JPS6039921B2 - Spiral water tube boiler - Google Patents

Spiral water tube boiler

Info

Publication number
JPS6039921B2
JPS6039921B2 JP57087410A JP8741082A JPS6039921B2 JP S6039921 B2 JPS6039921 B2 JP S6039921B2 JP 57087410 A JP57087410 A JP 57087410A JP 8741082 A JP8741082 A JP 8741082A JP S6039921 B2 JPS6039921 B2 JP S6039921B2
Authority
JP
Japan
Prior art keywords
boiler
heat transfer
water tube
tube boiler
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57087410A
Other languages
Japanese (ja)
Other versions
JPS58205003A (en
Inventor
清孝 向井
孝一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP57087410A priority Critical patent/JPS6039921B2/en
Publication of JPS58205003A publication Critical patent/JPS58205003A/en
Publication of JPS6039921B2 publication Critical patent/JPS6039921B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、水管を螺施状に巻き上げて所定の直径の円筒
形として燃焼室を構成し、巻き上げ直径の異る他の円筒
形を燃焼室用円筒形に対して同0円状に配し、もって形
成される直径の異なる円筒形間の環状流路より構成され
る対流伝熱部を構成することより成る螺施式水管ボィラ
の、対流伝熱部分の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a combustion chamber formed by winding up a water pipe into a cylindrical shape with a predetermined diameter, and then winding up another cylindrical shape with a different diameter from the cylindrical shape for the combustion chamber. Relating to improvements in the convection heat transfer part of a screw-on water tube boiler, which comprises a convection heat transfer part composed of annular flow paths between cylinders arranged in the same circular shape and having different diameters. .

第1図に従来の螺施式水管ボィラの棺斑略図を示す。FIG. 1 shows a schematic diagram of a conventional screw-type water tube boiler.

水管は螺施状に巻き上げた内側円筒1と同D円状に配し
た外側円筒2より構成される。
The water pipe is composed of an inner cylinder 1 wound up in a spiral shape and an outer cylinder 2 arranged in the same D-circle shape.

それぞれの円筒の水管と水管は隣接水管同志、全面的に
または部分的に溶接されて互に密着を保ち燃焼ガスが水
管の間から洩れることはない。外側円筒2は、溶接の替
りに、外側ケーシング3に密接して巻き上げられ、この
ケーシングによってガスシールを行うこともある。ボィ
ラ給水は、たとえば外側円筒2の上部から入り、外側円
筒を施回しながら流れ下って、技下端において連絡管4
によって内側円筒へ移る。ボィラ水は内側円筒1を下部
から施回しながら流れ上って最上機から、例えば気水分
磁器(図示していない)へと流れ出て行く。缶水の循環
力は付属ポンプの圧力によって確保される。バーナ5、
内側円筒1の上部に取付られる。
The water pipes of each cylinder are fully or partially welded to the adjacent water pipes to maintain close contact with each other and prevent combustion gas from leaking between the water pipes. Instead of welding, the outer cylinder 2 may also be rolled up tightly onto an outer casing 3, with which gas sealing is provided. For example, the boiler water supply enters from the upper part of the outer cylinder 2, flows down while circulating the outer cylinder, and at the lower end of the connecting pipe 4.
to the inner cylinder. The boiler water flows up the inner cylinder 1 from the lower part and flows out from the uppermost machine to, for example, steam and moisture porcelain (not shown). The circulation power of canned water is ensured by the pressure of the attached pump. burner 5,
It is attached to the upper part of the inner cylinder 1.

内側円筒1の上部は、上部耐火物6によってガスシール
される。外側円筒2の底部は、底部耐火物7によってガ
スシールされる。バーナ5によって内側円筒1の内部を
燃焼室として燃料が燃焼する。
The upper part of the inner cylinder 1 is gas-sealed by an upper refractory 6. The bottom of the outer cylinder 2 is gas-sealed by a bottom refractory 7. Fuel is combusted by the burner 5 using the inside of the inner cylinder 1 as a combustion chamber.

生成した燃焼ガスは燃焼室内を流下し、内側円筒1と外
側円筒2との間の環状流略8を上方へ流れ、上端のガス
ヘッダ部9へ集まり、或る方向に取付られた排気ロー0
より流出していく。このような螺施式水管ボィラは、水
管を比較的容易に構成することができるうえ、ボイラ全
体をコンパクトな形にまとめることが出来るので、強制
貫流ポィラ、強制循環ボィラおよび強制循環熱煤ボィラ
等として多く実用化されており、熱出力10万kcal
/時間〜300方kcal/時間におよぶ。
The generated combustion gas flows down inside the combustion chamber, flows upward through the annular flow 8 between the inner cylinder 1 and the outer cylinder 2, and collects at the gas header section 9 at the upper end, where it flows through the exhaust row 0 attached in a certain direction.
More will flow out. Such a screw-on water tube boiler allows the water tubes to be constructed relatively easily, and the entire boiler can be assembled into a compact form, so it is suitable for forced once-through boilers, forced circulation boilers, forced circulation hot soot boilers, etc. It has been put into practical use in many places, with a heat output of 100,000 kcal.
/ hour to 300 kcal/hour.

この型式のボィラにおける熱の吸収は、大別して、内側
円筒1により構成される燃焼室における燃焼火炎からの
放射伝熱による熱吸収と、内外円筒間1,2の環状流路
における高温燃焼ガスの流略壁面に対する姿触熱伝達に
よる熱吸収との合計となる。燃焼室における放射民熱は
主として、燃焼火炎の大きさ、燃焼室の大きさ、燃競条
件等によって定まる。
Heat absorption in this type of boiler can be roughly divided into heat absorption by radiant heat transfer from the combustion flame in the combustion chamber constituted by the inner cylinder 1, and heat absorption by high-temperature combustion gas in the annular flow path between the inner and outer cylinders 1 and 2. This is the sum of the heat absorption due to tactile heat transfer to the flowing wall surface. The radiated heat in the combustion chamber is determined mainly by the size of the combustion flame, the size of the combustion chamber, combustion competition conditions, etc.

ボィラの設計手法においては燃隣室の大きさは燃焼に必
要な寸法によって決定される。したがって、ボィラにお
ける吸熱の一要素たる燃焼室における吸熱は、ボィラに
使用するバーナ機構によりほぼ一義的に定まってしまい
、菱靖十者が任意に定め得ないものである。現在の通常
の燃焼方式では、燃焼室は1で容積当り50万〜100
万kcal/時間の燃焼量を有する設計とこれらる場合
が多く、燃焼室における吸熱量つまり第1図aの内側円
筒の内周側での吸熱量は、ボィラ全体における吸熱量の
60%〜40%となる。ボィラの残りの必要とされる吸
熱量は40〜60%となる。
In the boiler design method, the size of the combustion chamber is determined by the dimensions required for combustion. Therefore, the heat absorption in the combustion chamber, which is one element of heat absorption in the boiler, is almost uniquely determined by the burner mechanism used in the boiler, and cannot be arbitrarily determined by Yasuju Hishi. In the current normal combustion method, the combustion chamber is 1 and the combustion chamber is 500,000 to 100,000 per volume.
In many cases, the design has a combustion amount of 10,000 kcal/hour, and the amount of heat absorbed in the combustion chamber, that is, the amount of heat absorbed on the inner peripheral side of the inner cylinder in Figure 1 a, is 60% to 40% of the amount of heat absorbed in the entire boiler. %. The remaining required heat absorption of the boiler will be 40-60%.

これらの熱量は第1図の環状流路8を、燃焼ガスが流動
する間に流略を形成する内外円筒1,2の水管面に、い
わゆる接触熱伝達によって吸収されなければならない。
この接触熱伝達により吸熱量は‘1}式によって示され
る。△Q=A×K×△T ………‘11ここ
に、Q:接触熱伝達による吸熱量 kcal
/hA:接触熱伝熱面積 でK
:接触による熱貫流係数 kcal′めh℃△
T:対数平均温度差で‘2}式で定義される ℃ここ
に、灯1:環状流路入口のガス温度 ℃ぬ
2:環状流路出口のガス温度 ℃tw:ボ
ィう水の温度 ℃ある型式のボ
イラに対してtWはボィラの運転条件、t01は主とし
て燃焼室の大きさによって定まってしまう。
These amounts of heat must be absorbed by so-called contact heat transfer into the water tube surfaces of the inner and outer cylinders 1, 2 that form a flow path while the combustion gases flow through the annular flow path 8 of FIG.
The amount of heat absorbed by this contact heat transfer is expressed by the equation '1}. △Q=A×K×△T ………'11 Here, Q: Amount of heat absorbed by contact heat transfer kcal
/hA: Contact heat transfer area K
: Heat transfer coefficient due to contact kcal′ h℃△
T: Logarithmic average temperature difference defined by the formula '2' ℃Here, Lamp 1: Gas temperature at the entrance of the annular flow path ℃2: Gas temperature at the exit of the annular flow path ℃tw: Temperature of the boiling water ℃ For a certain type of boiler, tW is determined by the operating conditions of the boiler, and t01 is determined mainly by the size of the combustion chamber.

Aは燃焼室の大きさによってほぼ定まってしまう値であ
る。Kは環状流路8を流動する高温燃焼ガスの流速によ
ってほぼ定まってしまう値であり、環状流路のスキ間6
を決定すれば一定値となる。tG2はポィラの設計効率
目標に対して設計者が任意に決めたい値であるが、【1
}、■式によって、ボィラの燃焼室の寸法が定まれば、
一義的に決つてしまう。
A is a value that is almost determined by the size of the combustion chamber. K is a value that is almost determined by the flow velocity of the high temperature combustion gas flowing through the annular flow path 8, and the gap 6 of the annular flow path
If it is determined, it becomes a constant value. tG2 is a value that the designer would like to arbitrarily decide on the design efficiency target of POILA, but [1
}, ■If the dimensions of the boiler combustion chamber are determined by the formula,
It is decided uniquely.

虹1を下げてボィラ効率を上げるためには常に接触伝熱
面積Aを大きくするだけでなく、燃選港室も大きくし、
ボイラ全体を不v必要に大きくせざるを得ない。このた
め楊合によって第2図に示すごとく、接舷伝熱部をもう
一遍余分に採用していわゆる3バスボイラとする必要が
生じる。
In order to lower Niji 1 and increase boiler efficiency, it is necessary not only to always increase the contact heat transfer area A, but also to enlarge the combustion port chamber.
This forces the entire boiler to be unnecessarily large. For this reason, as shown in FIG. 2, it becomes necessary to employ an extra side heat transfer section to create a so-called three-bus boiler.

この3パスボィラにおいてもガス遍路2パスから3パス
への折返し部分のガス温度が400〜45ぴ0となると
通常の鋼材をシェルに使用出釆なくなるため、本型式の
ボイラ製作容量には限界が生じ、大容量のものを製作す
ることが出来なくなる。本発明は、螺施式水管ボィラの
上記の欠点を補い、効率よく大容量機種まで製作可能と
するもので以下実施例に基づいて、その構成・作用・効
果について詳述する。
Even in this 3-pass boiler, when the gas temperature at the turning point from 2-pass to 3-pass reaches 400 to 45 psi, normal steel cannot be used for the shell, so there is a limit to the manufacturing capacity of this type of boiler. , it becomes impossible to manufacture large-capacity products. The present invention compensates for the above-mentioned drawbacks of the screw-on water tube boiler and enables efficient manufacture of large-capacity models.The structure, operation, and effects thereof will be described in detail below based on examples.

第3図は、前記螺施式水管ボィラの環状ガス流離をガス
の流れ方向に断面したもので、外・内円筒形を構成する
水管(直径D,,D2)になってなるスキ間6の流路を
ガスが流れる。
Figure 3 is a cross-section of the annular gas flow separation of the screw type water tube boiler in the gas flow direction, showing the gap 6 formed by the water tubes (diameters D, D2) constituting the outer and inner cylinders. Gas flows through the channel.

スキ間の両端は管外面によって構成されるので、ガス流
はスキ間の大きいところを順次流れて、適当な乱流作用
を生じて流れる。このため、スムースな流れに比し対流
熱伝達は多少良好となるが、いわゆる管外直交流程の良
好な値にはならない。第4図は螺施式水管ポィラの環状
流路の熱伝達の促進のための本発明の一実施例である。
Since both ends of the gap are constituted by the outer surface of the tube, the gas flow sequentially flows through the large gap, creating appropriate turbulence. For this reason, convective heat transfer is somewhat better than smooth flow, but it does not reach a value as good as so-called extra-tube cross flow. FIG. 4 is an embodiment of the present invention for promoting heat transfer in the annular channel of a screw-on water tube spoiler.

円筒の表面に直径dの丸棒を、燃焼ガス流れ方向に対し
てある角度8、間隔ピッチPをもって配列する。第4図
aは円筒軸X−Xに平行な面で環状流離を切断した断面
図であり、第4図bはY−Yより内側円筒を視た図面で
ある。熱伝達促進バッフルは水管より成る円筒の外面に
沿って配列してあるため実際にはだ円状に加工され。こ
のように環状流路にバッフルを配列すると、燃焼ガス流
れは、1部分はバッフルに沿うて8だけ流れ角度を変え
、他の1部はバッフルを秦に越えて流れて行く。
Round rods with a diameter d are arranged on the surface of the cylinder at a certain angle 8 with respect to the combustion gas flow direction and at an interval pitch P. FIG. 4a is a sectional view taken along a plane parallel to the cylinder axis X--X, and FIG. 4b is a view of the inner cylinder viewed from Y-Y. The heat transfer promoting baffles are arranged along the outer surface of the cylinder made of water tubes, so they are actually machined into an elliptical shape. By arranging the baffles in the annular channel in this manner, the combustion gas flow changes flow angle by 8 along the baffle in one portion and flows across the baffle in another portion.

流れの前者の成分は、水管よりなる壁面に対するガスの
相対速度を(1/cos8)だけ大きくし、もって熱伝
達率が増大せしめる。他の流れ成分はバッフルを乗り越
えて流れることにより、バツフル後方に渦流を生じ、も
って壁面近傍の流れに乱流を生じ熱伝達を増大しめる。
これら2成分の流体的要素によって第4図の如く作成し
た伝熱面の熱伝達率は著しく向上する。第5図は円筒を
展開した図である。
The former component of the flow increases the relative velocity of the gas to the wall of the water tube by (1/cos8), thereby increasing the heat transfer coefficient. Other flow components flow over the baffle, creating a vortex behind the baffle, thereby creating turbulence in the flow near the wall and increasing heat transfer.
The heat transfer coefficient of the heat transfer surface prepared as shown in FIG. 4 is significantly improved by these two fluid elements. FIG. 5 is an exploded view of the cylinder.

a図は8本の熱伝達促進のバッフルをガス流れ角度に対
して角度aの頃斜をもって配列したものである。この様
な配列でも充分な効果を有するが、更にb図の如くバッ
フルを途中で角度を変えてa′とした場合には、バッフ
ルによる乱流効果が更に大きく熱伝達が更に向上する。
第6図は上記のような熱伝達率促進の基本的な考え方に
もとづいた螺施式水管ボィラの一例である。
Figure a shows eight baffles for promoting heat transfer arranged at an angle a to the gas flow angle. Although such an arrangement has a sufficient effect, if the angle of the baffle is changed midway to form a' as shown in Figure b, the turbulence effect due to the baffle is even greater and heat transfer is further improved.
FIG. 6 is an example of a screw-type water tube boiler based on the basic idea of promoting heat transfer coefficient as described above.

バーナ5によって燃焼生成した燃焼ガスは燃焼室を流下
し、内側円筒1と外側円筒2との間の環状流路8を上方
へ流れる。このとき内側円筒1に取付けられた熱伝達促
進バッフル1 1によって燃焼ガス流から水管の熱伝達
は著しく向上し、燃焼ガスの保有熱は充分にボィラ水に
伝達される。熱伝達促進バッフルの効果の一例として、
バッフルを有しない通常のボィラのバツフルを有する本
発明によるポィラとの比較例を下に記す。このように、
熱伝達促進バッフルを付けることによって、ボィラの排
ガス温度が11000低下し、ボィラ効率を6%向上さ
せることが出来る。500k9/Hボィラの燃料消費量
はA重油で37そ/日であり、6%の効率の向上によっ
て年間5000〜10000その燃料の節約となり、そ
の効果は多大である。
The combustion gas produced by the burner 5 flows down the combustion chamber and upwards in the annular channel 8 between the inner cylinder 1 and the outer cylinder 2. At this time, heat transfer from the combustion gas flow to the water tube is significantly improved by the heat transfer promoting baffle 11 attached to the inner cylinder 1, and the heat retained in the combustion gas is sufficiently transferred to the boiler water. As an example of the effect of heat transfer promoting baffles,
A comparative example of a conventional boiler without a baffle and a boiler according to the invention having a baffle is described below. in this way,
By adding a heat transfer promoting baffle, the boiler exhaust gas temperature can be reduced by 11,000 degrees, and the boiler efficiency can be improved by 6%. The fuel consumption of a 500k9/H boiler is 37 so/day using A heavy oil, and the 6% efficiency improvement results in a fuel savings of 5,000 to 10,000 yen per year, which is a significant effect.

また、上記例より大型のボィラに対するその他の例を下
記する。これは第2図に示す3passボィラの沙as
s部にバッフルを付けた場合と付けない場合との比較で
ある。
Further, other examples for boilers larger than the above example will be described below. This is the 3pass boiler shown in Figure 2.
This is a comparison between a case where a baffle is attached to the s section and a case where a baffle is not attached.

本発明による熱伝達促進のバッフルを用いることにより
、ボイラ効率は6%向上し、多大の燃料節約になる。
By using the heat transfer enhancing baffle of the present invention, boiler efficiency is increased by 6%, resulting in significant fuel savings.

さらに、通常のボィラ設計においては、本ass部から
3pass部への折返し部分の温度が500qCに達し
、通常の鋼材ではポィラ構造物を設計し得なくなり、こ
の型式のボィラが成り立たなくなる。それに比して本発
明の設計では370qoとなるので一般的には鋼材料が
使用出来、もって螺施式水管ボィラの適用範囲を大型ボ
ィラにまで広げることが出来る。
Furthermore, in a normal boiler design, the temperature of the turning section from the main ass section to the 3 pass section reaches 500 qC, making it impossible to design a boiler structure using ordinary steel materials, and this type of boiler no longer works. In comparison, the design of the present invention has a capacity of 370 qo, so generally steel can be used, and the range of application of the screw-on water tube boiler can be expanded to include large boilers.

このように、この発明の効果は顕著である。As described above, the effects of this invention are remarkable.

以上の説明においては、内側円筒の外側にバッフルを付
した例につき述べたが、本発明の効果は外側円筒の内側
に、もしくは内外円筒を共にバッフルを付けた場合にも
その効果は発揮される。第2図の3passにバツフル
を付した場合も同様である。
In the above explanation, an example has been described in which a baffle is attached to the outside of the inner cylinder, but the effects of the present invention are also exhibited when baffles are attached to the inside of the outer cylinder or both the inner and outer cylinders. . The same applies to the case where 3pass in FIG. 2 is marked with a full mark.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の螺施式水管ボィラの一例を示す図でaは
縦断面、bは横断面、第2図は3パス式螺施式水管ボィ
ラの概略図、第3図は環状流路の概念図、第4図は本発
明による熱伝達促進バッフル穣を有する環状流路の概念
図、第5図は環状流略に本発明の熱伝達促進のバッフル
を付けたものの展開図、第6図は本発明による螺施式水
管ボィラを示す図。 1・・・・・・内側円筒、2・…・・外側円筒、3・・
・・・・外側ケーシング、4・・・・・・連絡管、5・
・・・・・バーナ、6・・・…上部耐火物、7…・・・
底部耐火物、8・・・・・・環状流路、9……ガスヘッ
ダー部、10……排気口、I1・・・・・・熱伝達促進
バッフル。 ZI醜く瓜 1図(の 2ト オ3図 /「4l凶似J tくか) 5 ‘01 5一(舷) 」く)
Fig. 1 is a diagram showing an example of a conventional screw-on water tube boiler, where a is a longitudinal section, b is a cross-section, Fig. 2 is a schematic diagram of a 3-pass screw-on water tube boiler, and Fig. 3 is an annular flow path. FIG. 4 is a conceptual diagram of an annular flow path having a baffle for promoting heat transfer according to the present invention, FIG. The figure shows a screw type water tube boiler according to the present invention. 1...Inner cylinder, 2...Outer cylinder, 3...
...Outer casing, 4...Connection pipe, 5.
...Burner, 6...Upper refractory, 7...
Bottom refractory, 8... Annular channel, 9... Gas header section, 10... Exhaust port, I1... Heat transfer promoting baffle. ZI Ugly Melon 1 (2 to 3)

Claims (1)

【特許請求の範囲】[Claims] 1 水管を螺施状に巻き上げて所定の直径の円筒形とし
た水管ボイラにおいて、巻き上げ直径の異なる円筒形間
の環状流路より構成される対流伝熱部分に、燃焼ガス流
れ方向に対してある角度をもつて配列した、丸棒または
角棒よりなりその外径または高さが環状流路の巾より小
なるバツフルを有することを特徴とする螺施式水管ボイ
ラ。
1 In a water tube boiler that winds up water tubes in a spiral shape to form a cylinder with a predetermined diameter, a convection heat transfer section consisting of an annular flow path between cylinders with different wound diameters is located in the direction of combustion gas flow. A screw-on water tube boiler characterized in that it is made of round or square rods arranged at an angle and has a buttful whose outer diameter or height is smaller than the width of the annular flow path.
JP57087410A 1982-05-24 1982-05-24 Spiral water tube boiler Expired JPS6039921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57087410A JPS6039921B2 (en) 1982-05-24 1982-05-24 Spiral water tube boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57087410A JPS6039921B2 (en) 1982-05-24 1982-05-24 Spiral water tube boiler

Publications (2)

Publication Number Publication Date
JPS58205003A JPS58205003A (en) 1983-11-29
JPS6039921B2 true JPS6039921B2 (en) 1985-09-09

Family

ID=13914102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57087410A Expired JPS6039921B2 (en) 1982-05-24 1982-05-24 Spiral water tube boiler

Country Status (1)

Country Link
JP (1) JPS6039921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501103A (en) * 2014-10-30 2018-01-18 スティーム イー ホールディングス リミテッド Liquid dispensing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063284B2 (en) * 1984-09-21 1994-01-12 バブコツク日立株式会社 Once-through boiler
JPS61256101A (en) * 1985-05-08 1986-11-13 株式会社 タクマ Spiral type water-tube boiler
JP2012141102A (en) * 2010-12-29 2012-07-26 Naigai Special Eng Co Ltd Heated steam generating apparatus
WO2018180462A1 (en) * 2017-03-30 2018-10-04 日本ゼオン株式会社 Modified hydrocarbon resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229642B2 (en) * 1972-05-18 1977-08-03

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229642U (en) * 1975-08-23 1977-03-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229642B2 (en) * 1972-05-18 1977-08-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501103A (en) * 2014-10-30 2018-01-18 スティーム イー ホールディングス リミテッド Liquid dispensing device
JP2020124713A (en) * 2014-10-30 2020-08-20 スティーム イー ホールディングス リミテッド Liquid dispensing apparatus

Also Published As

Publication number Publication date
JPS58205003A (en) 1983-11-29

Similar Documents

Publication Publication Date Title
EP1800068B1 (en) Heat exchanger for common use for boiler and hot water supply
KR101956378B1 (en) Heat exchanger tube and heating boiler having such a heat exchanger tube
US7686072B2 (en) Heat exchanger and methods of producing the same
US8028746B2 (en) Heat exchanger with finned tube and method of producing the same
EP1750069B1 (en) Heat exchanger and methods of producing the same
CN100567813C (en) Steam generator, relevant manufacture method and continuous steam generator
RU2139472C1 (en) Straight-through steam generator (versions)
RU2075690C1 (en) Flow-through steam generator
KR950002487B1 (en) Heat exchanger for gas boiler
US10119723B2 (en) Heat exchanger, in particular for a condensation boiler
US4621592A (en) Boiler having improved heat absorption
JPS6039921B2 (en) Spiral water tube boiler
CN214664323U (en) Steam generator
JP3568300B2 (en) Water tube boiler
CN217654341U (en) Heat exchanger
KR20230048599A (en) A tube winding for a gas heat exchange cell for a boiler
JPS599401A (en) Boiler
RU2000518C1 (en) Air heater
JPH08247684A (en) Heat exchanger
KR970001742Y1 (en) Multi-tube type boiler
JP2002048302A (en) Boiler having horizontal heat absorbing fins in combustion heat passage
RU2206022C1 (en) Fire-tube flue boiler
JPS5930961B2 (en) boiler
KR20040017452A (en) A heat exchanger for hot-water boiler
JPH1130401A (en) Boiler having fin for heat absorption crossing combustion gas flow