JP2506011B2 - Boiler body structure - Google Patents

Boiler body structure

Info

Publication number
JP2506011B2
JP2506011B2 JP3266821A JP26682191A JP2506011B2 JP 2506011 B2 JP2506011 B2 JP 2506011B2 JP 3266821 A JP3266821 A JP 3266821A JP 26682191 A JP26682191 A JP 26682191A JP 2506011 B2 JP2506011 B2 JP 2506011B2
Authority
JP
Japan
Prior art keywords
heat exchange
combustion
cylinder
tube
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3266821A
Other languages
Japanese (ja)
Other versions
JPH06323629A (en
Inventor
馨 細野
春生 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nepon KK
Original Assignee
Nepon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nepon KK filed Critical Nepon KK
Priority to JP3266821A priority Critical patent/JP2506011B2/en
Publication of JPH06323629A publication Critical patent/JPH06323629A/en
Application granted granted Critical
Publication of JP2506011B2 publication Critical patent/JP2506011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボイラ本体構造に関し、
より詳しくは、良好な熱交換効率を維持しつつボイラ本
体を簡素な筒構造として製造コストを低減させたボイラ
本体構造に関する。本発明は、例えば小型ボイラや簡易
ボイラなどに好適に利用することができるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler body structure,
More specifically, the present invention relates to a boiler body structure in which a good heat exchange efficiency is maintained and a manufacturing cost is reduced by using the boiler body as a simple tubular structure. INDUSTRIAL APPLICABILITY The present invention can be suitably used for, for example, a small boiler and a simple boiler.

【0002】[0002]

【従来の技術】図6、図7、図8はそれぞれ従来のボイ
ラ本体断面図である。図中、31はバーナ、32はボイ
ラ水、33は燃焼筒、34は熱交換筒、37は整流筒、
38は外枠、39は燃焼室、40は煙突接続口、44は
煙管、45は給水口、46は出湯口を示す。従来のボイ
ラ本体構造、例えば図6に示す現在のボイラの主流を占
める炉筒煙管式の場合は、燃焼筒33上部から多数の煙
管44が水密性・気密性良く溶接接続され、これらの缶
体と外枠38の間はボイラ水32で満たされている。オ
イルまたはガスなどをバーナ31により燃焼室39で燃
焼させて生ずる高温の燃焼ガスを、燃焼筒33および煙
管44でボイラ水32と熱交換してボイラ水の温度を上
昇させ、燃焼ガスは同図の矢印方向に進んで煙突接続口
40へ送られ、そこから図示しない煙突を経て排出され
る。ボイラ水32は順次外枠38の下部に設けられた給
水口45から供給され、熱交換されたボイラ水は湯とな
って上部の出湯口46から送り出される。この炉筒煙管
式は、燃焼筒33に多数の煙管44が接続されているの
で熱交換効率は優れているが、煙管が多数のためボイラ
本体構造が複雑となり水密性・気密性を要求される溶接
部分が多く、制作に高度の技術を要し、またコストが高
くなる。図7に示す単筒式は、燃焼筒33と熱交換筒3
4を一体化することによってボイラ本体構造を簡素化
し、溶接部分を少なくしてコストを安くできるが、煙突
接続口40から出る燃焼ガス温度は約400℃程度と高
く熱交換効率が悪いことを示す。さらに、整流筒37の
Bで示す底部はボイラ水で冷却されず、燃焼室39内の
火炎輻射を受けて高温となるため高い耐熱性を備えたも
のでないと耐久性が悪くなる。
2. Description of the Related Art FIGS. 6, 7, and 8 are sectional views of conventional boiler bodies. In the figure, 31 is a burner, 32 is boiler water, 33 is a combustion tube, 34 is a heat exchange tube, 37 is a rectification tube,
38 is an outer frame, 39 is a combustion chamber, 40 is a chimney connection port, 44 is a smoke pipe, 45 is a water supply port, and 46 is a tap hole. In the case of a conventional boiler body structure, for example, a furnace tube smoke tube type which occupies the mainstream of the present boiler shown in FIG. 6, a large number of smoke tubes 44 are welded and connected from the upper part of the combustion tube 33 with good watertightness and airtightness, and these can bodies are The space between the outer frame 38 and the outer frame 38 is filled with the boiler water 32. The high temperature combustion gas generated by burning oil or gas in the combustion chamber 39 by the burner 31 exchanges heat with the boiler water 32 in the combustion tube 33 and the smoke pipe 44 to raise the temperature of the boiler water, and the combustion gas is the same as in FIG. Is sent to the chimney connection port 40 and is discharged from there through a chimney (not shown). The boiler water 32 is sequentially supplied from a water supply port 45 provided in the lower portion of the outer frame 38, and the heat-exchanged boiler water is turned into hot water and sent out from the upper hot water outlet port 46. This furnace tube smoke tube type is excellent in heat exchange efficiency because a large number of smoke tubes 44 are connected to the combustion tube 33, but the large number of smoke tubes complicates the boiler main body structure and requires watertightness and airtightness. There are many welded parts, high technology is required for production, and the cost is high. The single cylinder type shown in FIG. 7 has a combustion cylinder 33 and a heat exchange cylinder 3.
Although the boiler body structure can be simplified and the cost can be reduced by reducing the number of welded parts by integrating the four, the temperature of the combustion gas discharged from the chimney connection port 40 is as high as about 400 ° C, indicating that the heat exchange efficiency is poor. . Further, the bottom portion of the rectifying cylinder 37 indicated by B is not cooled by the boiler water, and becomes hot due to the flame radiation in the combustion chamber 39, so that durability is deteriorated unless it has high heat resistance.

【0003】そこで単筒式の改良型として図8に示す例
の如く、整流筒37のB部分に火炎輻射を直接受けない
よう燃焼筒33と熱交換筒34をC部分で絞ってボイラ
水の水冷壁を作り過熱を抑えるようにすると、逆にC部
分を絞るために構造が複雑化してコストが高くなる。従
来型のボイラ本体は共通して燃焼筒33上に熱交換筒3
4または煙管44を配するので縦方向に長くなるが、ボ
イラの設置場所やメンテナンスの都合でそれほど高くで
きず、またバーナ31を図6〜図8に示されるように横
方向から燃焼させる場合が多い。このため、図6ないし
図8に示す如く、燃焼室39は燃焼に必要な容積を確保
する必要から高さLを抑えて径Dを比較的大きくと
り、L/Dを1〜1.5程度とした。しかし、径D
が大きくなればなるほど外からの水圧に弱くなり、燃
焼室のボイラ水に対する耐圧力を増すため、バルジと称
するひだを燃焼筒につけて補強したり、筒自体の肉厚を
増すことなどが行われる。
Therefore, as shown in FIG. 8 as an improved type of the single cylinder type, the combustion cylinder 33 and the heat exchange cylinder 34 are squeezed at the C portion so that the B portion of the rectifying cylinder 37 is not directly exposed to the flame radiation, and the boiler water is squeezed. If a water cooling wall is formed to suppress overheating, the structure is complicated because the C portion is constricted, and the cost increases. The conventional boiler body is commonly equipped with the heat exchange tube 3 on the combustion tube 33.
4 or the smoke pipe 44 is arranged, it becomes longer in the vertical direction, but it cannot be so high due to the installation location of the boiler and the convenience of maintenance, and the burner 31 may be burned in the horizontal direction as shown in FIGS. 6 to 8. Many. Therefore, as shown in FIGS. 6 to 8, since the combustion chamber 39 needs to secure a volume required for combustion, the height L 2 is suppressed and the diameter D 2 is set to be relatively large, and L 2 / D 2 is 1 to 1. It was set to about 1.5. However, the diameter D
As 2 becomes larger, it becomes weaker against water pressure from the outside, and in order to increase the pressure resistance of the combustion chamber against boiler water, it is possible to add pleats called bulges to the combustion cylinder to reinforce it or increase the wall thickness of the cylinder itself. Be seen.

【0004】[0004]

【発明が解決しようとする課題】上記した如く、従来の
ボイラ本体構造は炉筒煙管式や単筒式およびその改良型
などにみられるように、熱交換部分の伝熱面積を広くと
って熱交換効率を上げようとすると構造が複雑化してコ
ストが高くなり、逆に単筒式のように単純な構造でコス
トを安くしようとすると熱交換効率が悪くなる問題があ
った。このようにボイラ本体構造において、製造コスト
の低減と熱交換効率の向上という相反する要請を両立さ
せることが容易でないのが現状である。また、従来型ボ
イラの燃焼室39は高さLに比べて径Dを大きくと
る必要から(従来はL/D=1〜1.5)ボイラ水
の水圧に対する耐圧力を増すためバルジを入れたり、燃
焼筒の肉厚を増すことが行われ、そうするとコストがか
さむという問題がある。本発明は上記問題点に鑑みて創
作されたもので、耐圧力を備え、熱交換効率が高く、か
つ構造が簡単で製造コストの安いボイラ本体構造を提供
することを目的とする。
As described above, the conventional boiler main body structure has a large heat transfer area in the heat exchange portion as seen in the furnace tube type, the single tube type and its improved type. If the exchange efficiency is increased, the structure becomes complicated and the cost increases, and conversely, if the cost is reduced with a simple structure such as a single cylinder type, the heat exchange efficiency deteriorates. As described above, in the boiler body structure, it is not easy to satisfy the contradictory requirements of reduction of manufacturing cost and improvement of heat exchange efficiency. Further, the combustion chamber 39 of the conventional boiler needs to have a diameter D 2 larger than the height L 2 (L 2 / D 2 = 1 to 1.5 in the related art) in order to increase the pressure resistance against the hydraulic pressure of the boiler water. Bulging is added and the wall thickness of the combustion cylinder is increased, which causes a problem of increased cost. The present invention has been made in view of the above problems, and an object of the present invention is to provide a boiler main body structure having pressure resistance, high heat exchange efficiency, simple structure, and low manufacturing cost.

【0005】[0005]

【課題を解決するための手段】上記問題点は、バーナ1
1を燃焼室19の軸方向上方に取り付けた燃焼筒13と
燃焼筒13を熱交換部に連絡する連絡路15を備えるボ
イラ本体において、該熱交換部は燃焼筒13と独立し燃
焼筒13からの燃焼ガスを熱交換させ4個以下の熱交換
筒14から成り、それぞれの熱交換筒14内には外側表
面に螺旋状に整流板16をそのピッチ間隔が燃焼ガスの
冷却による体積の減少に対応して小になるが如く配設し
た着脱可能な整流筒が装着されてなることを特徴とする
ボイラ本体構造を提供することによって解決される。
[Problems to be Solved by the Invention] The above problems are caused by the burner 1
In the boiler main body provided with a combustion tube 13 in which 1 is attached axially above the combustion chamber 19 and a communication path 15 that connects the combustion tube 13 to the heat exchange section, the heat exchange section is independent of the combustion tube 13 and Of heat exchange cylinders 14 each having less than four heat exchange cylinders, and each of the heat exchange cylinders 14 has a straightening plate 16 spirally formed on the outer surface of the heat exchange cylinders 14 whose pitch interval reduces the volume of the combustion gas due to cooling of the combustion gas. The problem is solved by providing a boiler body structure characterized in that a detachable rectifying cylinder arranged so as to be correspondingly small is mounted.

【0006】[0006]

【作用】本発明のボイラ本体構造は、燃焼筒13にバー
ナ11を燃焼室の軸方向に取り付け、さらに燃焼筒13
と熱交換筒14とを独立させることによって、燃焼筒1
3および熱交換筒14の(筒の長さ)/(筒の径)を4
〜6と小径化できるため簡単で圧力に強い構造が容易に
得られ、コストを低減することができ、燃焼室13と熱
交換筒14を別個にしてその間を連絡路15で連結させ
るので、整流筒17は直接火炎幅射を受けず、このため
整流筒に耐圧処理を施す必要がなく低コストにでき、熱
交換筒14内の整流筒17は、着脱可能に装着されてい
るためメンテナンス等が容易に行え、内部に断熱材24
を入れた整流筒17の外側表面に螺施状に整流板16を
配設することにより、燃焼ガスが筒抜けにならずに熱交
換壁で効率よく熱交換できるということに加えて、2〜
4個の熱交換筒を使用することにより、熱出力を増加
し、熱交換率を高め、ファーネスロード(FL)を高め
るのである。
In the boiler body structure of the present invention, the burner 11 is attached to the combustion cylinder 13 in the axial direction of the combustion chamber, and the combustion cylinder 13 is further installed.
And the heat exchange cylinder 14 are independent of each other, the combustion cylinder 1
3 and (heat exchange tube 14) (tube length) / (tube diameter) 4
Since the diameter can be reduced to ˜6, a simple and pressure-resistant structure can be easily obtained, the cost can be reduced, and the combustion chamber 13 and the heat exchange tube 14 are separately provided and are connected by the communication path 15, so that the rectification is performed. Since the cylinder 17 is not directly subjected to flame radiation, it is possible to reduce the cost because it is not necessary to perform pressure resistance treatment on the rectification cylinder, and the rectification cylinder 17 in the heat exchange cylinder 14 is detachably mounted, so that maintenance or the like is not required. Easy to do, with insulation 24 inside
By disposing the straightening plate 16 in a spiral shape on the outer surface of the straightening cylinder 17 in which the gas is inserted, in addition to the fact that the combustion gas can be efficiently heat-exchanged by the heat exchange wall without being removed from the cylinder,
By using four heat exchange tubes, the heat output is increased, the heat exchange rate is increased, and the furnace load (FL) is increased.

【0007】[0007]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図3を参照すると、バーナ11の燃焼熱を
熱媒体12と熱交換させるボイラ本体構造において、バ
ーナ11を燃焼室19の軸方向に取り付けた燃焼筒13
(内径D、燃焼室長さL)、燃焼筒13と独立し燃
焼筒13からの燃焼ガスを熱交換させる2個の熱交換筒
14、燃焼筒13と熱交換筒14間を連絡する連絡路1
5を備え、熱交換筒14内には外側に螺旋状に整流板1
6を配設し内部に断熱材24をつめた着脱可能な整流筒
17が装着されてなる構成となる。バーナ11は、ボイ
ラの熱源となる燃焼手段であり、例えばオイルバーナや
ガスバーナなどを好ましく用いることができ、熱媒体1
2は、ボイラ水として水が一般に用いられ、燃焼筒13
は、バーナ11に連結された筒状容器でこの中の空間が
燃焼室19となっているもので、燃焼筒13はボイラ水
の水圧を受けるため耐圧構造の円筒形またはこれに類す
る構造にする。バーナ11を燃焼室の軸方向に取り付け
るとは、円筒形またはこれに類する形状の燃焼室の軸と
同方向(円筒形であれば筒方向)にバーナの吹き出し口
を取り付けることをいう。燃焼室内で作られる炎を細長
い炎とすることによって燃焼室の径を小さくできる。熱
交換筒14は、燃焼筒13からの燃焼ガスの熱を熱媒体
12と熱交換させる筒である。熱交換筒14は燃焼筒1
3から独立した筒構造を持っている。この熱交換筒内に
は着脱可能に整流筒17が装着されている。整流筒17
は、燃焼ガスが熱交換部分、すなわち整流筒17と熱交
換筒14の間の部分を素通りしないように、整流筒17
の外側に螺旋状に配設した整流板16で燃焼ガスを効率
良く熱交換させる。すなわち、螺旋状に設けられた整流
板16に沿って燃焼ガスが回転することによって遠心力
が働き、燃焼ガスが外側の熱交換筒14をなめるように
接触するため、この面の熱伝達が良くなり熱交換を高効
率化する。整流筒17の好ましい構造例としては、内部
に保温材や断熱材を入れ、整流筒17と熱交換筒14と
の隙間をできるだけ小さくし(例えば17mm程度)、
その隙間部分に整流板16を螺旋状に配置する。整流板
16は熱交換筒14内部の整流筒17に設けられるた
め、溶接に水密性・気密性が要求されず加工が容易であ
る。整流板16の螺旋のピッチ幅は、燃焼ガスの冷却に
よる体積の減少に応じて変化させ、ガスの流速を一定に
保つよう設計することが望ましい。整流板の螺旋は2重
以上にすることができる。連絡路15は、独立した燃焼
筒13と熱交換筒14間を連絡して燃焼ガスを送る管で
ある。図3において、例えばオイルを使用するバーナ1
1を円筒形の燃焼室19の上から燃焼室の軸方向(ここ
では下方)に向けて設置する。燃焼筒13および2個の
熱交換筒14は、図1に示されるように、ボイラ本体の
外枠18内に円筒形の筒を2本平行に立てるように配置
され、外枠18との間は熱媒体(ボイラ水)12で満た
される。燃焼筒13および熱交換筒14間は、下部にて
連絡路15で連絡され燃焼ガスがここを通って熱交換筒
14に運ばれる。熱交換筒14内に装着される整流筒1
7は図4に示す如く、その上部に吊具21、蓋22、把
手23を付けて熱交換筒14に対する着脱を容易にし、
内部に断熱材24を備え、その表面にはこの場合2重の
螺旋状に17mm幅の整流板16を点付接着する構成と
した。これらの構成によるボイラ本体構造の動作を以下
具体的に説明する。 バーナ11からのガスまたはオイルは燃焼室19で
燃焼され高温の燃焼ガスが発生する。 燃焼ガスは燃焼室19の底部の水冷壁に当たって熱
交換して冷却されながら連絡路15を通って熱交換筒1
4に入る。このため火炎輻射による整流筒17の過熱は
問題とならない。 燃焼ガスは熱交換筒14と整流筒17の間を整流筒
17の外側に配置した整流板16にガイドされながら回
転して上昇する。この際、燃焼ガスに働く遠心力により
燃焼ガスは外側の熱交換筒14をなめるように接触して
効率の良い熱交換が行われる。このように簡単な構造で
従来の単筒式と異なり熱交換率を向上させることができ
る。整流板16のピッチの間隔は燃焼ガスの冷却による
体積の減少に対応して徐々に小さくしてあるため、燃焼
ガスの流速を一定に保って効率の良い熱交換ができる。 充分に熱交換されて冷却された燃焼ガスは、煙突接
続口20を経て排出される。 一方、熱交換され温度が上昇したボイラ水12は、
ボイラ本体上部の出湯口26から送り出され、水は下部
の給水口25から供給される。このようにして本発明実
施例のボイラ本体構造は簡単な構造としたため低コスト
で製造することができ、メンテナンスも容易に行うこと
ができるとともに、高い熱交換効率を提供するものであ
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. Referring to FIG. 3, in the boiler body structure for exchanging the combustion heat of the burner 11 with the heat medium 12, the combustion cylinder 13 in which the burner 11 is attached in the axial direction of the combustion chamber 19
(Inner diameter D 1 , combustion chamber length L 1 ), two heat exchange tubes 14 independent of the combustion tube 13 for exchanging heat of the combustion gas from the combustion tube 13, and communication for connecting between the combustion tube 13 and the heat exchange tube 14. Road 1
5, the heat exchange cylinder 14 is spirally outwardly provided in the heat exchange cylinder 14
6 is provided and a detachable rectifying cylinder 17 with a heat insulating material 24 is installed inside. The burner 11 is a combustion means serving as a heat source of the boiler, and, for example, an oil burner or a gas burner can be preferably used, and the heat medium 1
2 is generally used as boiler water, and the combustion cylinder 13
Is a cylindrical container connected to the burner 11 and the space therein is a combustion chamber 19. The combustion cylinder 13 receives the hydraulic pressure of the boiler water, and therefore has a pressure-resistant cylindrical shape or a similar structure. . Attaching the burner 11 in the axial direction of the combustion chamber means attaching the outlet of the burner in the same direction as the shaft of the combustion chamber having a cylindrical shape or a similar shape (in the case of a cylindrical shape, the cylinder direction). The diameter of the combustion chamber can be reduced by making the flame produced in the combustion chamber into an elongated flame. The heat exchange cylinder 14 is a cylinder that exchanges heat of the combustion gas from the combustion cylinder 13 with the heat medium 12. The heat exchange tube 14 is the combustion tube 1
It has a cylindrical structure independent of 3. A rectifying cylinder 17 is detachably mounted in the heat exchange cylinder. Rectifying cylinder 17
Is a commutation cylinder 17 so that the combustion gas does not pass through the heat exchange part, that is, the part between the commutation cylinder 17 and the heat exchange cylinder 14.
The combustion gas is efficiently heat-exchanged with the straightening plate 16 spirally arranged on the outside. That is, as the combustion gas rotates along the straightening plate 16 provided in a spiral shape, a centrifugal force acts and the combustion gas makes contact with the outer heat exchange cylinder 14 so as to lick it, so that the heat transfer on this surface is good. Improves heat exchange efficiency. As a preferable structure example of the flow straightening cylinder 17, a heat insulating material or a heat insulating material is put inside to make the gap between the straightening cylinder 17 and the heat exchange cylinder 14 as small as possible (for example, about 17 mm),
The current plate 16 is spirally arranged in the gap. Since the rectifying plate 16 is provided in the rectifying cylinder 17 inside the heat exchange cylinder 14, the welding is not required to be watertight and airtight, and the work is easy. It is desirable that the pitch width of the spiral of the straightening vanes 16 be changed according to the decrease in volume of the combustion gas due to cooling, so that the flow velocity of the gas is kept constant. The spiral of the baffle plate can be double or more. The communication path 15 is a pipe that connects the independent combustion cylinder 13 and the heat exchange cylinder 14 and sends combustion gas. In FIG. 3, for example, a burner 1 using oil
1 is installed from above the cylindrical combustion chamber 19 in the axial direction (here, downward) of the combustion chamber. As shown in FIG. 1, the combustion cylinder 13 and the two heat exchange cylinders 14 are arranged in an outer frame 18 of the boiler main body so as to stand two cylindrical cylinders in parallel with each other. Is filled with a heat medium (boiler water) 12. The lower part between the combustion cylinder 13 and the heat exchange cylinder 14 is connected by a communication path 15, and the combustion gas is conveyed to the heat exchange cylinder 14 through this. Rectifier cylinder 1 mounted in the heat exchange cylinder 14
As shown in FIG. 4, 7 is provided with a hanger 21, a lid 22 and a handle 23 on the upper part thereof to facilitate attachment / detachment to / from the heat exchange tube 14.
A heat insulating material 24 is provided inside, and in this case, a 17 mm-wide rectifying plate 16 is point-bonded to the surface in a double spiral shape. The operation of the boiler body structure having these configurations will be specifically described below. Gas or oil from the burner 11 is burned in the combustion chamber 19 to generate high temperature combustion gas. The combustion gas hits the water cooling wall at the bottom of the combustion chamber 19 and exchanges heat to be cooled while passing through the communication passage 15 and the heat exchange cylinder 1
Enter 4. Therefore, overheating of the rectifying cylinder 17 due to flame radiation does not pose a problem. The combustion gas rotates and rises while being guided between the heat exchange cylinder 14 and the rectifying cylinder 17 by the rectifying plate 16 arranged outside the rectifying cylinder 17. At this time, due to the centrifugal force acting on the combustion gas, the combustion gas comes into contact with the outer heat exchange cylinder 14 so as to lick it, and efficient heat exchange is performed. With such a simple structure, the heat exchange rate can be improved unlike the conventional single cylinder type. Since the pitch of the straightening vanes 16 is gradually reduced in accordance with the decrease in volume due to the cooling of the combustion gas, the flow velocity of the combustion gas can be kept constant and efficient heat exchange can be performed. The combustion gas that has been sufficiently heat-exchanged and cooled is discharged through the chimney connection port 20. On the other hand, the boiler water 12 that has undergone heat exchange and whose temperature has risen is
The water is sent out from the hot water outlet 26 at the upper part of the boiler body, and the water is supplied from the water supply port 25 at the lower part. In this way, the boiler main body structure of the embodiment of the present invention has a simple structure, so that it can be manufactured at low cost, maintenance can be easily performed, and high heat exchange efficiency is provided.

【0008】本発明実施例では、熱交換筒14を2個と
して熱出力7.8×10Kcal/hのボイラとし
た。図1に示す如く、本発明では1個の燃焼筒13に対
して2個の熱交換筒14をV字型に配して、連絡路15
で連絡させている。このように燃焼筒13の熱出力を大
きくして熱交換筒14を増やすことで、20×10
cal/h程度のボイラも容易に制作することが可能と
なる。図2は図1に示す例の上面図である。この実施例
は熱交換筒14が1個の場合に比べて多少ボイラ本体構
造は異なるが、従来例と比較しても充分に安いコストで
制作が可能であり、メンテナンスが容易な上、高い熱交
換率を提供する。これを具体例で比較すると、図6の従
来例の炉筒煙管式ボイラは、熱出力7.0×10Kc
al/h、燃焼室径D=390mm,燃焼室長さL
=550mm,外枠高=1030mmであるのに対し、
本発明実施例のボイラは熱出力7.8×10Kcal
/h、燃焼室径D=200mm,燃焼室長さL=1
100mm,外枠高=1030mmとなった。燃焼ガス
の熱交換筒の高さに応じた温度変化を図5の折れ線図で
見ると(点線と実線は2個の熱交換筒それぞれの温度で
ある)、熱交換筒に入ってきた燃焼ガスは700〜80
0℃であったが熱交換を終えたガス温度は約240℃程
度に冷却されている。これをほぼ同規模の従来型ボイラ
と比較すると、単筒式では排出ガス温度は約400℃程
度と高く、単筒式の改良型なども300℃程度であるた
め本発明実施例のボイラ本体構造の効率が優れているこ
とが理解される。さらにファーネスロード(FL)によ
っても従来例との効率の比較を行うことができる。ファ
ーネスロード(FL)とは、入力を燃焼室容積で割った
値をいい次式で表される。 FL(Kcal/h/m)=入力(Kcal/h)÷燃焼室容積(m) 燃焼室容積(m)=(πD・L)÷4 ただし、 Dは燃焼室径 Lは燃焼室長さ。 入力と出力の関係は次式で求められる。 入力=出力÷効率 上記の式より算出したファーネスロードの値は、 従来型の場合 : 80〜120×10Kcal/h/m 本発明実施例の場合:200〜300×10Kcal/h/m となった。このファーネスロードの値が大きいと、燃焼
室容積が小さい割に大きな出力を出せることを意味する
ため、本発明実施例は従来例に比べて燃焼室の単位容積
あたり約2倍程度の高い出力を得ることができることに
なる。また同じ出力であればコンパクトなボイラの本体
構造とすることができる。本発明実施例は、ボイラ本体
構造において熱交換筒14を2個使用するものとして説
明したが、燃焼筒13から3〜4個の熱交換筒14を連
絡路15によって接続することもできる。熱交換筒14
は2個以上の数をとることができるが、数は少ない方が
好ましく実用的である。しかし、5個以上の数になると
構造が複雑化してコスト低減の効果が少なくなる。
In the embodiment of the present invention, two heat exchange tubes 14 are provided.
And heat output 7.8 × 104Kcal / h boiler
Was. In the present invention, as shown in FIG.
Then, the two heat exchange tubes 14 are arranged in a V shape, and the connecting path 15
I am contacting you. In this way, the heat output of the combustion cylinder 13 is increased.
20x10 by increasing the heat exchange cylinder 144K
It is possible to easily produce a cal / h boiler.
Become. FIG. 2 is a top view of the example shown in FIG. This example
Compared to the case where there is only one heat exchange cylinder 14,
The structure is different, but at a sufficiently low cost compared to the conventional example
Production is possible, easy maintenance, and high heat exchange
Provides conversion rate. Comparing this with a concrete example, the slave of FIG.
The conventional flue-tube type boiler has a heat output of 7.0 × 10.4Kc
al / h, combustion chamber diameter D2= 390 mm, combustion chamber length L2
= 550 mm and outer frame height = 1030 mm,
The boiler of the embodiment of the present invention has a heat output of 7.8 × 10.4Kcal
/ H, combustion chamber diameter D1= 200 mm, combustion chamber length L1= 1
The height was 100 mm and the outer frame height was 1030 mm. Combustion gas
Figure 5 shows the temperature change depending on the height of the heat exchange tube
Looking at it (the dotted line and the solid line indicate the temperature of each of the two heat exchange tubes)
Yes, the combustion gas entering the heat exchange tube is 700-80
It was 0 ℃, but the temperature of the gas after heat exchange was about 240 ℃
It is cooled every time. This is a conventional boiler of about the same scale
Compared with the single cylinder type, the exhaust gas temperature is about 400 ° C.
The high temperature is about 300 ° C even for the single cylinder type and improved type.
Therefore, the efficiency of the boiler body structure of the embodiment of the present invention is excellent.
Is understood. Furnace Road (FL)
Even so, it is possible to compare the efficiency with the conventional example. Fa
Engine load (FL) is the input divided by the combustion chamber volume.
It is a value and is expressed by the following formula. FL (Kcal / h / m3) = Input (Kcal / h) / combustion chamber volume (m3) Combustion chamber volume (m3) = (ΠD2・ L) / 4 where D is the combustion chamber diameter and L is the combustion chamber length. The relationship between input and output is calculated by the following formula. Input = output ÷ efficiency The value of the furnace load calculated from the above equation is the case of the conventional type: 80 to 120 × 104Kcal / h / m3  In the case of the embodiment of the present invention: 200 to 300 × 104Kcal / h / m3 Became. If the value of this furnace load is large, the combustion
It means that a large output can be produced despite the small chamber volume.
Therefore, the embodiment of the present invention has a unit volume of the combustion chamber as compared with the conventional example.
It is possible to obtain about twice as high output per
Become. If the output is the same, the body of the compact boiler
It can be structured. The embodiment of the present invention is the boiler main body.
Described as using two heat exchange tubes 14 in the structure
As is clear, three to four heat exchange tubes 14 are connected from the combustion tube 13 in series.
It is also possible to connect by means of the trajectories 15. Heat exchange tube 14
Can take two or more, but the smaller the number,
It is preferable and practical. However, when the number is 5 or more
The structure becomes complicated and the effect of cost reduction is reduced.

【0009】[0009]

【発明の効果】以上述べてきたように、本発明のボイラ
本体構造は、缶体部分の径を小さくできるため構造上の
耐圧力が増して材料コストが安く、ボイラ本体は簡単な
缶体構造としてメンテナンスが容易でかつ製造コストを
低減することができると共に、熱交換率の高いものとす
ることができた。
As described above, in the boiler body structure of the present invention, since the diameter of the can body portion can be made small, the structural pressure resistance increases and the material cost is low, and the boiler body has a simple can body structure. As a result, the maintenance can be easily performed, the manufacturing cost can be reduced, and the heat exchange rate can be high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の横断面図である。1 is a cross-sectional view of an embodiment of the present invention.

【図2】本発明実施例の上面図である。FIG. 2 is a top view of an embodiment of the present invention.

【図3】本発明実施例ボイラ本体構造の縦断面図であ
る。
FIG. 3 is a vertical sectional view of a boiler body structure according to an embodiment of the present invention.

【図4】熱交換筒の部分断面図である。FIG. 4 is a partial cross-sectional view of a heat exchange tube.

【図5】燃焼ガス温度の熱交換筒の高さによる温度変化
を示す折れ線図である。
FIG. 5 is a polygonal diagram showing a temperature change of a combustion gas temperature depending on a height of a heat exchange tube.

【図6】従来のボイラ本体断面図である。FIG. 6 is a cross-sectional view of a conventional boiler body.

【図7】従来のボイラ本体断面図である。FIG. 7 is a cross-sectional view of a conventional boiler body.

【図8】従来のボイラ本体断面図である。FIG. 8 is a sectional view of a conventional boiler body.

【符号の説明】[Explanation of symbols]

11 バーナ 12 熱媒体(ボイラ水) 13 燃焼筒 14 熱交換筒 15 連絡路 16 整流板 17 整流筒 18 外枠 19 燃焼室 20 煙突接続口 21 吊具 22 蓋 23 把手 24 断熱材 11 Burner 12 Heat Medium (Boiler Water) 13 Combustion Cylinder 14 Heat Exchange Cylinder 15 Communication Channel 16 Straightening Plate 17 Straightening Cylinder 18 Outer Frame 19 Combustion Chamber 20 Chimney Connection Port 21 Suspension Tool 22 Lid 23 Handle 24 Insulation Material

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バーナ(11)を燃焼室(19)の軸方
向上方に取り付けた燃焼筒(13)と燃焼筒(13)を
熱交換部に連絡する連絡路(15)を備えるボイラ本体
において、 該熱交換部は燃焼筒(13)と独立し燃焼筒(13)か
らの燃焼ガスを熱交換させる4個以下の熱交換筒(1
4)から成り、 燃焼筒(13)および熱交換筒(14)の(筒の長さ)
/(筒の径)の値を4から6の範囲内に設定し、 それぞれの熱交換筒(14)内には外側表面螺旋状に
整流板(16)をそのピッチ間隔が燃焼ガスの冷却によ
る体積の減少に対応して小になる如く配設した着脱可能
な整流筒(17)が装着されてなることを特徴とするボ
イラ本体構造。
1. A boiler body comprising a combustion cylinder (13) having a burner (11) mounted axially above a combustion chamber (19) and a communication path (15) for connecting the combustion cylinder (13) to a heat exchange section. The heat exchange section is independent of the combustion tube (13) and heat-exchanges the combustion gas from the combustion tube (13).
4), of the combustion tube (13) and the heat exchange tube (14) (tube length)
/ Set within a range value from 4 to 6 of the (cylindrical diameter), the pitch of the rectifying plate (16) helically on the outer surface of each of the heat exchange tube (14) in the cooling of the combustion gas A boiler main body structure, characterized in that a detachable rectifying cylinder (17) arranged so as to be small in correspondence with a decrease in volume due to is attached.
JP3266821A 1991-09-19 1991-09-19 Boiler body structure Expired - Fee Related JP2506011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3266821A JP2506011B2 (en) 1991-09-19 1991-09-19 Boiler body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3266821A JP2506011B2 (en) 1991-09-19 1991-09-19 Boiler body structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3801087A Division JPS63207949A (en) 1987-02-23 1987-02-23 Structure of boiler body

Publications (2)

Publication Number Publication Date
JPH06323629A JPH06323629A (en) 1994-11-25
JP2506011B2 true JP2506011B2 (en) 1996-06-12

Family

ID=17436134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3266821A Expired - Fee Related JP2506011B2 (en) 1991-09-19 1991-09-19 Boiler body structure

Country Status (1)

Country Link
JP (1) JP2506011B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4718238U (en) * 1971-03-31 1972-10-31
JPS6043845U (en) * 1983-08-25 1985-03-28 松下電工株式会社 hot water boiler
JPS6127053U (en) * 1984-07-19 1986-02-18 東陶機器株式会社 hot water boiler

Also Published As

Publication number Publication date
JPH06323629A (en) 1994-11-25

Similar Documents

Publication Publication Date Title
US20090223655A1 (en) Heat exchanger particularly for thermal generators
EP0005876B1 (en) Hot-water boiler, for instance a central heating boiler, and a metal casting therefor
JPH0642812A (en) Heat exchanger for gas boiler
JP2506011B2 (en) Boiler body structure
CN101922792B (en) Cylindrical heat exchanger
CN2131017Y (en) Boiler
JPH0125520B2 (en)
JPH04132357U (en) Boiler body structure
KR100446883B1 (en) Heat exchanger of gas boiler
JPS63207949A (en) Structure of boiler body
CN2369142Y (en) Oil/gas boiler
CN201764660U (en) Cylindrical heat exchanger
CN216769375U (en) Integrated oil and gas boiler
CN216620748U (en) High-efficiency heat exchanger
CN2407234Y (en) Boiler for steaming or boiling water
CN206176719U (en) High -efficient boiler of energy saving and emission reduction
IE48624B1 (en) Improvements in and relating to boilers
CN2278891Y (en) Spiral fuel oil/gas water heater
JPH08562Y2 (en) Multi-tube once-through boiler
CN2184853Y (en) Double cavity steam boiler
CN111561701A (en) Jacket water-cooling rotary kiln tail
CN2275696Y (en) Double-decked fire grate vertical normal-fire pressureless boiler
JPH0416681B2 (en)
RU2158395C1 (en) Vertical hot-water fire-tube boiler
JPH0619202B2 (en) Pulse combustion boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees