JPH06302879A - Current-voltage nonlinear element and its manufacturing method - Google Patents

Current-voltage nonlinear element and its manufacturing method

Info

Publication number
JPH06302879A
JPH06302879A JP5089607A JP8960793A JPH06302879A JP H06302879 A JPH06302879 A JP H06302879A JP 5089607 A JP5089607 A JP 5089607A JP 8960793 A JP8960793 A JP 8960793A JP H06302879 A JPH06302879 A JP H06302879A
Authority
JP
Japan
Prior art keywords
film
current
electrode film
voltage
nonlinear element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5089607A
Other languages
Japanese (ja)
Other versions
JP3298223B2 (en
Inventor
Yoshiyuki Shiratsuki
好之 白附
Yoshinori Yamaguchi
義紀 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP08960793A priority Critical patent/JP3298223B2/en
Publication of JPH06302879A publication Critical patent/JPH06302879A/en
Application granted granted Critical
Publication of JP3298223B2 publication Critical patent/JP3298223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a voltage-current nonlinear element having a uniform film thickness and film quality over a large area. CONSTITUTION:A current-voltage nonlinear element is structured by successively laminating a lower electrode film 2, an insulation film 3, and and upper electrode film 4 on an insulation substrate 1. After a species of metal organic solution or more selected from bismuth(Bi) or titanium(Ti) or yttrium(Y) are applied on the lower electrode film, the insulation film, and the upper electrode film, they are burnt to form a metal or a metal oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶ディスプレイなど
のスイッチ素子に用いられる、電流電圧非線形素子なら
びにその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current-voltage non-linear element used for a switch element such as a liquid crystal display and a method for manufacturing the same.

【0002】[0002]

【従来の技術】液晶ディスプレイはワードプロセッサや
パーソナルコンピュータ等の情報処理装置の普及に伴
い、CRTにかわる表示装置として広く用いられるよう
になった。この液晶ディスプレイには単純マトリクス方
式とアクティブマトリクス方式がある。前者は電極を形
成しただけのガラス基板を用いるので低コストでできる
が、クロストークが生じるため表示品質が劣っている。
一方アクティブマトリクス方式ではこのクロストークの
問題を解決するために、各画素ごとに薄膜トランジスタ
を設けている。このためアクティブマトリクス方式では
表示品質はすぐれているが薄膜トランジスタを設けてい
るため工程が複雑になりコストが高くなるという問題点
がある。
2. Description of the Related Art Liquid crystal displays have come into widespread use as display devices in place of CRTs with the spread of information processing devices such as word processors and personal computers. This liquid crystal display has a simple matrix system and an active matrix system. The former can be manufactured at low cost because it uses a glass substrate on which only electrodes are formed, but the display quality is poor due to crosstalk.
On the other hand, in the active matrix system, a thin film transistor is provided for each pixel in order to solve this crosstalk problem. For this reason, the active matrix method has a high display quality, but since the thin film transistor is provided, the process is complicated and the cost is high.

【0003】これを解決するために例えばSID198
0 Digest(p.200)に示されたようなMI
M(Metal−Insulator−Metal)素
子が考案されている。これは電流電圧特性が非線形な非
線形素子のひとつで薄膜トランジスタよりも簡単な工程
で作製できるため歩留りが高くコストが低くできる利点
がある。図3にMIM素子の断面を示す。このMIM素
子は、ガラス基板1上にタンタル(Ta)電極膜11が
設けられその表面を酸化してタンタル酸化膜(Ta
25)12を形成し、さらに、その一部の上部に透明電
極(Cr/ITO)13を形成した構造の素子である。
その製造方法は、ガラス基板1上にタンタル(Ta)電
極膜11をスパッタリング法などで着膜する。次にTa
電極膜11の表面を陽極酸化して表面にタンタル酸化物
(Ta25)の絶縁膜12を形成する。そしてその上に
Cr/ITOをスパッタリング法等によって着膜してC
r/ITO電極膜13を形成している。
To solve this, for example, SID198
0 MI as shown in Digest (p.200)
An M (Metal-Insulator-Metal) element has been devised. This is one of the non-linear elements whose current-voltage characteristics are non-linear and can be manufactured by a simpler process than a thin film transistor, so that it has an advantage of high yield and low cost. FIG. 3 shows a cross section of the MIM element. In this MIM element, a tantalum (Ta) electrode film 11 is provided on a glass substrate 1 and its surface is oxidized to tantalum oxide film (Ta).
2 O 5 ) 12 is formed, and a transparent electrode (Cr / ITO) 13 is further formed on a part of it to form an element.
In the manufacturing method, the tantalum (Ta) electrode film 11 is deposited on the glass substrate 1 by a sputtering method or the like. Next Ta
The surface of the electrode film 11 is anodized to form an insulating film 12 of tantalum oxide (Ta 2 O 5 ) on the surface. Then, Cr / ITO is deposited thereon by a sputtering method or the like to form C
The r / ITO electrode film 13 is formed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、MIM
素子においてもTa電極膜やCr/ITO電極膜はスパ
ッタリング法などの真空装置を用いる製法で作製される
ものである。このような薄膜プロセスでは積層構成のた
め工程数が多く、また複数のガスの流入方法や圧力の制
御が難しいことから、大面積にわたる薄膜を作製した
り、大面積にわたって膜質を均一に保つことが困難であ
る上に、スパッタ装置や真空蒸着装置といった成膜装置
の設備費用が嵩み、またランニングコストも高くなっ
て、成膜される薄膜のコストが高くなるという問題があ
った。
[Problems to be Solved by the Invention] However, MIM
Also in the element, the Ta electrode film and the Cr / ITO electrode film are manufactured by a manufacturing method using a vacuum device such as a sputtering method. Since such a thin film process has a large number of steps due to the laminated structure, and it is difficult to control the inflow method and pressure of multiple gases, it is possible to produce a thin film over a large area or to maintain uniform film quality over a large area. In addition to the difficulty, there is a problem in that the equipment cost of a film forming apparatus such as a sputtering apparatus or a vacuum vapor deposition apparatus is high, and the running cost is high, so that the cost of a thin film to be formed is high.

【0005】さらにMIM素子においては、図3に示す
Ta電極膜11のテーパ部分の各膜の重なりをMIM素
子として機能させているため、Ta電極膜をテーパ状に
加工するなど作製工程管理が厳しいという問題があっ
た。本発明は、従来の上記問題点を解決するためのもの
で、大面積にわたり膜厚と膜質が均一な電流電圧非線形
素子を得ることを目的とする。さらに、本発明は、IC
回路やディスプレイへの応用が可能な薄膜の電流電圧非
線形素子で、しかも簡単な積層構成で、かつ安価で生産
性が高い電流電圧非線形素子を得ることを目的とする。
加えて、本発明は、上記のような電流電圧非線形素子を
製造する方法を提供することを目的とする。
Further, in the MIM element, since the overlapping of the respective films of the taper portion of the Ta electrode film 11 shown in FIG. 3 functions as the MIM element, the manufacturing process control such as the processing of the Ta electrode film into a tapered shape is strict. There was a problem. The present invention is to solve the above-mentioned conventional problems, and an object thereof is to obtain a current-voltage nonlinear element having a uniform film thickness and film quality over a large area. Furthermore, the present invention is an IC
An object of the present invention is to obtain a thin film current-voltage nonlinear element which can be applied to a circuit or a display, has a simple laminated structure, and is inexpensive and highly productive.
In addition, it is an object of the present invention to provide a method for manufacturing the above current-voltage nonlinear element.

【0006】[0006]

【課題を解決するための手段】本発明の電流電圧非線形
素子は、製造設備が安価な厚膜プロセスを用いて金属有
機物を熱分解させ、金属または金属酸化物からなる薄膜
の電流電圧非線形素子を形成させる。
The current-voltage non-linear element of the present invention is a thin-film current-voltage non-linear element made of a metal or a metal oxide by thermally decomposing a metal organic substance using a thick film process which is inexpensive to manufacture. Let it form.

【0007】[0007]

【作用】本発明の薄膜電流電圧非線形素子はIC回路や
ディスプレイへの応用が可能なもので、厚膜プロセスで
薄膜電流電圧非線形素子を作製する。しかし厚膜プロセ
スでも従来の結晶粒子を混練したペーストを用いている
のとは違い、金属有機物溶液の熱分解による成膜法を用
いているのでIC回路やディスプレイへの応用が可能な
薄膜の電流電圧非線形素子が形成できる。また本方法の
電流電圧非線形素子は、膜厚の調整や構成元素の組成比
など従来の真空装置による薄膜プロセスによる膜に比べ
ても容易に行えるため、非常に汎用性が高く生産性も高
い。
The thin film current-voltage nonlinear element of the present invention can be applied to an IC circuit or a display, and the thin film current-voltage nonlinear element is manufactured by a thick film process. However, even in the thick film process, unlike the conventional paste in which crystal particles are kneaded, the film formation method by the thermal decomposition of the metal organic solution is used, so that the current of the thin film that can be applied to IC circuits and displays is used. A voltage non-linear element can be formed. In addition, the current-voltage nonlinear element of the present method is very versatile and highly productive because it can be easily performed compared with a film formed by a conventional thin film process using a vacuum device such as adjustment of film thickness and composition ratio of constituent elements.

【0008】[0008]

【実施例】以下に本発明の一実施例を図1を用いて説明
する。ガラス基板1上にオクチル酸インジウムとオクチ
ル酸スズをインジウムとスズの原子数比が1:0.1に
なるように秤量し、さらにオクチル酸インジウムとオク
チル酸スズの混合重量を10としたものに対して溶媒と
なるアビエチン酸を3の割合で混合したペーストを例え
ばスクリーン印刷の手法を用いて印刷した後、大気中で
700℃で焼成して0.1〜0.2μmの厚みの下部電
極2を形成する。その上にオクチル酸ビスマスをキシレ
ンで粘度をおよそ30〜100cPsに希釈した溶液を
3000rpmで20秒間スピンコートした後、大気中
で700℃で焼成して酸化ビスマス(Bi23)絶縁膜
3を形成する。この時の絶縁膜の膜厚はおよそ40nm
である。絶縁膜の膜厚は電流電圧非線形特性に大きく影
響し、厚すぎると非線形特性を示さなくなる。この絶縁
膜の膜厚は100nm以下にすることが望ましく、30
〜50nmが好ましい。次いで、その絶縁膜3の上層に
メタロオーガニック金ペーストをおよそ0.2μmの厚
みに例えばスクリーン印刷の手法を用いて印刷した後、
焼成し上部電極4を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. On a glass substrate 1, indium octylate and tin octylate were weighed so that the atomic ratio of indium to tin was 1: 0.1, and the mixed weight of indium octylate and tin octylate was adjusted to 10. On the other hand, a paste in which abietic acid serving as a solvent is mixed at a ratio of 3 is printed by using, for example, a screen printing method, and then baked at 700 ° C. in the air to be a lower electrode 2 having a thickness of 0.1 to 0.2 μm. To form. A solution of bismuth octylate diluted with xylene to a viscosity of about 30 to 100 cPs was spin-coated at 3000 rpm for 20 seconds and then baked at 700 ° C. in the atmosphere to form a bismuth oxide (Bi 2 O 3 ) insulating film 3. Form. The thickness of the insulating film at this time is about 40 nm
Is. The film thickness of the insulating film has a great influence on the current-voltage nonlinear characteristic, and if it is too thick, the nonlinear characteristic is not exhibited. It is desirable that the thickness of this insulating film be 100 nm or less.
˜50 nm is preferred. Then, after a metalloorganic gold paste is printed on the upper layer of the insulating film 3 to a thickness of about 0.2 μm by using, for example, a screen printing method,
The upper electrode 4 is formed by firing.

【0009】図2に本発明に係る電流電圧非線形素子
(ITO−Bi23−Au)の電流電圧曲線を示す。こ
のグラフから、Poole−Frenkel効果で説明
されるMIM特性に似た非線形であることが分かる。
FIG. 2 shows a current-voltage curve of the current-voltage nonlinear element (ITO-Bi 2 O 3 -Au) according to the present invention. From this graph, it can be seen that the nonlinearity is similar to the MIM characteristic explained by the Poole-Frenkel effect.

【0010】この実施例では、電極を形成する金属元素
として、インジウム/スズおよび金を用いているがこれ
に限定されるものではなく、亜鉛/アルミや白金なども
用いることができる。また、絶縁膜を形成する金属元素
としてビスマスを用いているがタンタル(Ta)やチタ
ン(Ti)、イットリウム(Y)などを用いても同様な
効果を期待できる。さらに厚膜の工程はスクリーン印刷
等の通常の手法を使用することができ、薄膜の工程はス
ピンコートやディップ等の手法を用いることができる。
In this embodiment, indium / tin and gold are used as the metal element forming the electrode, but the present invention is not limited to this, and zinc / aluminum or platinum can be used. Although bismuth is used as the metal element forming the insulating film, similar effects can be expected by using tantalum (Ta), titanium (Ti), yttrium (Y), or the like. Further, a usual method such as screen printing can be used in the step of thick film, and a method such as spin coating or dip can be used in the step of thin film.

【0011】このプロセスに使用される金属有機物は、
有機配位子錯体を含有するものであれば特に限定されな
いが、具体的な有機配位子としては、オクチル酸、安息
香酸、ナフテン酸、ラウリル酸、ステアリン酸、アビエ
チン酸、カブリル酸、ミリスチン酸、パルミチン酸、リ
ノール酸、オレイン酸などのカルボン酸、アセチルアセ
トンなどのβ−ジケトン、カルバミン酸などを使用する
ことができる。また前記金属有機物は溶媒に溶解させ
て、耐熱性基板に塗布して成膜されるが、その溶媒とし
ては石油系溶剤、ミネラルスピリット、ターペン油、ベ
ンゼン、アルコール系溶剤、カルビトール系、トルエン
系、セロソルブ系などの有機溶媒を金属有機物に応じて
選択できる。
The metal organics used in this process are:
It is not particularly limited as long as it contains an organic ligand complex, but specific organic ligands include octylic acid, benzoic acid, naphthenic acid, lauric acid, stearic acid, abietic acid, cabric acid, myristic acid. , Carboxylic acids such as palmitic acid, linoleic acid and oleic acid, β-diketones such as acetylacetone, carbamic acid and the like can be used. The metal organic material is dissolved in a solvent and applied to a heat-resistant substrate to form a film. As the solvent, petroleum-based solvents, mineral spirits, turpentine oil, benzene, alcohol-based solvents, carbitol-based, toluene-based solvents are used. , An organic solvent such as cellosolve can be selected according to the metal organic substance.

【0012】また、金属有機物が溶媒に解けにくい場合
は必要に応じて、トリオクチルフォスフィンオキシド
(TOPO)、リン酸トリブチル(TBD)あるいはア
ミン類などの付加錯体を生成する配位子を適量添加す
る。さらに前記金属有機物溶液は、そのまま塗布しても
構わないが、望ましくはその塗布法に応じて増粘剤また
は希釈剤を添加して粘度調整をすることが好ましい。増
粘剤としては例えば、ロジン、アビエチン酸、セルロー
ス、アクリル樹脂などを使用することができ、希釈剤と
してはα−ターピネオール、ブチルカルビトールアセテ
ートなどを使用することができる。溶液の粘度はスピン
コート法の場合は1000cPs以下、スクリーン印刷
法の場合は3000〜5000cPsの範囲で選択する
ことが好ましい。また、溶液の粘度を塗布法に応じた範
囲内で変化させることで、1回の塗膜・焼成で得られる
薄膜の膜厚を自由に選択できることは言うまでもない。
When the metal organic substance is difficult to dissolve in the solvent, a suitable amount of a ligand that forms an addition complex such as trioctylphosphine oxide (TOPO), tributyl phosphate (TBD) or amines is added, if necessary. To do. Further, the metal organic material solution may be applied as it is, but it is preferable to adjust the viscosity by adding a thickener or a diluent depending on the application method. As the thickener, for example, rosin, abietic acid, cellulose, acrylic resin or the like can be used, and as the diluent, α-terpineol, butyl carbitol acetate or the like can be used. The viscosity of the solution is preferably 1000 cPs or less in the case of the spin coating method and 3000 to 5000 cPs in the case of the screen printing method. Needless to say, the film thickness of the thin film obtained by coating and baking once can be freely selected by changing the viscosity of the solution within the range according to the coating method.

【0013】本発明で用いる基板は好ましくは600゜
C以上に加熱しても変形や相変化のない基板であれば特
に制限はなく、たとえばバリウムホウケイ酸ガラス基
板、石英ガラス基板、アルミナ基板などが、その目的に
応じて使用される。粘度調整されたペーストは、スクリ
ーン印刷法やスピンコート法などにより、基板上に塗布
され、目的とする金属の有機物溶液で形成された塗膜を
前記金属有機物が分解、消失する温度(通常450〜6
00゜C)で焼成することが望ましい。なお、焼成のた
めの加熱方法は、耐熱性基板を所定の温度に加熱できれ
ばよく、特に限定されない。具体的には、ベルト式焼成
炉などを使用することができる。
The substrate used in the present invention is not particularly limited as long as it does not deform or change phase even when heated to 600 ° C. or higher. For example, a barium borosilicate glass substrate, a quartz glass substrate, an alumina substrate or the like is used. , Used according to its purpose. The viscosity-adjusted paste is applied to the substrate by a screen printing method or a spin coating method, and the temperature at which the metal organic material decomposes and disappears in the coating film formed of the organic material solution of the target metal (usually 450 to 6
Baking at 00 ° C. is desirable. The heating method for firing is not particularly limited as long as the heat resistant substrate can be heated to a predetermined temperature. Specifically, a belt-type firing furnace or the like can be used.

【0014】素子サイズもフォトリソエッチングなどの
手法により10ミクロンレベルにまで小さくすることが
でき、これによりIC回路やディスプレイ等への応用が
可能な電流電圧非線形素子を、厚膜同様に安価に作製で
きる。ただし、4line/mm程度の密度であれば、
フォトリソエッチングなしでスクリーン印刷で直接パタ
ーニングすることができるので、フォトマスクを1枚も
使用せずに電流電圧非線形素子を作製することが出来
る。この事はマスク作製コストのみならず、フォトリソ
エッチング工程にかかるコスト全ての削減となり、大き
なメリットとなることは言うまでもない。
The element size can also be reduced to the level of 10 microns by a technique such as photolithography, which makes it possible to manufacture a current-voltage nonlinear element which can be applied to an IC circuit, a display, etc., at a low cost like a thick film. . However, if the density is about 4 line / mm,
Since direct patterning can be performed by screen printing without photolithographic etching, a current-voltage nonlinear element can be manufactured without using any photomask. It goes without saying that this is a great merit because not only the mask manufacturing cost but also the cost for the photolithography etching step is reduced.

【0015】[0015]

【発明の効果】以上述べたように、この発明による薄膜
電流電圧非線形素子の製造方法は、真空蒸着法、スパッ
タリング法、CVD法等の薄膜成長法に使用される高価
な真空設備を必要とせず、簡単な操作および装置で行う
ことが可能であるので製造コストを安価にすることがで
きり、また、常圧操作であることから製造プロセスの連
続化が可能となり生産性を高めることができる。さらに
構成も簡単な積層構造であり従来のMIM素子のように
極膜をテーパ状に加工するといった難しい工程を必要と
しない。
As described above, the method for manufacturing a thin film current-voltage nonlinear element according to the present invention does not require expensive vacuum equipment used for thin film growth methods such as vacuum deposition method, sputtering method and CVD method. Since the operation can be performed with a simple operation and a device, the manufacturing cost can be reduced, and since the operation is performed under normal pressure, the manufacturing process can be continuous and the productivity can be improved. Furthermore, the structure is a simple laminated structure, and unlike the conventional MIM element, it does not require the difficult process of processing the pole film into a tapered shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る非線形素子の一実施例の構造を
示す断面図。
FIG. 1 is a cross-sectional view showing the structure of an example of a non-linear element according to the present invention.

【図2】 本発明に係る非線形素子の電流電圧特性を示
す図。
FIG. 2 is a diagram showing current-voltage characteristics of a non-linear element according to the present invention.

【図3】 従来のMIM素子の構造を示す断面図。FIG. 3 is a sectional view showing the structure of a conventional MIM element.

【符号の説明】[Explanation of symbols]

1 ガラス基板、 2 下部電極、 3 絶縁膜、 4
上部電極、 11電極膜、 12 Ta25絶縁
膜、 13 Cr/ITO電極膜。
1 glass substrate, 2 lower electrode, 3 insulating film, 4
Upper electrode, 11 electrode film, 12 Ta 2 O 5 insulating film, 13 Cr / ITO electrode film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上に下部電極膜および絶縁膜な
らびに上部電極膜を順次積層して構成した電流電圧非線
形素子であって、 前記下部電極膜および絶縁膜ならびに上部電極膜が金属
有機物溶液を塗布した後焼成して形成された金属または
金属酸化物であることを特徴とする電流電圧非線形素
子。
1. A current-voltage nonlinear element comprising a lower electrode film, an insulating film, and an upper electrode film sequentially laminated on an insulating substrate, wherein the lower electrode film, the insulating film, and the upper electrode film are made of a metal organic compound solution. A current-voltage non-linear element, which is a metal or a metal oxide formed by coating and then baking.
【請求項2】 前記絶縁膜はビスマス(Bi)またはチ
タン(Ti)もしくはイットリウム(Y)の中から選ば
れた一種以上の金属有機物溶液を塗布した後焼成して形
成された金属酸化物であることを特徴とする請求項1記
載の電流電圧非線形素子。
2. The insulating film is a metal oxide formed by applying and baking one or more metal organic compound solutions selected from bismuth (Bi), titanium (Ti), or yttrium (Y). The current-voltage nonlinear element according to claim 1, wherein
【請求項3】 前記絶縁膜は膜厚が100nm以下の金
属酸化物であることを特徴とする請求項1または請求項
2のいずれかに記載の電流電圧非線形素子。
3. The current-voltage nonlinear element according to claim 1, wherein the insulating film is a metal oxide having a film thickness of 100 nm or less.
【請求項4】 絶縁基板上に下部電極膜および絶縁膜な
らびに上部電極膜を順次積層して構成した電流電圧非線
形素子の製造方法であって、前記絶縁基板上に金属有機
物溶液を塗布した後焼成して下部電極膜を形成する下部
電極膜形成工程と、 前記下部電極膜上にビスマス(Bi)またはチタン(T
i)もしくはイットリウム(Y)の中から選ばれた一種
以上の金属有機物溶液を塗布した後焼成して絶縁膜を形
成する絶縁膜形成工程と、 前記絶縁膜上に金属有機物溶液を塗布した後焼成して上
部電極膜を形成する上部電極膜形成工程と、を含むこと
を特徴とする電流電圧非線形素子の製造方法。
4. A method of manufacturing a current-voltage non-linear element comprising a lower electrode film, an insulating film, and an upper electrode film sequentially laminated on an insulating substrate, wherein a metal organic solution is applied on the insulating substrate and then baked. And a lower electrode film forming step of forming a lower electrode film, and bismuth (Bi) or titanium (T) on the lower electrode film.
i) or an insulating film forming step of applying at least one metal organic solution selected from yttrium (Y) and then baking to form an insulating film; and applying the metal organic solution on the insulating film and baking. And an upper electrode film forming step of forming an upper electrode film, the manufacturing method of the current-voltage non-linear element.
JP08960793A 1993-04-16 1993-04-16 Method of manufacturing current-voltage nonlinear element Expired - Fee Related JP3298223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08960793A JP3298223B2 (en) 1993-04-16 1993-04-16 Method of manufacturing current-voltage nonlinear element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08960793A JP3298223B2 (en) 1993-04-16 1993-04-16 Method of manufacturing current-voltage nonlinear element

Publications (2)

Publication Number Publication Date
JPH06302879A true JPH06302879A (en) 1994-10-28
JP3298223B2 JP3298223B2 (en) 2002-07-02

Family

ID=13975442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08960793A Expired - Fee Related JP3298223B2 (en) 1993-04-16 1993-04-16 Method of manufacturing current-voltage nonlinear element

Country Status (1)

Country Link
JP (1) JP3298223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035814A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Method of forming silver wiring pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035814A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Method of forming silver wiring pattern

Also Published As

Publication number Publication date
JP3298223B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US5464990A (en) Voltage non-linear device and liquid crystal display device incorporating same
US5189284A (en) Resistor, process for producing the same, and thermal head using the same
JP3298223B2 (en) Method of manufacturing current-voltage nonlinear element
US6710826B2 (en) Two-terminal type non-linear element, manufacturing method and liquid crystal display panel
JPH0584606B2 (en)
JPH08330647A (en) Manufacture of mim-type nonlinear element and liquid-crystal display device using mim-type nonlinear element
JPH01125861A (en) Nonlinear two-terminal element for display panel
JPH04240828A (en) Element substrate in liquid crystal display device and its manufacture
JPH0345932A (en) Production of active matrix liquid crystal display panel
JPH0677012A (en) Voltage dependent nonlinear element and manufacture thereof, metal organic paste and liquid crystal indicating device with voltage nonlinear element as driving element, and manufacture thereof
JP3102130B2 (en) Active device manufacturing method
JPH05224220A (en) Formation of pattern of substrate for liquid crystal display element
JP3341346B2 (en) Manufacturing method of nonlinear element
JPH079388Y2 (en) Thin film transistor
JPH0373932A (en) Active matrix type liquid crystal display device and its manufacture
JPH0283538A (en) Liquid crystal display device
JPH05299208A (en) Non-linear voltage resistor and manufacture thereof
JP2942996B2 (en) Manufacturing method of electro-optical device
JP3079819B2 (en) Active device and manufacturing method thereof
JPH0451808B2 (en)
JPH02259625A (en) Liquid crystal display element
JPH06301063A (en) Production of mim-type nonlinear element
JPH03174123A (en) Electrooptical device and production thereof
JPS6221126A (en) Liquid crystal display device
JPH06301064A (en) Mim-type nonlinear element and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees