容易でかつ製造コストを低減することが
できると共に、熱交換効率の高いものとすることができ
た。
As described above, the boiler main body structure of the present invention allows the diameter of the can part to be reduced, which increases the structural pressure resistance and reduces material costs.The boiler main body has a simple can structure and is easy to maintain. Moreover, it was possible to reduce the manufacturing cost and to achieve high heat exchange efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例のボイラ本体縦断面図、第2図は整流
筒の部分断面図、 第3図は実施例1の第1図A−A線断面図、第4図は実
施例1の上面図、 第5図は実施例2の第1図A−A線断面図、第6図は実
施例2の上面図、 第7図は燃焼ガス温度の熱交換筒の高さによる温度変化
を示す折れ線図、 第8図乃至第10図は従来のボイラ本体断面図である。 第1図ないし第7図において、 11はバーナ、 12は燃媒体(ボイラ水)、 13は燃焼筒、 14、14aは熱交換筒、 15、15aは連絡路、 16、16a、 16bは整流板、 17は整流筒、 18は外枠、 19は燃焼室、 20は煙突接続口、 21は吊具、 22は蓋、 23は把手、 24は断熱材である。
Fig. 1 is a vertical sectional view of the boiler body of this embodiment, Fig. 2 is a partial sectional view of the straightening tube, Fig. 3 is a sectional view taken along line A-A in Fig. 1 of Embodiment 1, and Fig. 4 is Embodiment 1. 5 is a sectional view taken along the line A-A in FIG. 1 of Example 2, FIG. 6 is a top view of Embodiment 2, and FIG. 7 is a change in combustion gas temperature depending on the height of the heat exchange cylinder. 8 to 10 are cross-sectional views of the conventional boiler main body. In Figures 1 to 7, 11 is a burner, 12 is a fuel medium (boiler water), 13 is a combustion tube, 14, 14a are heat exchange tubes, 15, 15a are connecting passages, 16, 16a, 16b are rectifier plates , 17 is a rectifying cylinder, 18 is an outer frame, 19 is a combustion chamber, 20 is a chimney connection port, 21 is a hanging tool, 22 is a lid, 23 is a handle, and 24 is a heat insulating material.

Claims (3)

【特許請求の範囲】[Claims] (1)バーナ(11)の燃焼熱を熱媒体(12)と熱交
換させるボイラ本体構造において、 前記バーナ(11)を燃焼室の軸方向に取り付けた燃焼
筒(13)、 該燃焼筒(13)と独立し燃焼筒(13)からの燃焼ガ
スを熱交換させる1個の熱交換筒(14)、前記燃焼筒
(13)と前記熱交換筒(14)間を連絡する連絡路(
15)を備え、 上記熱交換筒(14)内には螺旋状に整流板(16)を
配設した着脱可能な整流筒(17)が装着されてなるこ
とを特徴とするボイラ本体構造。
(1) A boiler body structure in which combustion heat of a burner (11) is exchanged with a heat medium (12), comprising: a combustion tube (13) to which the burner (11) is attached in the axial direction of a combustion chamber; ), one heat exchange tube (14) that exchanges heat with the combustion gas from the combustion tube (13), and a communication path (14) that communicates between the combustion tube (13) and the heat exchange tube (14).
15), wherein a removable straightening tube (17) having a straightening plate (16) arranged in a spiral shape is installed in the heat exchange tube (14).
(2)バーナ(11)の燃焼熱を熱媒体(12)と熱交
換させるボイラ本体構造において、 前記バーナ(11)を燃焼室の軸方向に取り付けた燃焼
筒(13)、 該燃焼筒(13)と独立し燃焼筒(13)からの燃焼ガ
スを熱交換させる複数個の熱交換筒(14a)、前記燃
焼筒(13)と前記複数個の熱交換筒(14a)間を夫
々に連絡する連絡路(15a)を備え、上記各熱交換筒
(14a)内には螺旋状に整流板(16)を配設した着
脱可能な整流筒(17)が装着されてなることを特徴と
するボイラ本体構造。
(2) A boiler body structure that exchanges combustion heat of the burner (11) with a heat medium (12), comprising: a combustion tube (13) to which the burner (11) is attached in the axial direction of the combustion chamber; ), a plurality of heat exchange cylinders (14a) that exchange heat with the combustion gas from the combustion cylinder (13), respectively communicating between the combustion cylinder (13) and the plurality of heat exchange cylinders (14a). A boiler characterized in that it is equipped with a communication path (15a), and a removable straightening tube (17) having a straightening plate (16) arranged in a spiral shape is installed in each of the heat exchange tubes (14a). Body structure.
(3)上記複数の熱交換筒(14)が2〜4個である特
許請求の範囲第2項記載のボイラ本体構造。
(3) The boiler main body structure according to claim 2, wherein the number of the plurality of heat exchange cylinders (14) is 2 to 4.
JP3801087A 1987-02-23 1987-02-23 Structure of boiler body Pending JPS63207949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3801087A JPS63207949A (en) 1987-02-23 1987-02-23 Structure of boiler body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3801087A JPS63207949A (en) 1987-02-23 1987-02-23 Structure of boiler body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3266821A Division JP2506011B2 (en) 1991-09-19 1991-09-19 Boiler body structure

Publications (1)

Publication Number Publication Date
JPS63207949A true JPS63207949A (en) 1988-08-29

Family

ID=12513606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3801087A Pending JPS63207949A (en) 1987-02-23 1987-02-23 Structure of boiler body

Country Status (1)

Country Link
JP (1) JPS63207949A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718238U (en) * 1971-03-31 1972-10-31
JPS6043845B2 (en) * 1977-06-07 1985-09-30 旭硝子株式会社 Heat treatment method for fluorine-containing elastomer
JPS6130117U (en) * 1984-07-28 1986-02-22 富士通株式会社 AC automatic voltage regulator
JPS6127053B2 (en) * 1983-09-08 1986-06-24 Noboru Funatsu

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718238U (en) * 1971-03-31 1972-10-31
JPS6043845B2 (en) * 1977-06-07 1985-09-30 旭硝子株式会社 Heat treatment method for fluorine-containing elastomer
JPS6127053B2 (en) * 1983-09-08 1986-06-24 Noboru Funatsu
JPS6130117U (en) * 1984-07-28 1986-02-22 富士通株式会社 AC automatic voltage regulator

Similar Documents

Publication Publication Date Title
US8622736B2 (en) Recuperator burner having flattened heat exchanger pipes
US20090223655A1 (en) Heat exchanger particularly for thermal generators
JPH0642812A (en) Heat exchanger for gas boiler
JP2008292035A (en) Boiler
JPS63207949A (en) Structure of boiler body
JP4400921B2 (en) Multi-pipe once-through boiler
JP2008267713A (en) Boiler
CN106556139A (en) Oil/natural-gas-firehot-blast hot-blast environment-friendlyboiler boiler
RU2327083C1 (en) Hot water boiler
JP2506011B2 (en) Boiler body structure
KR0136614B1 (en) Dust-fire withdrawal burner
KR100446883B1 (en) Heat exchanger of gas boiler
EP0759527A1 (en) Heat exchanger
RU2256127C1 (en) Hot-water boiler
JP4405652B2 (en) Boiler with horizontal heat absorption fins in the combustion gas passage
JP3666777B2 (en) Boiler with heat-absorbing fins that intersect the combustion gas flow
RU2327082C1 (en) Hot water boiler
JPS6324321Y2 (en)
JP3772922B2 (en) Once-through boiler
IE48624B1 (en) Improvements in and relating to boilers
JPS60134147A (en) Water tube type boilder
JPH04132357U (en) Boiler body structure
JP2694894B2 (en) Heat exchanger
CN116717912A (en) Cylindrical premixing water-cooling combustion extruded aluminum fin heat exchange compact hydrogen wall-mounted furnace
JP3805897B2 (en) Multi-pipe once-through boiler