JPH06305718A - Production of alpha-silicon nitride powder - Google Patents

Production of alpha-silicon nitride powder

Info

Publication number
JPH06305718A
JPH06305718A JP5120787A JP12078793A JPH06305718A JP H06305718 A JPH06305718 A JP H06305718A JP 5120787 A JP5120787 A JP 5120787A JP 12078793 A JP12078793 A JP 12078793A JP H06305718 A JPH06305718 A JP H06305718A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
nitride powder
silicon
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5120787A
Other languages
Japanese (ja)
Inventor
Haruyoshi Kuwabara
治由 桑原
Akio Otsuka
昭男 大塚
Toshihiko Shindo
敏彦 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5120787A priority Critical patent/JPH06305718A/en
Publication of JPH06305718A publication Critical patent/JPH06305718A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon

Abstract

PURPOSE:To obtain alpha-silicon nitride powder capable of giving a silicon nitride sintered compact excellent in strength even at high temp. by sintering. CONSTITUTION:Ytterbium oxide preferably having <=1mum particle diameter is added to metallic silicon powder preferably having 3-6mum average particle diameter by 5-20 pts.wt. per 100 pts.wt. of the silicon powder and the silicon powder is nitrided preferably at 1,350-1,500 deg.C for 1-5hr in an atmosphere of gaseous nitrogen or a nitrogen-contg. nonoxidizing gas to produce the objective alpha-silicon nitride powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温においても高強度
を有する焼結体を得ることができるα型窒化ケイ素粉末
を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an α-type silicon nitride powder capable of obtaining a sintered body having high strength even at high temperature.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、窒化ケイ素粉末を焼結して得られる窒化ケイ素粉末
焼結体については、高温強度材料として種々の用途開発
が進められており、高温においても高強度を有する焼結
体を得るために種々の研究が行われている。
2. Description of the Related Art Conventionally, a silicon nitride powder sintered body obtained by sintering silicon nitride powder has been developed for various uses as a high temperature strength material. Various studies have been carried out in order to obtain a sintered body having high strength.

【0003】ここで、焼結体の原料である窒化ケイ素粉
末としては、従来からα化率の高いものが要求されてお
り、金属ケイ素粉末を直接窒化することによってα型窒
化ケイ素粉末を得る方法としては種々の方法が提案され
ているが、特に金属や金属化合物を金属ケイ素粉末に添
加することによって窒化ケイ素の高α化を図る方法が数
多く提案されている。例えば特開昭54−15499号
公報では金属鉄及び鉄化合物、特開昭54−58700
号公報では酸化パラジウム、特開昭54−120298
号公報ではカルシウム化合物、特開昭59−92906
号公報では金属銅及び銅化合物、特開昭61−2590
6号公報ではバナジウム及びバナジウム化合物、特開昭
61−2560号公報ではマンガン及びマンガン化合物
を金属ケイ素粉末の窒化の際に添加する方法が提案され
ている。
Here, as a raw material for a sintered body, a silicon nitride powder having a high α-conversion rate has been conventionally required, and a method of directly nitriding a metal silicon powder to obtain an α-type silicon nitride powder. There have been proposed various methods, and in particular, many methods have been proposed for increasing the α of silicon nitride by adding a metal or a metal compound to the metal silicon powder. For example, JP-A-54-15499 discloses metallic iron and iron compounds, JP-A-54-58700.
Palladium oxide in JP-A-54-120298.
Japanese Patent Laid-Open No. 59-92906 discloses a calcium compound.
Japanese Patent Laid-Open Publication No. 61-2590.
No. 6 discloses a method of adding vanadium and a vanadium compound, and JP-A-61-2560 proposes a method of adding manganese and a manganese compound when nitriding a metal silicon powder.

【0004】しかしながら、上記窒化反応は発熱反応で
あるため、α型窒化ケイ素は高温安定型のβ型窒化ケイ
素に転位し易く、このため窒化時に仕込み得る金属ケイ
素粉末量が制限され、量産性に劣るという問題がある。
また、上記金属ケイ素粉末の窒化の際に添加する添加物
によっては高温での強度にはもちろんのこと、室温での
強度にも悪影響を及ぼす場合があり、このため上記方法
で得られた窒化ケイ素粉末を微粉状に粉砕した後、酸処
理等の化学処理を施すことによって上記添加物を除去す
ることが一般に行われている。
However, since the above-mentioned nitriding reaction is an exothermic reaction, α-type silicon nitride is likely to be transformed into high-temperature stable β-type silicon nitride, which limits the amount of metallic silicon powder that can be charged at the time of nitriding, resulting in mass productivity. There is a problem of being inferior.
In addition, depending on the additive added when nitriding the metal silicon powder, not only the strength at high temperature but also the strength at room temperature may be adversely affected. Therefore, the silicon nitride obtained by the above method It is generally practiced to pulverize the powder into fine powder and then subject the additive to a chemical treatment such as acid treatment to remove the additive.

【0005】一方、窒化ケイ素粉末を焼結して焼結体を
得る場合、窒化ケイ素粉末に各種酸化物等の焼結助剤を
添加し、液相焼結を行うのが一般的な方法であるが、得
られる焼結体組織中の粒界相成分は上記焼結助剤に依存
し、粒界相成分の低粘度化が焼結体の高温における低粘
度化の原因となるため、上記焼結助剤の種類によっては
高温高強度の窒化ケイ素粉末焼結体が得られない場合が
ある。
On the other hand, when sintering a silicon nitride powder to obtain a sintered body, it is a general method to add a sintering aid such as various oxides to the silicon nitride powder and perform liquid phase sintering. However, the grain boundary phase component in the obtained sintered body structure depends on the above-mentioned sintering aid, and the lowering of the viscosity of the grain boundary phase component causes the lowering of the viscosity of the sintered body at high temperature. Depending on the type of sintering aid, a high temperature and high strength silicon nitride powder sintered body may not be obtained.

【0006】本発明は上記事情に鑑みなされたもので、
高温においても高強度を有する窒化ケイ素焼結体を得る
ことができるα型窒化ケイ素粉末の製造方法を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances.
An object of the present invention is to provide a method for producing an α-type silicon nitride powder, which can obtain a silicon nitride sintered body having high strength even at a high temperature.

【0007】[0007]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を行った結果、好ましくは
平均粒子径が3〜6μmの金属ケイ素粉末100重量部
に対して好ましくは粒子径が1μm以下の酸化イッテル
ビウム(Yb23)5〜20重量部を添加し、窒素ガス
又は窒素を含む非酸化性ガス雰囲気中で好ましくは13
50〜1500℃の温度で1〜5時間かけて上記金属ケ
イ素粉末を窒化することにより、高度にα化されたα型
窒化ケイ素粉末を製造することができ、この窒化ケイ素
粉末から得られる窒化ケイ素焼結体は高温においても優
れた強度を有することを見い出した。
Means and Actions for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventor has found that preferably 100 parts by weight of metal silicon powder having an average particle diameter of 3 to 6 μm is preferably particles. Ytterbium oxide (Yb 2 O 3 ) having a diameter of 1 μm or less is added in an amount of 5 to 20 parts by weight, preferably 13 in a nitrogen gas or a non-oxidizing gas atmosphere containing nitrogen.
By nitriding the metal silicon powder at a temperature of 50 to 1500 ° C. for 1 to 5 hours, a highly α-type α-type silicon nitride powder can be produced, and the silicon nitride obtained from the silicon nitride powder can be produced. It has been found that the sintered body has excellent strength even at high temperatures.

【0008】即ち、本発明者は、高度にα化された窒化
ケイ素粉末を得る方法について種々検討を行ったとこ
ろ、金属ケイ素粉末を窒素ガス又は窒素を含む非酸化性
ガス雰囲気中で加熱するという通常の窒化法において、
金属ケイ素粉末を窒化する際の添加物として、従来から
窒化ケイ素粉末を焼結する際に広く用いられている希土
類酸化物のうち特にYb23添加した場合、意外にも、
上述したように高度にα化された窒化ケイ素粉末が得ら
れること知見し、本発明をなすに至ったものである。
That is, the present inventor has conducted various studies on a method for obtaining a highly alpha-converted silicon nitride powder. As a result, the metallic silicon powder is heated in a nitrogen gas or a non-oxidizing gas atmosphere containing nitrogen. In the normal nitriding method,
Surprisingly, when Yb 2 O 3 is added among the rare earth oxides that have been widely used in the conventional sintering of silicon nitride powder as an additive for nitriding metallic silicon powder,
As described above, the inventors have found that highly α-converted silicon nitride powder can be obtained, and completed the present invention.

【0009】ここで、従来より窒化ケイ素粉末を焼結す
る際に発現する柱状のβ型窒化ケイ素粉末がα型窒化ケ
イ素粉末に複雑に絡み合うことによって高強度の焼結体
となり得るものと考えられており、このため高強度の窒
化ケイ素焼結体を得るための原料としてはα型窒化ケイ
素粉末を用いることが必要とされている。また、最近、
高温において高強度を有する窒化ケイ素粉焼結体を得る
ためには、その焼結体組織中の粒界相の成分が高温下で
の低粘度化を防止し得るものであることが必要であると
の知見が種々発表され、上記粒界相の成分を上記のよう
なものとするために窒化ケイ素粉末を焼結する際に種々
の焼結助剤を添加することが行われているが、その中で
も希土類酸化物はそれ自体高融点であると共に、焼結時
に反応する窒化ケイ素粉末粒子表面に存在するシリカ層
(SiO2)との反応によって生成する化合物も、焼結
時に添加する焼結助剤の種類によっては高融点の化合物
となるため、粒界相の低粘度化を防止することができる
ことが報告されている。
Here, it is considered that a columnar β-type silicon nitride powder, which has been conventionally produced when sintering a silicon nitride powder, is intricately entangled with the α-type silicon nitride powder to form a high-strength sintered body. Therefore, it is necessary to use α-type silicon nitride powder as a raw material for obtaining a high-strength silicon nitride sintered body. Also recently
In order to obtain a silicon nitride powder sintered body having high strength at high temperature, it is necessary that the composition of the grain boundary phase in the sintered body structure is capable of preventing a decrease in viscosity at high temperature. Various findings have been announced, and various sintering aids have been added when sintering the silicon nitride powder in order to make the components of the grain boundary phase as described above, Among them, the rare earth oxide itself has a high melting point, and the compound generated by the reaction with the silica layer (SiO 2 ) existing on the surface of the silicon nitride powder particles that reacts during sintering also contributes to sintering. It is reported that, depending on the type of the agent, the compound has a high melting point, and thus it is possible to prevent the viscosity of the grain boundary phase from decreasing.

【0010】このように、従来は窒化ケイ素粉末を焼結
する際に希土類酸化物をはじめとする焼結助剤を添加す
ることによって、窒化ケイ素粉末を焼結した焼結体の高
温高強度を図っていたが、これに対し、本発明では、金
属ケイ素粉末を窒化する際に希土類酸化物のうちの酸化
イッテルビウムを添加することによって、高度にα化さ
れた窒化ケイ素粉末を得るものである。この酸化イッテ
ルビウムはそれ自体低融点であるが、金属ケイ素粉末を
窒化する際の低温反応に寄与し、それ故高度にα化され
たα型窒化ケイ素粉末が得られるものと考えられる。
As described above, conventionally, when a silicon nitride powder is sintered, a sintering aid such as a rare earth oxide is added to improve the high temperature and high strength of the sintered body obtained by sintering the silicon nitride powder. In contrast to this, in the present invention, on the other hand, highly nitrided silicon nitride powder is obtained by adding ytterbium oxide among rare earth oxides when nitriding the metal silicon powder. Although this ytterbium oxide itself has a low melting point, it is considered that it contributes to the low temperature reaction when nitriding the metal silicon powder, and therefore a highly α-type α-type silicon nitride powder can be obtained.

【0011】以下、本発明を更に詳しく説明すると、本
発明のα型窒化ケイ素粉末の製造方法は、金属ケイ素粉
末100重量部に対して酸化イッテルビウム(Yb
23)5〜20重量部を添加し、窒素ガス又は窒素を含
む非酸化性ガス雰囲気中で上記金属ケイ素粉末を窒化す
るものである。
The present invention will be described in more detail below. In the method for producing α-type silicon nitride powder of the present invention, ytterbium oxide (Yb) is added to 100 parts by weight of metallic silicon powder.
2 O 3 ) is added in an amount of 5 to 20 parts by weight, and the metal silicon powder is nitrided in a nitrogen gas or a non-oxidizing gas atmosphere containing nitrogen.

【0012】ここで、原料となる金属ケイ素粉末の平均
粒子径は3〜6μm、特に4〜5μmとすることが好ま
しい。
Here, it is preferable that the raw material metal silicon powder has an average particle diameter of 3 to 6 μm, particularly 4 to 5 μm.

【0013】また、金属ケイ素粉末に添加する酸化イッ
テルビウム(Yb23)は窒化後の焼結体の物性への配
慮から99.9%以上の純度であることが好ましく、窒
化反応率の観点から平均粒子径は1μm以下とすること
が好ましい。
The ytterbium oxide (Yb 2 O 3 ) added to the metallic silicon powder preferably has a purity of 99.9% or more in consideration of the physical properties of the sintered body after nitriding. Therefore, the average particle size is preferably 1 μm or less.

【0014】酸化イッテルビウムの添加量は金属ケイ素
粉末100部(重量部、以下同じ)に対し、5〜20部
であるが、特に5〜10部とすることが好ましい。添加
量が5部未満であると高度にα化されたα型窒化ケイ素
粉末が得にくく、20部を越えると得られた窒化ケイ素
粉末を焼結した焼結体の粒界相が高温下で低粘度化する
ため、得られる焼結体の高温高強度に悪影響を及ぼす。
The amount of ytterbium oxide added is 5 to 20 parts with respect to 100 parts (parts by weight, the same hereinafter) of metallic silicon powder, but it is particularly preferably 5 to 10 parts. If the amount added is less than 5 parts, it is difficult to obtain highly α-type silicon nitride powder, and if it exceeds 20 parts, the grain boundary phase of the sintered body obtained by sintering the obtained silicon nitride powder is high in temperature. Since the viscosity is lowered, it adversely affects the high temperature and high strength of the obtained sintered body.

【0015】また、上記金属ケイ素粉末を窒化するため
のガスは、窒素又は窒素を含む非酸化性ガスてあるが、
窒素を含む非酸化性ガスとしては、水素ガスと窒素ガス
との混合ガス、特に水素ガスを0〜25容量%程度含む
窒素ガス、アンモニアガスとの混合ガスが挙げられる。
The gas for nitriding the metal silicon powder is nitrogen or a non-oxidizing gas containing nitrogen.
Examples of the non-oxidizing gas containing nitrogen include a mixed gas of hydrogen gas and nitrogen gas, particularly a mixed gas of nitrogen gas containing hydrogen gas in an amount of about 0 to 25% by volume and ammonia gas.

【0016】更に、上記金属ケイ素粉末を上記ガス雰囲
気で窒化する場合、窒化温度は1350〜1500℃
で、窒化時間は1〜5時間程度とすることができる。
Further, when the metal silicon powder is nitrided in the gas atmosphere, the nitriding temperature is 1350 to 1500 ° C.
Then, the nitriding time can be set to about 1 to 5 hours.

【0017】窒化終了後は、必要に応じて湿式撹拌媒体
法等の方法で窒化ケイ素粉末を粉砕してもよい。なお、
得られた窒化ケイ素粉末は、酸処理等の化学処理を行う
ことなくそのまま窒化ケイ素焼結体の原料として使用す
ることができる。
After the completion of nitriding, the silicon nitride powder may be pulverized by a method such as a wet stirring medium method, if necessary. In addition,
The obtained silicon nitride powder can be used as it is as a raw material for a silicon nitride sintered body without chemical treatment such as acid treatment.

【0018】本発明で得られる窒化ケイ素粉末は常法に
より窒化ケイ素焼結体とすることができるが、この窒化
ケイ素粉末は、高度にα化されているため、これを焼結
することにより、高温における焼結体の組織、特に粒界
相での低粘度化が防止され、高温においても強度に優れ
た窒化ケイ素焼結体を得ることができる。
The silicon nitride powder obtained in the present invention can be made into a silicon nitride sintered body by a conventional method. However, since this silicon nitride powder is highly α-converted, it can be sintered to obtain It is possible to obtain a silicon nitride sintered body which is excellent in strength even at high temperature, because the structure of the sintered body at high temperature, especially the viscosity reduction in the grain boundary phase, is prevented.

【0019】[0019]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0020】[実施例1〜3、比較例1〜10]平均粒
子径が4〜5μmの金属ケイ素粉末26.7mol(7
50g)に表1に示す希土類酸化物を表1に示す陽イオ
ン換算量添加し、窒化ケイ素製トレイの上に仕込み層高
が一定となるように仕込み、これをN2とH2との混合ガ
ス雰囲気下で最高温度1400℃で2時間それぞれ常法
に従って加熱窒化し、窒化ケイ素粉末を得た。
[Examples 1 to 3 and Comparative Examples 1 to 10] 26.7 mol (7) of metal silicon powder having an average particle diameter of 4 to 5 μm.
50 g) was added with the rare earth oxides shown in Table 1 in the amount equivalent to the cations shown in Table 1 and charged on a silicon nitride tray so that the height of the charging layer was constant, and this was mixed with N 2 and H 2. In a gas atmosphere, heating and nitriding were performed at a maximum temperature of 1400 ° C. for 2 hours according to a conventional method to obtain silicon nitride powder.

【0021】ここで、窒化ケイ素粉末のα化率の測定
は、X線回析装置(ガイガーフレックス、RAD−II
A)を用いて下記の測定条件で測定し、下記式によりα
化率を算出した。 ターゲート :Cu フィルター :Ni 電圧 :30kV 電流 :15mA カウント,スケール :4000c/s 時定数 :0.5sec スキャン速度 :2度/min チャート速度 :2cm/min 発散スリット :1度 レシーヴィングスリット :0.3mm スキャッタースリット :1度 視射角 :28〜37度
Here, the alpha conversion of the silicon nitride powder is measured by an X-ray diffractometer (Geiger flex, RAD-II).
A) is measured under the following measurement conditions, and α is calculated by the following formula.
The rate of conversion was calculated. Targate: Cu Filter: Ni Voltage: 30 kV Current: 15 mA Count, scale: 4000 c / s Time constant: 0.5 sec Scan speed: 2 degrees / min Chart speed: 2 cm / min Divergence slit: 1 degree Receiving slit: 0.3 mm Scatter slit: 1 degree Viewing angle: 28-37 degrees

【0022】[0022]

【数1】 [Equation 1]

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明の製造方法によれば、α型窒化ケ
イ素粉末を簡単かつ確実に製造することができ、本発明
の製造方法により製造された窒化ケイ素粉末は、これを
焼結することにより、高温においても強度に優れた窒化
ケイ素焼結体を得ることができる。
According to the manufacturing method of the present invention, the α-type silicon nitride powder can be easily and reliably manufactured, and the silicon nitride powder manufactured by the manufacturing method of the present invention can be sintered. Thereby, a silicon nitride sintered body having excellent strength even at high temperature can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属ケイ素粉末100重量部に対して酸
化イッテルビウム5〜20重量部を添加し、窒素ガス又
は窒素を含む非酸化性ガス雰囲気中で上記金属ケイ素粉
末を窒化することを特徴とするα型窒化ケイ素粉末の製
造方法。
1. The present invention is characterized in that 5 to 20 parts by weight of ytterbium oxide is added to 100 parts by weight of metal silicon powder, and the metal silicon powder is nitrided in a nitrogen gas or a non-oxidizing gas atmosphere containing nitrogen. Method for producing α-type silicon nitride powder.
JP5120787A 1993-04-23 1993-04-23 Production of alpha-silicon nitride powder Pending JPH06305718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5120787A JPH06305718A (en) 1993-04-23 1993-04-23 Production of alpha-silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5120787A JPH06305718A (en) 1993-04-23 1993-04-23 Production of alpha-silicon nitride powder

Publications (1)

Publication Number Publication Date
JPH06305718A true JPH06305718A (en) 1994-11-01

Family

ID=14794991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5120787A Pending JPH06305718A (en) 1993-04-23 1993-04-23 Production of alpha-silicon nitride powder

Country Status (1)

Country Link
JP (1) JPH06305718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116834129A (en) * 2023-07-20 2023-10-03 衡阳凯新特种材料科技有限公司 Silicon nitride powder synthesizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116834129A (en) * 2023-07-20 2023-10-03 衡阳凯新特种材料科技有限公司 Silicon nitride powder synthesizer
CN116834129B (en) * 2023-07-20 2024-02-09 衡阳凯新特种材料科技有限公司 Silicon nitride powder synthesizer

Similar Documents

Publication Publication Date Title
JP3290686B2 (en) Method for producing aluminum nitride powder
JPS61191506A (en) Production of high alpha-type silicon nitride powder
JPH06305718A (en) Production of alpha-silicon nitride powder
JPH08733B2 (en) Heat shock resistant silicon nitride sintered body and method for producing the same
JP2009161376A (en) Manufacturing method of silicon nitride powder
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPS61242905A (en) Production of alpha-silicon nitride powder
JP3280059B2 (en) Method for producing activated silicon carbide
JPH0829923B2 (en) Silicon nitride powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JP4181359B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and electrode built-in type susceptor using aluminum nitride sintered body
JPH06219715A (en) Production of high alpha-type highly pure silicon nitride powder
JPS623007A (en) Production of aluminum nitride powder
JPH06279124A (en) Production of silicon nitride sintered compact
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JPH0532348B2 (en)
JP3251060B2 (en) Silicon nitride powder
JP4025810B2 (en) Method for producing silicon nitride particles
JP2691285B2 (en) Silicon nitride sintered body
JP3250677B2 (en) Silicon nitride powder
JP2569074B2 (en) α-Silicon nitride powder and method for producing the same
JPH0529630B2 (en)
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JP2610156B2 (en) Method for producing silicon nitride powder
JP2635695B2 (en) Method for producing α-silicon nitride powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees