JPH0451808B2 - - Google Patents

Info

Publication number
JPH0451808B2
JPH0451808B2 JP17324181A JP17324181A JPH0451808B2 JP H0451808 B2 JPH0451808 B2 JP H0451808B2 JP 17324181 A JP17324181 A JP 17324181A JP 17324181 A JP17324181 A JP 17324181A JP H0451808 B2 JPH0451808 B2 JP H0451808B2
Authority
JP
Japan
Prior art keywords
film
liquid crystal
alignment
substrate
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17324181A
Other languages
Japanese (ja)
Other versions
JPS5872922A (en
Inventor
Mitsuru Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56173241A priority Critical patent/JPS5872922A/en
Publication of JPS5872922A publication Critical patent/JPS5872922A/en
Publication of JPH0451808B2 publication Critical patent/JPH0451808B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は液晶表示装置の製造方法、さらに詳し
くは液晶表示装置の相対向する基板上で配向膜下
に配置する透明電極の製造方法に関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a liquid crystal display device, and more particularly to a method for manufacturing a transparent electrode disposed under an alignment film on opposing substrates of a liquid crystal display device. It is.

<従来の技術> 従来、液晶表示装置を構成するセル基板上の透
明電極は、主としてIn−Snの酸化物(以下I.T.O
と称す)が使われている。
<Conventional technology> Conventionally, transparent electrodes on cell substrates constituting liquid crystal display devices are mainly made of In-Sn oxide (hereinafter referred to as ITO).
) is used.

上記透明電極の作製方法としては、電子ビーム
を利用する真空蒸着法、スパツタリングや、In−
Sn化合物をコーテイングして作製する化成法等
がある。前者の真空蒸着法に分類される電子ビー
ム蒸着は、I.T.Oを蒸着試料として電子ビームで
局部的に加熱して蒸発させ、ガラス等の基板に蒸
着して透明電極とするものであり、またスパツタ
リングはInをターゲツトとしてDCスパツタリン
グによりIn膜を形成し、これを焼成して透明電極
とするか、I.T.Oをターゲツトとして高周波反応
性スパツタリングによつて作製するものである。
後者の化成法はIn−有機化合物をガラス基板にコ
ーテイングし、その後に焼成して酸化された透明
導電膜とし、透明電極とする。
The transparent electrode can be manufactured by vacuum evaporation using an electron beam, sputtering, In-
There are chemical conversion methods that involve coating with Sn compounds. Electron beam evaporation, which is classified as the former vacuum evaporation method, uses ITO as a deposition sample and locally heats it with an electron beam to evaporate it and deposit it on a substrate such as glass to form a transparent electrode. A transparent electrode is produced by forming an In film by DC sputtering using In as a target and baking it to form a transparent electrode, or by high-frequency reactive sputtering using ITO as a target.
In the latter chemical conversion method, an In-organic compound is coated on a glass substrate, and then fired to form an oxidized transparent conductive film, which is then used as a transparent electrode.

この透明電極上に配向膜を塗布した後加熱し、
透明電極及び配向膜を有する基板を製造する。こ
の基板を検査し、液晶表示装置のセル基板として
用いる。
After coating an alignment film on this transparent electrode, it is heated.
A substrate having a transparent electrode and an alignment film is manufactured. This substrate is inspected and used as a cell substrate for a liquid crystal display device.

<発明が解決しようとする課題> 上記基板の電極パターン等の検査の際、上記従
来の方法によつて作製された透明電極であるI.T.
O膜は、I.T.Oの高い透明度のため基板上に電極
が形成されているか否かの視認が困難であるとい
う欠点があつた。そのため電極のパターン形成が
支障なく実施されたかどうかの確認に時間がかか
つた。
<Problems to be Solved by the Invention> When inspecting the electrode pattern, etc. of the above-mentioned substrate, IT, which is a transparent electrode produced by the above-mentioned conventional method,
The disadvantage of the O film is that it is difficult to visually confirm whether or not electrodes are formed on the substrate due to the high transparency of ITO. Therefore, it took time to confirm whether the electrode pattern formation was carried out without any problems.

本発明は上記従来の問題点を解決し得る液晶表
示装置の製造方法を提供するものである。
The present invention provides a method for manufacturing a liquid crystal display device that can solve the above-mentioned conventional problems.

<実施例> 第1図乃至第5図は各工程における断面図を示
している。第1図は使用するガラス基板1を洗浄
する工程である。第2図は前記ガラス基板1上に
In−Sn(モル%でInが90%、Snが10%)膜2を
200〜300Åの膜厚にスパツタリングにて被着する
工程である。第3図の工程ではフオトエツチング
法若しくはスクリーン印刷されたマスクを用いて
前工程のIn−Sn膜2を所望電極形状にパターン
形成する。この際、上記金属膜の不要部分がエツ
チング除去されるが、エツチングするためのエツ
チング液として、従来のような酸化膜をエツチン
グする場合に比べて金属をエツチングすればよい
ため希薄な0.1〜0.2Nの塩酸水溶液を用いれば充
分であり、さらに処理操作も従来の50℃、1〜2
分に比べて、30℃、30秒で済ませることが可能で
ある。上記In−Sn膜2aは茶かつ色の色相を呈
する。このIn−Sn膜2aが被着されたガラス基
板1は液晶セルの基板とするため、第4図の工程
において、ガラス基板1及びパターン形成された
In−Sn膜2a上に配向処理膜3を塗布する。配
向処理膜3としては酸化ケイ素、ポリイミド樹脂
等が用いられるが、この例ではポリイミド樹脂が
用いられている。In−Sn膜2a及び配向処理膜
3が形成されたガラス基板1を目視検査してIn−
Sn膜2aの良否を判定する。第5図の工程は、
上記配向処理膜3が塗布された基板1のアニーリ
ング工程で、温度幅を310乃至350℃に調整して加
熱を行い、配向処理膜3を加熱処理する。このア
ニーリング工程中に先に被着されたIn−Sn膜2
aの酸化処理を行う。その結果、加熱処理済みの
配向処理膜3a及びI.T.O膜からなる透明電極4
がガラス基板上に作製される。
<Example> FIGS. 1 to 5 show cross-sectional views in each step. FIG. 1 shows a process of cleaning a glass substrate 1 to be used. FIG. 2 shows the above glass substrate 1.
In−Sn (90% In, 10% Sn in mol%) film 2
This is a process in which the film is deposited by sputtering to a thickness of 200 to 300 Å. In the step shown in FIG. 3, the In--Sn film 2 from the previous step is patterned into a desired electrode shape using a photoetching method or a screen printed mask. At this time, unnecessary portions of the metal film are removed by etching, but the etching solution used for etching is diluted 0.1 to 0.2 N because it only needs to etch the metal, compared to the conventional case of etching an oxide film. It is sufficient to use a hydrochloric acid aqueous solution of
Compared to minutes, it can be completed in 30 seconds at 30℃. The In--Sn film 2a exhibits a brown hue. In order to use the glass substrate 1 on which the In-Sn film 2a is adhered as a substrate for a liquid crystal cell, a pattern is formed on the glass substrate 1 in the process shown in FIG.
An alignment treatment film 3 is applied on the In-Sn film 2a. Silicon oxide, polyimide resin, etc. are used as the alignment treatment film 3, and in this example, polyimide resin is used. Visually inspect the glass substrate 1 on which the In-Sn film 2a and the alignment treatment film 3 are formed, and
The quality of the Sn film 2a is determined. The process in Figure 5 is
In the annealing step of the substrate 1 coated with the alignment film 3, heating is performed with the temperature range adjusted to 310 to 350° C., and the alignment film 3 is heat-treated. During this annealing process, the previously deposited In-Sn film 2
Perform the oxidation treatment of a. As a result, a transparent electrode 4 made of a heat-treated alignment film 3a and an ITO film is formed.
is fabricated on a glass substrate.

上記アニーリング工程中に配向処理膜3の下の
In−Sn膜2aが酸化されてI.T.O膜になるが、こ
れは配向処理膜3が持つ小さな細孔(ピンホー
ル)を通して大気からの酸素の供給を受けたり、
配向膜3自身が含有する酸素の供給を受けるため
と考えられる。
During the annealing process, the area under the alignment film 3
The In-Sn film 2a is oxidized to become an ITO film, which receives oxygen from the atmosphere through small pores (pinholes) in the alignment film 3.
This is considered to be because the alignment film 3 itself receives supply of oxygen contained therein.

上記工程によつて作製された電極基板は、可視
域では透過率83%以上で抵抗値500Ω/口以下の
特性を示す。この実施例から明らかなように、ア
ニーリング工程において配向膜処理膜3とIn−
Sn膜2aの加熱が同時に行なわれてIn−Sn膜2
aが酸化透明化されI.T.O膜となるため、上記の
ような抵抗値が得られる。これに対し、従来のよ
うに基板にIn−Sn膜を形成し、エツチングによ
り電極パターンを形成した後、第1次の加熱を行
なつて酸化透明化しI.T.O膜とし、更にその上に
配向処理膜を塗布した後、第2次の加熱処理を行
う方法においては、第1次の加熱で酸化されたI.
T.O膜は、更に第2次の加熱により酸化が進むた
め抵抗値が増大して電極として不具合となり勝ち
であり、これを防止するように加熱を制御するこ
とは極めて困難である等の問題があつた。上記実
施例では、この問題が生じないのが明らかであ
る。
The electrode substrate produced by the above process exhibits characteristics of a transmittance of 83% or more and a resistance value of 500Ω/mouth or less in the visible range. As is clear from this example, in the annealing process, the alignment film 3 and In-
The Sn film 2a is heated at the same time, and the In-Sn film 2
Since a is oxidized to become transparent and becomes an ITO film, the above resistance value can be obtained. On the other hand, as in the conventional method, an In-Sn film is formed on a substrate, an electrode pattern is formed by etching, and then a first heating is performed to make the film transparent by oxidation to form an ITO film. In a method in which a second heat treatment is performed after coating the I.
The TO film is further oxidized by secondary heating, which increases its resistance value and tends to cause problems as an electrode, and it is extremely difficult to control heating to prevent this. Ta. It is clear that this problem does not occur in the above embodiment.

第5図の工程以降の製造工程(シール剤印刷、
貼り合せ及び液晶注入等)は従来法と同様であ
る。
Manufacturing processes after the process shown in Figure 5 (sealant printing,
Bonding, liquid crystal injection, etc.) are the same as the conventional method.

<発明の効果> 以上のように本発明の液晶表示装置の製造方法
によれば、電極パターン検査において、電極用膜
が色を帯び視認検査が容易になり、又、エツチン
グ処理の場合エツチングする対象が金属であるた
め、従来法の金属酸化物のエツチングでは4Nの
塩酸水溶液で50℃2分も必要だつたのが、上記構
成の工程(c)で述べた如く希薄な塩酸水溶液、低温
度及び短時間で済み操作が簡単になり、さらにエ
ツチング液が基板表面に与える悪影響を緩和する
ことができ、又、配向膜及び電極用膜を加熱する
ことにより、配向膜下の電極用膜を酸化処理し透
明化するため、従来法において電極用膜が加熱に
より酸化透明化された後更に配向膜の処理時の加
熱により酸化され抵抗の増加を招き勝ちであつた
が、このような問題を解消しうる。
<Effects of the Invention> As described above, according to the method for manufacturing a liquid crystal display device of the present invention, the electrode film becomes colored in the electrode pattern inspection, making visual inspection easier, and in the case of etching treatment, the etching target Since the metal oxide is etched using a conventional method, it required 2 minutes at 50℃ using a 4N hydrochloric acid aqueous solution. It takes less time, the operation is simpler, and the adverse effects of the etching solution on the substrate surface can be alleviated.Also, by heating the alignment film and the electrode film, the electrode film under the alignment film can be oxidized. In order to make it transparent, in the conventional method, the electrode film is oxidized and made transparent by heating, and then it is further oxidized by heating during treatment of the alignment film, which tends to lead to an increase in resistance, but this problem can be solved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は、本発明の液晶表示装置の
製造方法の実施例を示す説明図である。 1……ガラス基板、2,2a……In−Sn膜、
3,3a……配向処理膜、4……透明電極。
1 to 5 are explanatory diagrams showing an embodiment of the method for manufacturing a liquid crystal display device of the present invention. 1... Glass substrate, 2, 2a... In-Sn film,
3, 3a...Alignment treatment film, 4...Transparent electrode.

Claims (1)

【特許請求の範囲】 1 相対向する基板の少なくとも一方の面上に透
明電極パターンを形成した後配向処理膜を堆積し
て液晶セル基板とする液晶表示装置の製造方法に
おいて、 前記基板の少なくとも一方の面上に茶かつ色の
In−Sn膜を堆積後エツチングしてパターン形成
する工程と、 パターン形成された前記In−Sn膜を視認検査
する工程と、前記In−Sn膜上を含む前記基板上
に配向処理膜を堆積する工程と、 パターン形成された前記In−Sn膜を視認検査
する工程と、 前記In−Sn膜及び前記配向処理膜をアニーリ
ングし、前記In−Sn膜を酸化して透明電極とす
る工程と、 を具備して成ることを特徴とする液晶表示装置の
製造方法。
[Scope of Claims] 1. A method for manufacturing a liquid crystal display device in which a transparent electrode pattern is formed on at least one surface of opposing substrates and then an alignment treatment film is deposited to obtain a liquid crystal cell substrate, comprising: brown and colored on the surface of
forming a pattern by etching the In-Sn film after depositing; visually inspecting the patterned In-Sn film; and depositing an alignment film on the substrate including the In-Sn film. a step of visually inspecting the patterned In-Sn film; and a step of annealing the In-Sn film and the alignment film to oxidize the In-Sn film to form a transparent electrode. A method of manufacturing a liquid crystal display device, comprising:
JP56173241A 1981-10-28 1981-10-28 Production for liquid crystal display device Granted JPS5872922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56173241A JPS5872922A (en) 1981-10-28 1981-10-28 Production for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173241A JPS5872922A (en) 1981-10-28 1981-10-28 Production for liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS5872922A JPS5872922A (en) 1983-05-02
JPH0451808B2 true JPH0451808B2 (en) 1992-08-20

Family

ID=15956768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173241A Granted JPS5872922A (en) 1981-10-28 1981-10-28 Production for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS5872922A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319624A (en) * 1986-07-11 1988-01-27 Sharp Corp Production of liquid crystal display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254458A (en) * 1975-10-29 1977-05-02 Casio Comput Co Ltd Electrode substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107160U (en) * 1977-02-10 1977-08-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254458A (en) * 1975-10-29 1977-05-02 Casio Comput Co Ltd Electrode substrate

Also Published As

Publication number Publication date
JPS5872922A (en) 1983-05-02

Similar Documents

Publication Publication Date Title
JP2000137251A (en) Thermochromic body and its production
US3220938A (en) Oxide underlay for printed circuit components
JPH0451808B2 (en)
JPS5826121B2 (en) Transparent conductive film precision pattern formation method
JPH07333656A (en) Transparent conductive film and its production
JPH05119306A (en) Production of color filter substrate
JPH0318737B2 (en)
JPH0462518A (en) Insulatable light shielding film pattern and formation thereof
JPH01173041A (en) Pattern forming method
JPH01259320A (en) Manufacture of electrode plate or electrode plate blank for display device
JPH0283538A (en) Liquid crystal display device
JPH02140704A (en) Color filter
JPH01112613A (en) Method for forming transparent conductive film pattern
JPS601704A (en) Method of forming pattern of transparent conductive film
JPS6251904B2 (en)
JPH0658476B2 (en) Method for manufacturing substrate for liquid crystal display device
JP2598922B2 (en) Method for manufacturing thin film transistor
JP3341346B2 (en) Manufacturing method of nonlinear element
JPH0572570A (en) Liquid crystal display device and production thereof
JPH01249171A (en) Production of base body having inorganic oxide film
JPS58106522A (en) Manufacture of liquid crystal display
JPS63241846A (en) Heat-proof black electrode
JPS582241A (en) Manufacture of transparent patterned electrode
JPS6131471B2 (en)
JPS58198802A (en) Method of forming transparent conductive film