JPH06318785A - Manufacturing method of multilayered-wiring board - Google Patents

Manufacturing method of multilayered-wiring board

Info

Publication number
JPH06318785A
JPH06318785A JP10646893A JP10646893A JPH06318785A JP H06318785 A JPH06318785 A JP H06318785A JP 10646893 A JP10646893 A JP 10646893A JP 10646893 A JP10646893 A JP 10646893A JP H06318785 A JPH06318785 A JP H06318785A
Authority
JP
Japan
Prior art keywords
adhesive
wiring
wiring board
wiring pattern
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10646893A
Other languages
Japanese (ja)
Inventor
Isao Tsukagoshi
功 塚越
Mitsugi Fujinawa
貢 藤縄
Tomohisa Ota
共久 太田
Yutaka Yamaguchi
豊 山口
Haruo Ogino
晴夫 荻野
Yoshiya Nozaki
義哉 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10646893A priority Critical patent/JPH06318785A/en
Publication of JPH06318785A publication Critical patent/JPH06318785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To minimize the positional slippage of wiring substrates when a high liquid bonding agent layer is provided between wiring substrates and then the wiring substrates are pressurized to bring wiring patterns into contact with one another for electrically connecting the interlayer parts. CONSTITUTION:A bonding agent layer 6 is formed between wiring substrates 1, 1 having wiring patterns 2 protruded from at least one of the opposite parts requiring of interlayer connection and after making alignment of the wiring patterns requiring of the connection with one another, the bonding agent is locally set for fixing the opposite wiring boards to be thermal pressurized and integrated with one another later.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層配線板の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer wiring board.

【0002】[0002]

【従来の技術】多層配線板は、信号回路、電源、アース
回路などを内蔵できることから、配線の高密度化の有効
な方法として種々の電子機器に多用されている。
2. Description of the Related Art Since a multilayer wiring board can contain a signal circuit, a power supply, a ground circuit, etc., it is widely used in various electronic devices as an effective method for increasing the wiring density.

【0003】多層印刷配線板の新しい製造方法として、
本発明者らは、両面配線基板の間に導電粒子と接着剤よ
りなる加圧方向に導電性を有する接着剤層を形成し、加
熱加圧により積層一体化し、配線パターン間の電気的接
続と多層接着を同時に得る多層配線板の製造方法を提案
した(平成4年特許願第300756号及び平成4年特
許願第305942号参照)。また、加圧方向に導電性
を有さない通常の接着剤を用いて、接続すべき配線パタ
ーンを直接接触させて、同様な多層配線板を得る方法も
提案した(平成4年特許願第300940号参照)。
As a new method of manufacturing a multilayer printed wiring board,
The inventors of the present invention form an adhesive layer composed of conductive particles and an adhesive having conductivity in a pressing direction between double-sided wiring boards, and laminate the layers by heat and pressure to electrically connect wiring patterns. A method for manufacturing a multilayer wiring board that simultaneously obtains multilayer adhesion has been proposed (see Japanese Patent Application No. 300756 and Japanese Patent Application No. 305942, 1992). In addition, a method has also been proposed in which a similar multilayer wiring board is obtained by directly contacting the wiring patterns to be connected by using an ordinary adhesive having no conductivity in the pressing direction (1992 Patent Application No. 300940). No.).

【0004】これらの方法の特徴は、接着剤として従来
多層配線板の製造において、回路基板を接着するため
に、一般的に用いられていたガラス繊維と接着剤とより
なるいわゆるプリプレグのように、加熱加圧時に自由に
流動しない芯材を用いない点にある。このような芯材を
用いない理由は、加熱加圧による積層一体化時に接着剤
を流動し易くすることで層間接続を要する配線パターン
間の接着剤を排除し、良好な接触を得て電気的接続を得
やすくするためである。
The characteristics of these methods are that, as in the case of a so-called prepreg made of glass fiber and an adhesive, which is generally used for adhering a circuit board in the manufacture of a multilayer wiring board conventionally used as an adhesive, The point is that a core material that does not flow freely during heating and pressing is not used. The reason why such a core material is not used is that the adhesive between the wiring patterns requiring interlayer connection is eliminated by facilitating the adhesive to flow at the time of lamination and integration by heating and pressurization, and good contact can be obtained to obtain electrical contact. This is to facilitate connection.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
製造方法では、加熱加圧による積層一体化時に、上下の
配線パターン間で位置ずれを生じ易いという問題点があ
る。これは、接着剤中に芯材がないために加熱により溶
融した接着剤の流動に対する抵抗が小さく、加熱加圧に
よる積層一体化時に接着剤の流動とともに基板が移動し
てしまうためである。
However, in such a manufacturing method, there is a problem that a positional shift easily occurs between the upper and lower wiring patterns when the layers are integrated by heating and pressing. This is because there is no core material in the adhesive, so that the resistance to the flow of the adhesive melted by heating is small, and the substrate moves with the flow of the adhesive when the layers are integrated by heating and pressing.

【0006】本発明は、このような課題に鑑みてなされ
たもので、積層一体化時に上下の配線パターン間で位置
ずれが少なく、さらに配線の細線化にも確実に層間接続
可能な多層配線板の製造方法を提供することを目的とす
るものである。
The present invention has been made in view of the above problems, and there is little misalignment between upper and lower wiring patterns at the time of stacking and integration, and moreover, a multilayer wiring board capable of reliable interlayer connection even when wiring is thinned. It is an object of the present invention to provide a manufacturing method of.

【0007】[0007]

【課題を解決するための手段】本発明は、層間接続を要
する対向部分の少なくとも一方が基板面から突出した配
線パターン2を有する配線基板1、1の間に、接着剤層
6を形成し、接続を要する配線パターンを位置合わせ
し、接着剤を局部的に硬化させて対向する配線板を固定
した後、加熱加圧して一体化することを特徴とする。
According to the present invention, an adhesive layer 6 is formed between wiring boards 1 and 1 having a wiring pattern 2 in which at least one of facing portions requiring interlayer connection has a wiring pattern 2 protruding from the substrate surface. It is characterized in that the wiring patterns that require connection are aligned, the adhesive is locally cured to fix the opposing wiring boards, and then they are heated and pressed to be integrated.

【0008】以下、本発明の構成を、図面を参照しなが
ら説明する。図1は、本発明の一実施例を説明する断面
模式図であり、(a)は材料の構成を示し、(b)は接
続を要する配線パターンを位置合わせし、接着剤を局部
的に硬化させた状態を示し、(c)は完成状態を示す。
The structure of the present invention will be described below with reference to the drawings. 1A and 1B are schematic cross-sectional views illustrating an embodiment of the present invention, in which FIG. 1A shows a material configuration, FIG. 1B shows a wiring pattern that requires connection, and an adhesive is locally cured. The completed state is shown, and (c) shows the completed state.

【0009】配線基板1は、フェノール樹脂、エポキシ
樹脂、ポリイミド樹脂などを、紙、ガラス布、ガラス不
織布などの基材に含浸し加熱加圧したものや、ポリエス
テルやポリイミドなどのプラスチックフィルム、アルミ
ニウムや鉄などの金属に絶縁処理したもの、セラミック
などの表面に配線パターンを形成したものである。配線
パターンは、配線基板1の両面に形成するが、多層配線
板を構成したときの最外層については、片面でもよい。
配線パターンは、図1のように層間接続を要する対向部
分の両方が基板面から突出しているのが好ましい。ただ
し、少なくとも一方が基板面から突出し積層時の加圧が
可能であれば、他の一方は平面状や凹面状などいずれで
もよい。
The wiring board 1 is obtained by impregnating a base material such as paper, glass cloth, glass non-woven cloth with a phenol resin, an epoxy resin, a polyimide resin or the like and heating and pressing it, a plastic film such as polyester or polyimide, aluminum or the like. It is made of metal such as iron that has been subjected to insulation treatment, or has a wiring pattern formed on the surface of ceramic or the like. The wiring pattern is formed on both sides of the wiring board 1, but the outermost layer of the multilayer wiring board may be formed on one side.
As for the wiring pattern, it is preferable that both opposing portions that require interlayer connection project from the substrate surface as shown in FIG. However, as long as at least one protrudes from the substrate surface and pressure can be applied during lamination, the other one may have a planar shape or a concave shape.

【0010】配線パターンの突出部はスルーホールラン
ドでもよい。これらの配線パターンは、テンティング
法、アディティブ法又は転写法などの一般手段で形成で
きる。配線基板1と配線パターン2の間に接着層が存在
してもよい。また接続不要パターン5が存在してもよ
い。配線パターンの表面は、砥粒などによる機械粗化や
過硫酸ナトリウムなどによる化学粗化などの粗化処理を
行うことが、良好な電極接触や接着力が得られ好まし
い。
The protruding portion of the wiring pattern may be a through hole land. These wiring patterns can be formed by a general method such as a tenting method, an additive method, or a transfer method. An adhesive layer may be present between the wiring board 1 and the wiring pattern 2. Further, the connection unnecessary pattern 5 may be present. The surface of the wiring pattern is preferably subjected to a roughening treatment such as mechanical roughening with abrasive grains or chemical roughening with sodium persulfate or the like, because good electrode contact and adhesive force can be obtained.

【0011】次に、接着剤層6について説明する。接着
剤としては、熱、光、電子線などのエネルギーによる硬
化する性硬化性材料が使用される。中でもエポキシ系接
着剤やイミド系接着剤は、分子構造上接着性や耐熱性に
優れることや硬化時間が広く設定できることから好まし
い。接着剤の形態は、液状、ペースト状、フィルム状な
どのいずれでもよい。フィルム状の接着剤は、一定の厚
みが得られ塗布作業も不要であり便宜である。
Next, the adhesive layer 6 will be described. As the adhesive, a curable material that is cured by energy such as heat, light or electron beam is used. Of these, epoxy-based adhesives and imide-based adhesives are preferable because they have excellent adhesiveness and heat resistance due to their molecular structure and can set a wide curing time. The form of the adhesive may be liquid, paste, film or the like. The film-like adhesive is convenient because it has a constant thickness and does not require a coating operation.

【0012】エポキシ系接着剤は、例えば高分子量エポ
キシ樹脂、固形エポキシ樹脂、液状エポキシ樹脂、ウレ
タン、ポリエステル、フェノキシ、ニトリルゴムなどで
変性したエポキシ樹脂を主成分とし、硬化剤及び触媒、
カップリング剤、充填剤などを添加してなるものが一般
的である。これらの材料は、耐電食性を考慮すると、抽
出水のNa+やCI-が20ppm以下の高純度品である
のが望ましい。
The epoxy adhesive is mainly composed of, for example, a high molecular weight epoxy resin, a solid epoxy resin, a liquid epoxy resin, an epoxy resin modified with urethane, polyester, phenoxy, nitrile rubber, etc., and a curing agent and a catalyst,
It is common to add a coupling agent, a filler and the like. Considering electrolytic corrosion resistance, it is desirable that these materials are high-purity products in which Na + and CI of the extracted water are 20 ppm or less.

【0013】接着剤中に、導電粒子を含有すると電気的
接続がより確実になる。接着剤中に導電粒子を含有する
場合の形態としては、分散型(平成4年特許願第300
942号参照)、要部に配置型(平成4年特許願第30
5756号参照)がある。
When conductive particles are contained in the adhesive, the electrical connection becomes more reliable. As a form in which the conductive particles are contained in the adhesive, a dispersion type (1992 Patent Application No. 300
942), a placement type in the main part (Patent application No. 30 of 1992)
No. 5756).

【0014】接着剤が導電粒子を含有する場合の導電粒
子としては、金、銀、ニッケル、銅、タングステン、ア
ンチモン、すず、はんだなどの金属粒子、カーボン粒子
などがあり、これら及び非導電性のガラス、セラミック
ス、プラスチックなどの高分子核材料などに、前記した
導電層を被覆などにより形成したものでもよい。さらに
前記したような導電粒子を絶縁層で被覆してなり加圧方
向に導電性を有する絶縁被覆粒子や、導電粒子と絶縁粒
子の併用なども、回路の細線化に極めて有用である。こ
れら導電粒子の単粒子径の最大は、隣接配線パターン間
距離の最小幅よりも小さいことが、隣接配線パターンと
のショートを防止し配線の細線化に対応する上で必要で
ある。導電粒子は、加熱加圧もしくは加圧により変形す
るものであると、積層時に回路との接触面積が増加し信
頼性が向上するので好ましい。変形性を有する導電粒子
としては、高分子核材の表面に導電層を有する被覆粒子
や、導電粒子が凝集体を形成し加圧時に凝集状態を変え
るもの、はんだなどの低融点金属類がある。これらの粒
子は、積層時の加熱加圧により変形性を有するので、配
線板や配線パターンの厚みや平坦性のばらつき、あるい
は配線パターンが基板面から突出した配線パターンと突
出していない配線パターンとが混在している場合などに
対応し易い。
When the adhesive contains conductive particles, the conductive particles include metal particles such as gold, silver, nickel, copper, tungsten, antimony, tin and solder, and carbon particles, which are non-conductive. A polymer core material such as glass, ceramics, plastic, etc., which is formed by coating the above-mentioned conductive layer may be used. Furthermore, insulating coated particles which are formed by coating the above-mentioned conductive particles with an insulating layer and have conductivity in the pressing direction, and the combined use of conductive particles and insulating particles are also very useful for thinning the circuit. It is necessary that the maximum single particle diameter of these conductive particles is smaller than the minimum width of the distance between the adjacent wiring patterns in order to prevent short circuit with the adjacent wiring patterns and to cope with thinning of the wiring. It is preferable that the conductive particles are those which are heated and pressed or deformed by pressing because the contact area with the circuit is increased during lamination and the reliability is improved. Examples of the conductive particles having deformability include coated particles having a conductive layer on the surface of the polymer core material, particles in which the conductive particles form an aggregate and change the aggregate state when pressurized, and low melting point metals such as solder. . Since these particles have deformability due to heating and pressurization during lamination, there are variations in the thickness and flatness of the wiring board and the wiring pattern, or the wiring pattern in which the wiring pattern protrudes from the substrate surface and the wiring pattern that does not protrude. It is easy to handle when mixed.

【0015】導電粒子を含有しない接着剤には、例えば
ガラス繊維などの非導電性で5μm以上と粒径の大きな
芯材を用いないことが良好な電気的接続を得るために必
要である。導電粒子を含有する場合にもこのような芯材
を用いないことが好ましく、用いたとしても導電粒子の
粒径以下とすることや、アスペクト比(長/短径の比)
を、好ましくは、10以下とするなどの注意が必要であ
る。
For the adhesive containing no conductive particles, it is necessary to use a non-conductive core material having a large particle diameter of 5 μm or more, such as glass fiber, in order to obtain good electrical connection. Even when the conductive particles are contained, it is preferable not to use such a core material, and even if it is used, the particle size should be equal to or smaller than the particle diameter of the conductive particles, and the aspect ratio (ratio of major / minor axis).
Should be set to 10 or less.

【0016】積層一体化に際しては、配線基板及び接着
剤を用意し(図1(a)参照)、配線基板に少なくとも
基板面から突出した配線パターンを有する第一の配線基
板3及び第二の配線基板4の間に、接着剤層6を置き、
配線パターン面の接続を必要とする部分の位置合わせを
しながら、あるいは位置合わせ後に、一部を接着固定す
る(図1(b)参照)。
When the layers are integrated, a wiring board and an adhesive are prepared (see FIG. 1A), and the wiring board has a wiring pattern protruding at least from the board surface. Place the adhesive layer 6 between the substrates 4,
A part of the wiring pattern surface is bonded and fixed while the position of the part requiring connection is adjusted or after the position is adjusted (see FIG. 1B).

【0017】位置合わせの方法としては、積層を必要と
する所定枚の配線板に例えば貫通孔を形成しておきピン
などで位置合わせするいわゆるピンラミネーション法、
接着剤が有する粘着性で位置合わせするなどの方法があ
る。接着固定に際しては、加熱加圧、電子線、光、超音
波、電磁誘導などが採用でき、短時間で固定もしくは硬
化可能な方法によることが作業性が向上し好ましい。ま
た、接着固定後の接着剤耐熱性は、次工程の積層一体化
における加熱加圧に位置ずれを生じないような考慮を要
する。
As the alignment method, a so-called pin lamination method is used in which through holes are formed in a predetermined number of wiring boards that require lamination and alignment is performed with pins or the like.
There is a method of aligning with the adhesiveness of the adhesive. Upon adhesion and fixing, heat and pressure, electron beam, light, ultrasonic waves, electromagnetic induction, etc. can be adopted, and a method capable of fixing or curing in a short time improves workability and is preferable. Further, the heat resistance of the adhesive after adhesion and fixing needs to be considered so that the heating and pressing in the laminated integration in the next step does not cause a positional deviation.

【0018】接着固定部8は、図2に示すような形があ
る。(a)は周辺部7を帯状に接着固定したもの、
(b)及び(c)は四隅を接着固定したもの、(d)は
配線パターン部9内の一部を点状やスポット状に接着固
定したものである。いずれにしても、接着剤層6は、全
面に形成しその一部を固定する。そうすることにより、
配線パターン部9と周辺部7とを同一の接着材料とする
ことができ、接着剤層6を同時に形成できるので、作業
性が良好で接着面積が大きくなるから位置ずれ防止に好
適である。
The adhesive fixing portion 8 has a shape as shown in FIG. (A) is a belt-shaped peripheral portion 7 that is adhesively fixed,
(B) and (c) are those in which the four corners are adhesively fixed, and (d) are those in which a part of the wiring pattern portion 9 is adhesively fixed in a dot shape or a spot shape. In any case, the adhesive layer 6 is formed on the entire surface and a part thereof is fixed. By doing so,
Since the wiring pattern portion 9 and the peripheral portion 7 can be made of the same adhesive material and the adhesive layer 6 can be formed at the same time, the workability is good and the adhesion area is large, which is suitable for preventing the positional displacement.

【0019】以上のようして構成材料を局部的に接着固
定した後、配線パターン部9を含む全体を加熱加圧して
積層一体化する。一体化の方法としては、プレスやロー
ルラミネータなどの一般的な方法でよい。この層を任意
に積層することや多層配線板を積層することで任意層数
の多層配線板とすることができる。接着剤の最適充填量
は接着剤の厚みで管理する。この後、必要に応じて接着
固定に用いた周辺部を除去して完成品とする(図1
(c)参照)。
After the constituent materials are locally adhered and fixed as described above, the whole including the wiring pattern portion 9 is heated and pressed to be laminated and integrated. As an integration method, a general method such as a press or a roll laminator may be used. It is possible to obtain a multilayer wiring board having an arbitrary number of layers by arbitrarily laminating this layer or laminating multilayer wiring boards. The optimum filling amount of the adhesive is controlled by the thickness of the adhesive. After that, the peripheral portion used for adhesive fixing is removed as necessary to obtain a finished product (Fig. 1).
(See (c)).

【0020】必要により、貫通孔を導電性接着剤で充填
し又はスルーホールめっきすることで、全層間を電気的
接続に接続する。
If necessary, the through holes are filled with a conductive adhesive or plated with through holes to connect all layers to electrical connection.

【0021】[0021]

【作用】本発明によれば、配線パターンを位置合わせし
一部を接着固定するので、次工程の積層一体化における
加熱加圧時に接着剤が溶融流動しても、上下の配線パタ
ーンは相互に固定されており、位置ずれしない。
According to the present invention, since the wiring patterns are aligned and a part thereof is adhered and fixed, even if the adhesive melts and flows at the time of heating and pressurizing in the laminated integration of the next step, the upper and lower wiring patterns are mutually connected. It is fixed and does not move.

【0022】[0022]

【実施例】【Example】

配線基板Aの準備 厚み50μmのポリイミドフィルムの両面に厚み10μ
mの接着剤を介して厚み18μmの銅はく接着した両面
基板に、エッチング法で配線パターンを形成した。過硫
酸アンモニウム水溶液(濃度100g/l)に、配線パ
ターン面を3分間浸漬して粗化した。接続を必要とする
配線パターンの最小径は、50μmである。配線パター
ンは300mm角内に形成され、その4辺の周辺に、1
5mmの配線パターンが形成されていない部分を有す
る。
Preparation of wiring board A 10 μm thick on both sides of a 50 μm thick polyimide film
A wiring pattern was formed by an etching method on a double-sided substrate bonded with copper foil having a thickness of 18 μm via an adhesive of m. The wiring pattern surface was immersed in an ammonium persulfate aqueous solution (concentration: 100 g / l) for 3 minutes for roughening. The minimum diameter of the wiring pattern that requires connection is 50 μm. The wiring pattern is formed within a 300 mm square, and 1 is formed around the four sides.
It has a portion in which a 5 mm wiring pattern is not formed.

【0023】実施例1 高分子量エポキシ樹脂に、架橋ポリスチレンからなる核
材の表面にNi/Auの複合導電層を有する粒径10μ
mのめっきプラスチック球を2体積%混合して接着剤を
得た。この接着剤を厚み50μmのポリテトラフルオロ
エチレンフィルム上に、厚み30μmになるように塗布
し、接着フィルムを得た。接着剤を、100℃の純水で
10時間抽出したとき、抽出水のNa+、Cl-がそれぞ
れ10ppm以下である。
Example 1 Particle size 10 μ having a high molecular weight epoxy resin and a Ni / Au composite conductive layer on the surface of a core material made of crosslinked polystyrene
An adhesive was obtained by mixing 2% by volume of the plated plastic balls of m. This adhesive was applied on a polytetrafluoroethylene film having a thickness of 50 μm so as to have a thickness of 30 μm to obtain an adhesive film. When the adhesive is extracted with pure water at 100 ° C. for 10 hours, Na + and Cl of the extracted water are each 10 ppm or less.

【0024】配線基板Aの一方の接続を必要とする配線
パターン上に接着フィルムを載せ、70℃のゴムロール
間を通過させた後ポリテトラフルオロエチレンフィルム
を剥離し、他の配線基板の接続を必要とする配線パター
ンを位置合わせして重ねた。接着フィルムの有するタッ
クにより位置合わせ後の仮固定が可能であった。
An adhesive film is placed on one of the wiring patterns of the wiring board A which requires connection, and the polytetrafluoroethylene film is peeled off after passing between rubber rolls at 70 ° C., and the other wiring board needs to be connected. The wiring patterns to be aligned are aligned and overlapped. The tack of the adhesive film allowed temporary fixing after alignment.

【0025】次に、配線パターンが形成されていない4
辺端部を、幅5mmのヘッドを用いて180℃、0.5
MPaで30秒加熱加圧して接着剤を硬化し両配線板を
固定した。その後、150℃、2MPaで30分加熱加
圧して配線パターン形成部の接着剤を硬化して層間回路
が電気的に接続された多層配線板を得た。
Next, 4 in which no wiring pattern is formed
The edge part is 180 ° C, 0.5 using a head with a width of 5 mm.
Both wiring boards were fixed by heating and pressing at 30 MPa for 30 seconds to cure the adhesive. Then, the adhesive in the wiring pattern forming portion was cured by heating and pressing at 150 ° C. and 2 MPa for 30 minutes to obtain a multilayer wiring board in which interlayer circuits were electrically connected.

【0026】実施例2 高分子量エポキシ樹脂に、単粒子径2μm、平均凝集粒
径20μmのカーボニルニッケル粒子を2体積%混合し
て接着剤を得た。この接着剤を厚み50μmのポリテト
ラフルオロエチレンフィルム上に、厚み30μmになる
ように塗布し、接着フィルムを得た。以下実施例1と同
様にして多層配線板を得た。
Example 2 An adhesive was obtained by mixing 2% by volume of carbonyl nickel particles having a single particle diameter of 2 μm and an average aggregate particle diameter of 20 μm with a high molecular weight epoxy resin. This adhesive was applied on a polytetrafluoroethylene film having a thickness of 50 μm so as to have a thickness of 30 μm to obtain an adhesive film. Thereafter, a multilayer wiring board was obtained in the same manner as in Example 1.

【0027】実施例3 高分子量エポキシ樹脂に、粒径3μmのめっきプラスチ
ック球の粒子表面を厚み約0.2μmのナイロンで被覆
した絶縁被覆粒子を2体積%混合して接着剤を得た。こ
の接着剤を厚み50μmのポリテトラフルオロエチレン
フィルム上に、厚み30μmになるように塗布し、接着
フィルムを得た。以下実施例1と同様にして多層配線板
を得た。
Example 3 An adhesive was obtained by mixing 2% by volume of insulating coated particles obtained by coating the surface of particles of plated plastic spheres having a particle size of 3 μm with nylon having a thickness of about 0.2 μm in a high molecular weight epoxy resin. This adhesive was applied on a polytetrafluoroethylene film having a thickness of 50 μm so as to have a thickness of 30 μm to obtain an adhesive film. Thereafter, a multilayer wiring board was obtained in the same manner as in Example 1.

【0028】実施例4 高分子量エポキシ樹脂を主成分とする接着剤を厚み50
μmのポリテトラフルオロエチレンフィルム上に、厚み
30μmになるように塗布し、接着フィルムを得た。以
下実施例1と同様にして多層配線板を得た。
Example 4 An adhesive containing a high molecular weight epoxy resin as a main component was applied to a thickness of 50.
A polytetrafluoroethylene film having a thickness of 30 μm was applied onto the film to obtain an adhesive film. Thereafter, a multilayer wiring board was obtained in the same manner as in Example 1.

【0029】比較例1 配線基板Aの一方の接続を必要とする配線パターン上
に、実施例1と同じ接着フィルムを載せ、70℃のゴム
ロール間を通過させた後ポリテトラフルオロエチレンフ
ィルムを剥離し、他の配線板の接続を必要とする配線パ
ターンを位置合わせして重ねた。接着フィルムの有する
タックにより位置合わせ後の仮固定が可能であった。こ
の状態で150℃、2MPaで30分加熱加圧して配線
パターン形成部の接着剤を硬化して層間回路が電気的に
接続された多層配線板を得た。
Comparative Example 1 The same adhesive film as in Example 1 was placed on a wiring pattern of the wiring board A which requires connection, and the polytetrafluoroethylene film was peeled off after passing between 70 ° C. rubber rolls. , Wiring patterns that require connection of other wiring boards were aligned and stacked. The tack of the adhesive film allowed temporary fixing after alignment. In this state, the adhesive in the wiring pattern forming portion was cured by heating and pressing at 150 ° C. and 2 MPa for 30 minutes to obtain a multilayer wiring board in which interlayer circuits were electrically connected.

【0030】実施例5 厚み0.4mmのガラスエポキシ基板の両面に厚み10
μmの接着剤を介して厚み35μmを銅はくを接着して
両面基板を得た。この両面基板を、配線基板Aと同様に
加工して配線基板Bを得た。接続を必要とする配線パタ
ーンの最小径は100μmであった。以下、実施例1の
接着フィルムを用いて、実施例1と同様にして、層間接
続した4層配線板を得た。
Example 5 A glass epoxy substrate having a thickness of 0.4 mm was provided with a thickness of 10 on both sides.
A double-sided board was obtained by adhering a copper foil with a thickness of 35 μm through an adhesive of μm. This double-sided board was processed in the same manner as the wiring board A to obtain a wiring board B. The minimum diameter of the wiring pattern requiring connection was 100 μm. Hereinafter, using the adhesive film of Example 1, an interlayer-connected four-layer wiring board was obtained in the same manner as in Example 1.

【0031】比較例2 配線基板Bを、厚み0.2mmのガラス布エポキシ樹脂
プリプレグ(GE−67N、日立化成工業株式会社商品
名)で多層化接着した。
Comparative Example 2 A wiring board B was laminated and laminated with a 0.2 mm thick glass cloth epoxy resin prepreg (GE-67N, trade name of Hitachi Chemical Co., Ltd.).

【0032】接続を必要とする上下配線パターンの最大
位置ずれ量をX線検査装置により測定した。またその部
分の接続抵抗を測定した。これらの結果を表1に示し
た。
The maximum displacement of the upper and lower wiring patterns requiring connection was measured by an X-ray inspection device. Also, the connection resistance at that portion was measured. The results are shown in Table 1.

【0033】表1から、実施例1〜5はいずれも位置ず
れ量が少なくかつ十分な層間接続特性があることがわか
る。この理由として実施例1〜5の硬化後の接着剤のガ
ラス転移点は165℃(接着剤を200℃10分気中で
加熱し、粘弾性測定装置(レオスペクトラDVE−V
4、レオロジ株式会社製商品名)を用いて、引っ張りモ
ード、10Hz、5℃/分によるtanδのピーク温
度)であり、積層一体化温度150℃に比べ接着剤のガ
ラス転移点が高いためと考えられる。
It can be seen from Table 1 that Examples 1 to 5 all have a small amount of misalignment and have sufficient interlayer connection characteristics. For this reason, the glass transition points of the adhesives of Examples 1 to 5 after curing were 165 ° C. (the adhesive was heated in air at 200 ° C. for 10 minutes, and a viscoelasticity measuring device (Rheospectra DVE-V was used.
4, Rheology Co., Ltd.), tensile mode, 10 Hz, peak temperature of tan δ at 5 ° C./min), and it is considered that the glass transition point of the adhesive is higher than the lamination integration temperature of 150 ° C. To be

【0034】実施例1においては、めっきプラスチック
球が適度に変形し配線パターンとの接触面積が増加し、
実施例2は凝集状態が変化することで対向する配線パタ
ーンの最小部の距離が単粒子径相当の2μmに制御され
配線パターンとの接触個数が増加した。実施例3では小
粒径のため凝集していたが、加圧方向のみに導電性が得
られ、凝集粒径が隣接配線パターン間の距離より大きな
部分でも絶縁性が保持された。
In Example 1, the plated plastic balls were appropriately deformed to increase the contact area with the wiring pattern,
In Example 2, the distance between the minimum portions of the opposing wiring patterns was controlled to 2 μm corresponding to the single particle diameter due to the change in the aggregation state, and the number of contacts with the wiring patterns increased. In Example 3, the particles were aggregated due to the small particle size, but conductivity was obtained only in the pressing direction, and the insulating property was maintained even in the portion where the aggregated particle size was larger than the distance between the adjacent wiring patterns.

【0035】実施例4は配線パターン間の直接接触によ
り層間の電気的接続が得られた。実施例4の場合パター
ン面の粗化による凹凸(JIS平均粗さ1.8μm)形
成が接触に有効に作用した。
In Example 4, electrical connection between layers was obtained by direct contact between wiring patterns. In the case of Example 4, formation of irregularities (JIS average roughness 1.8 μm) due to roughening of the pattern surface effectively acted on the contact.

【0036】以上の実施例1〜3の導電粒子系は実施例
4に比べ位置ずれ量がさらに少ない理由として、位置合
わせ後の固定における加熱加圧時に粒子がスペーサとし
て作用し一定厚みの接着層を形成したためと考えられ
る。
The reason why the conductive particle systems of Examples 1 to 3 described above have a smaller amount of misalignment than that of Example 4 is that the particles act as spacers during heating and pressurization during fixing after alignment, and the adhesive layer having a constant thickness is formed. It is thought that this is due to the formation of

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】以上のように本発明によれば、積層一体
化時に上下の配線パターン間での位置ずれが少なく、さ
らに配線の細線化にも対応可能な層間接続を用いた多層
配線板の製造方法を提供できる。
As described above, according to the present invention, there is little misalignment between upper and lower wiring patterns at the time of stacking and integration, and a multilayer wiring board using an interlayer connection capable of dealing with wiring thinning is also provided. A manufacturing method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明する断面模式図であ
り、(a)は材料の構成を示し、(b)は接続を要する
配線パターンを位置合わせし、接着剤を局部的に硬化さ
せた状態を示し、(c)は完成状態を示す。
FIG. 1 is a schematic cross-sectional view illustrating an embodiment of the present invention, in which (a) shows a constitution of materials, (b) aligns a wiring pattern requiring connection, and locally cures an adhesive. The completed state is shown, and (c) shows the completed state.

【図2】本発明の製法に関する接着固定を例示した平面
模式図である。
FIG. 2 is a schematic plan view illustrating an example of adhesive fixing relating to the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 配線基板 2 基板面から突出した配線パターン 3 第一の配線基板 4 第二の配線基板 5 接続不要配線パターン 6 接着剤層 7 周辺部 8 接着固定部 9 配線パターン部 DESCRIPTION OF SYMBOLS 1 Wiring board 2 Wiring pattern protruding from the board surface 3 First wiring board 4 Second wiring board 5 Connection-free wiring pattern 6 Adhesive layer 7 Peripheral part 8 Adhesive fixing part 9 Wiring pattern part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 豊 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 荻野 晴夫 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内 (72)発明者 野崎 義哉 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Yutaka Yamaguchi 1500 Ogawa, Shimodate, Ibaraki Pref., Shimodate Research Laboratory, Hitachi Chemical Co., Ltd. (72) Haruo Ogino 1500 Ogawa, Shimodate, Ibaraki Hitachi Chemical Co., Ltd. Shimodate Factory (72) Inventor Yoshiya Nozaki Shimodate City, Ibaraki 1500 Ogawa Oita Hitachi Chemical Co., Ltd. Shimodate Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 層間接続を要する対向部分の少なくとも
一方が基板面から突出した配線パターンを有する配線基
板の間に、接着剤層を形成し、接続を要する配線パター
ンを位置合わせし、接着剤を局部的に硬化させて対向す
る配線板を固定した後、加熱加圧して一体化することを
特徴とする多層配線板の製造方法。
1. An adhesive layer is formed between wiring boards having a wiring pattern in which at least one of facing portions that require interlayer connection protrudes from the substrate surface, and the wiring patterns that require connection are aligned to form an adhesive. A method for manufacturing a multilayer wiring board, comprising locally curing and fixing opposing wiring boards, and then heating and pressurizing them to integrate them.
JP10646893A 1993-05-07 1993-05-07 Manufacturing method of multilayered-wiring board Pending JPH06318785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10646893A JPH06318785A (en) 1993-05-07 1993-05-07 Manufacturing method of multilayered-wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10646893A JPH06318785A (en) 1993-05-07 1993-05-07 Manufacturing method of multilayered-wiring board

Publications (1)

Publication Number Publication Date
JPH06318785A true JPH06318785A (en) 1994-11-15

Family

ID=14434382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10646893A Pending JPH06318785A (en) 1993-05-07 1993-05-07 Manufacturing method of multilayered-wiring board

Country Status (1)

Country Link
JP (1) JPH06318785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072644A1 (en) * 1999-05-25 2000-11-30 Mitsui Mining & Smelting Co., Ltd. Sheet for printed wiring board, method of forming via, resin sheet having filled via, printed wiring board and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072644A1 (en) * 1999-05-25 2000-11-30 Mitsui Mining & Smelting Co., Ltd. Sheet for printed wiring board, method of forming via, resin sheet having filled via, printed wiring board and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3961092B2 (en) Composite wiring board, flexible substrate, semiconductor device, and method of manufacturing composite wiring board
JP4279893B2 (en) Manufacturing method of circuit component built-in module
TW383435B (en) Electronic device
US5865934A (en) Method of manufacturing printed wiring boards
WO2007046459A1 (en) Multilayer printed wiring board and its manufacturing method
TWI255001B (en) Metal wiring substrate, semiconductor device and the manufacturing method thereof
JP2009283606A (en) Connection structure of wiring member, and connection method of wiring member
JP4765125B2 (en) Multilayer substrate for forming multilayer printed wiring board and multilayer printed wiring board
JP5077800B2 (en) Manufacturing method of multilayer printed wiring board
JP5024117B2 (en) Circuit member mounting method
TWI412313B (en) Multilayer printing wire board and method for producting the same
JP2000133916A (en) Formation material for wiring pattern transfer, manufacture of formation material for wiring pattern transfer, wiring board using formation material for wiring pattern transfer and manufacture thereof
JPH06318785A (en) Manufacturing method of multilayered-wiring board
JP2002246745A (en) Three-dimensional mounting package and its manufacturing method, and adhesive therefor
JP4045471B2 (en) Electronic component mounting method
JP4223581B2 (en) Multi-chip mounting method
JP2008124029A (en) Connecting member
JP3324660B2 (en) Multilayer wiring board and adhesive film used for it
JP3049972B2 (en) Multilayer wiring board
JP3812741B2 (en) Multilayer wiring board
JP3923224B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3324661B2 (en) Multilayer wiring board
JP2007243223A (en) Electronic component mounting structure
JP2005187547A (en) Resin composition, resin-coated carrier material, and multilayer printed wiring board
JP2005197532A (en) Multilayered circuit board, manufacturing method thereof, and circuit base material