JP2001035814A - Method of forming silver wiring pattern - Google Patents

Method of forming silver wiring pattern

Info

Publication number
JP2001035814A
JP2001035814A JP11207578A JP20757899A JP2001035814A JP 2001035814 A JP2001035814 A JP 2001035814A JP 11207578 A JP11207578 A JP 11207578A JP 20757899 A JP20757899 A JP 20757899A JP 2001035814 A JP2001035814 A JP 2001035814A
Authority
JP
Japan
Prior art keywords
silver
semiconductor substrate
organic solvent
wiring pattern
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11207578A
Other languages
Japanese (ja)
Inventor
Kutouruku Aarippu
アーリップ・クトゥルク
Masaaki Oda
正明 小田
Hiroyuki Yamakawa
洋幸 山川
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Ulvac Inc
Original Assignee
Vacuum Metallurgical Co Ltd
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd, Ulvac Inc filed Critical Vacuum Metallurgical Co Ltd
Priority to JP11207578A priority Critical patent/JP2001035814A/en
Publication of JP2001035814A publication Critical patent/JP2001035814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method of forming a silver wiring pattern at low process costs using a silver wiring material having high oxidation resistance, low electrical resistance, small resistance temperature coefficient, and capable of improving EM resistance by doping palladium or the like. SOLUTION: A silver wiring pattern is formed on a semiconductor substrate by applying a solution having superfine particles of silver independently dispersed therein with its viscosity 1000 cP or less at room temperature, onto the semiconductor substrate. The solution is prepared by blending such an organic solvent as to be hard to evaporate at room temperature, and to evaporate during drying and baking step of forming silver wiring on the semiconductor substrate with superfine particles of silver or silver oxide having grain diameters ranging from 0.001 to 0.1 μm. In the solution, the surfaces of the superfine particles are independently dispersed while covered with the organic solvent. After the application of the solution, the resulting semiconductor substrate is heated to evaporate the organic solvent. Then, a silver film whose thickness is 2 μm or less is formed on the semiconductor substrate, after which unnecessary portions are removed by etching, thereby forming the silver wiring pattern on the semiconductor substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LSI基板などの
半導体基板上に銀(Ag)薄膜を形成する方法に関し、
特に銀(Ag)超微粒子独立分散液を利用して半導体基
板上に銀(Ag)薄膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a silver (Ag) thin film on a semiconductor substrate such as an LSI substrate.
In particular, the present invention relates to a method for forming a silver (Ag) thin film on a semiconductor substrate by using a silver (Ag) ultrafine particle independent dispersion liquid.

【0002】[0002]

【従来の技術】最近の半導体産業におけるLSIの高集
積化及び高速化により、半導体基板の配線の微細化と多
層化が進み、配線ピッチが狭まることによって配線間容
量や配線抵抗による信号遅延の問題が生じている。これ
を避けるために、抵抗率の低い配線材料と誘電率の低い
層間絶縁膜を用いる必要に迫られ、配線材料として、従
来のAl合金等の代わりに電気抵抗率の低いかつエレク
トロマイグレーション(EM)耐性のあるCuを使用す
る動きが活発になってきている。しかし、一方で最も低
い電気抵抗率を持つ銀(Ag)を多層配線に使用し、A
l薄膜形成に使用されてきたプロセスをそのまま転用す
ることによってコスト低減をはかることが検討されてい
る。
2. Description of the Related Art In recent years, in the semiconductor industry, high integration and high speed of LSI have led to finer wiring and multi-layering of semiconductor substrates, and the wiring pitch has become narrower, resulting in a problem of signal delay due to capacitance between wiring and wiring resistance. Has occurred. In order to avoid this, it is necessary to use a wiring material having a low resistivity and an interlayer insulating film having a low dielectric constant. As a wiring material, instead of a conventional Al alloy or the like, an electromigration (EM) having a low electric resistivity is used. There is a growing movement to use resistant Cu. However, on the other hand, silver (Ag) having the lowest electric resistivity is used for the multilayer wiring, and A
It has been studied to reduce the cost by diverting the process used for forming the thin film as it is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
従来技術の銅(Cu)配線の形成法においては、銅が酸
化しやすいという問題があり、さらに、電気抵抗値は温
度に依存し、プロセス作動温度においては抵抗値が上昇
してしまうという問題があった。
However, in such a conventional method of forming a copper (Cu) wiring, there is a problem that copper is easily oxidized, and furthermore, an electric resistance value depends on a temperature, and a process operating temperature. Has a problem that the resistance value increases.

【0004】本発明は、このような従来の技術の問題点
を解決するためになされたものであり、酸化耐性がよ
く、電気抵抗値が低く、パラジウム(Pd)等のドープ
によりEM耐性向上ができる銀配線材料を用いて低プロ
セスコストで銀配線パターを形成しうる方法を提供する
ことを課題としている。
The present invention has been made in order to solve such problems of the conventional technology, and has a good oxidation resistance, a low electric resistance value, and an improvement in EM resistance by doping with palladium (Pd) or the like. It is an object of the present invention to provide a method capable of forming a silver wiring pattern at a low process cost using a silver wiring material that can be used.

【0005】[0005]

【課題を解決するための手段】本発明の銀配線パターン
の形成法は、室温で蒸発し難くかつ半導体基板上に銀配
線を形成する際の乾燥・焼成工程で蒸発するような有機
溶媒と、粒径0.001〜0.1μmの銀又は酸化銀超
微粒子とを混合して形成され、該超微粒子の表面が該有
機溶媒で覆われて個々に独立して分散しており、粘度が
室温で1000cP以下である銀超微粒子独立分散液を
半導体基板上へ塗布し、加熱して前記有機溶媒を蒸発さ
せ、焼成することによって前記超微粒子を融着させ、半
導体基板上に厚さ2μm以下の銀膜を形成し、その後不
用部分をエッチング処理して取り除き、半導体基板上に
銀配線パターンを形成することからなる。前記焼成にお
いて、焼成温度は、150〜500℃が望ましく、15
0℃未満だと有機溶媒が十分に乾燥除去されず、500
℃を超えると半導体素子に熱的ダメージを与えるという
問題がある。
The method for forming a silver wiring pattern according to the present invention comprises: an organic solvent which hardly evaporates at room temperature and which evaporates in a drying / firing step when forming silver wiring on a semiconductor substrate; It is formed by mixing silver or silver oxide ultrafine particles having a particle size of 0.001 to 0.1 μm, and the surface of the ultrafine particles is covered with the organic solvent and dispersed independently, and the viscosity is room temperature. Is coated on a semiconductor substrate with a silver ultrafine particle independent dispersion liquid of 1000 cP or less, and the organic solvent is evaporated by heating, followed by baking to fuse the ultrafine particles to a thickness of 2 μm or less on the semiconductor substrate. After forming a silver film, unnecessary portions are removed by etching, and a silver wiring pattern is formed on the semiconductor substrate. In the firing, the firing temperature is preferably 150 to 500 ° C.
When the temperature is lower than 0 ° C., the organic solvent is not sufficiently dried and removed, and 500
If the temperature exceeds ℃, there is a problem that a semiconductor element is thermally damaged.

【0006】前記銀超微粒子独立分散液には、金、銅、
アルミニウム、マグネシウム、スカンジウム、インジウ
ム、亜鉛、ニッケル、パラジウム、白金、コバルト、ロ
ジウム、イリジウム、鉄、ルテニウム、オスミウム、ク
ロム、タングステン、タンタル、チタン、ニオブ、ビス
マス、鉛、ホウ素、ケイ素、スズ、バリウムから選ばれ
た少なくとも一種の金属、または該金属を含む化合物の
少なくとも一種を添加してもよい。また、前記有機溶媒
としては、ミネラルスピリット、トリデカン、ドデシル
ベンゼン若しくはそれらの混合物、又はそれらにα−テ
ルピネオール又は炭素数5以上の炭化水素、アルコー
ル、エーテル、エステル、有機窒素化合物、有機ケイ素
化合物、有機イオウ化合物を混合したものが用いられ
る。前記銀超微粒子独立分散液の塗布方法としてはスピ
ンコータ、浸漬、スプレー等の手段が適用される。
[0006] The silver ultrafine particle independent dispersion liquid includes gold, copper,
From aluminum, magnesium, scandium, indium, zinc, nickel, palladium, platinum, cobalt, rhodium, iridium, iron, ruthenium, osmium, chromium, tungsten, tantalum, titanium, niobium, bismuth, lead, boron, silicon, tin, barium At least one selected metal or at least one compound containing the metal may be added. Examples of the organic solvent include mineral spirit, tridecane, dodecylbenzene or a mixture thereof, or α-terpineol or a hydrocarbon having 5 or more carbon atoms, an alcohol, an ether, an ester, an organic nitrogen compound, an organosilicon compound, or an organic solvent. A mixture of sulfur compounds is used. As a method for applying the silver ultrafine particle independent dispersion, means such as a spin coater, dipping, and spraying are applied.

【0007】本発明の銀配線パターンの形成法では、そ
の前処理として、基板表面に、スパッタ法又はCVD法
によりTiN,Ta、TaN、WN等のバリヤ膜を形成
してもよい。
In the method of forming a silver wiring pattern according to the present invention, as a pretreatment, a barrier film of TiN, Ta, TaN, WN or the like may be formed on the substrate surface by sputtering or CVD.

【0008】前記銀又は酸化銀超微粒子の濃度は、5〜
70wt%、好ましくは15〜50wt%である。ま
た、前記銀超微粒子独立分散液は、銀又は酸化銀超微粒
子以外に、銀のエレクトロマイグレーション(EM)耐
性を向上させる金属又はこれらの金属を含む化合物を少
なくとも一種含有していてもよい。この銀又は酸化銀超
微粒子以外の金属の具体的な例としては、例えばパラジ
ウム、チタン等が挙げられる。さらに、前記銀超微粒子
独立分散液は、銀又は酸化銀超微粒子以外に、銀への溶
解度が低く、かつ半導体基板の絶縁層構成材料と反応し
やすい金属又はこれらの金属を含む化合物を少なくとも
一種含有していてもよく、この金属元素が基材との界面
に析出することにより基材との接着性が向上されたり、
バリア膜なしでも絶縁層であるSiO2中への銀原子の
拡散が防止されうる。この銀又は酸化銀超微粒子以外の
具体的な例としては、例えば、金、銅、アルミニウム、
マグネシウム、スカンジウム、インジウム、亜鉛、ニッ
ケル、白金、コバルト、ロジウム、イリジウム、バナジ
ウム、鉄、ルテニウム、オスミウム、クロム、タングス
テン、タンタル、ニオブ、ビスマス、鉛、ホウ素、ケイ
素、スズ、バリウムから選ばれる金属又はこれら金属を
含む化合物が挙げられる。本発明で用いる銀超微粒子独
立分散液の粘度は1000cP以下、好ましくは100
cP以下であれば、銀超微粒子は、該銀超微粒子独立分
散液の形態で、半導体基板上の基板表面に平坦な液膜を
形成する。そして、所定の温度・時間で加熱することに
より、該分散液の有機溶媒が蒸発され、銀等の金属超微
粒子同士が融着し、半導体基板に銀の薄膜が形成され
る。また、かかる分散液を適用する銀薄膜の形成法では
ほとんど金属原料のロスもなく、真空装置を必要としな
い。
The concentration of the silver or silver oxide ultrafine particles is 5 to
70 wt%, preferably 15 to 50 wt%. Further, the silver ultrafine particle independent dispersion liquid may contain at least one kind of metal or a compound containing such a metal, which improves the electromigration (EM) resistance of silver, in addition to silver or silver oxide ultrafine particles. Specific examples of the metal other than the silver or silver oxide ultrafine particles include palladium and titanium. Further, the silver ultrafine particle independent dispersion liquid, besides silver or silver oxide ultrafine particles, has a low solubility in silver, and at least one kind of a metal or a compound containing these metals that easily reacts with the insulating layer constituting material of the semiconductor substrate. May be contained, or the adhesion of the metal element to the substrate is improved by precipitation at the interface with the substrate,
Even without a barrier film, diffusion of silver atoms into SiO 2 as an insulating layer can be prevented. Specific examples other than the silver or silver oxide ultrafine particles include, for example, gold, copper, aluminum,
Metals selected from magnesium, scandium, indium, zinc, nickel, platinum, cobalt, rhodium, iridium, vanadium, iron, ruthenium, osmium, chromium, tungsten, tantalum, niobium, bismuth, lead, boron, silicon, tin, barium or Compounds containing these metals are mentioned. The viscosity of the silver ultrafine particle independent dispersion used in the present invention is 1000 cP or less, preferably 100 cP or less.
If it is cP or less, the ultrafine silver particles form a flat liquid film on the substrate surface on the semiconductor substrate in the form of the ultrafine silver particle independent dispersion. Then, by heating at a predetermined temperature and time, the organic solvent of the dispersion liquid is evaporated, and ultrafine metal particles of silver or the like are fused together to form a silver thin film on the semiconductor substrate. In addition, in the method of forming a silver thin film using such a dispersion, there is almost no loss of a metal raw material, and a vacuum device is not required.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。 (実施例1)ヘリウム圧力0.5Torrの条件下で銀
を蒸発させ、ガス中蒸発法により銀の超微粒子を生成す
る際に、生成過程の銀超微粒子にα−テルピネオールの
蒸気を接触させて冷却回収し、α−テルピネオール溶媒
中に独立した状態で分散している平均粒子径0.008
μmの銀超微粒子を20wt%含有する銀超微粒子独立
分散液を作製した。この分散液は粘度が室温で100c
P、150℃で3cPであった。
Embodiments of the present invention will be described below. (Example 1) When silver is evaporated under a condition of a helium pressure of 0.5 Torr and silver ultrafine particles are produced by a gas evaporation method, a vapor of α-terpineol is brought into contact with the ultrafine silver particles in the production process. An average particle size of 0.008, which is collected by cooling and independently dispersed in an α-terpineol solvent.
A silver ultrafine particle independent dispersion containing 20 wt% of ultrafine silver particles of 20 μm was prepared. This dispersion has a viscosity of 100 c at room temperature.
P was 3 cP at 150 ° C.

【0010】同様の手法を用いてパラジウム超微粒子独
立分散液を作製し、このパラジウム超微粒子独立分散液
を上記分散液と混合し、パラジウムが1.0wt%を占
めるように銀・パラジウム混合液を作製した。
A palladium ultrafine particle independent dispersion is prepared using the same method, and this palladium ultrafine particle independent dispersion is mixed with the above dispersion, and a silver / palladium mixed solution is prepared so that palladium occupies 1.0 wt%. Produced.

【0011】次いで、既に半導体素子が形成され、上部
配線とのコンタクトのためにW(タングステン)ビアが
形成されたSi基板を用意した。このSi基板のビアの
部分を除いた他の部分には、絶縁膜としてのSiO2
とその上に厚さ0.02μmのWNバリア膜が形成され
ている。
Next, a Si substrate having a semiconductor element formed thereon and a W (tungsten) via formed for contact with an upper wiring was prepared. Except for the via portion of the Si substrate, an SiO 2 film as an insulating film and a 0.02 μm-thick WN barrier film are formed on the SiO 2 film as an insulating film.

【0012】上記の基板をスピンコータにセットして5
00rpmで回転させ、その上方から加熱した状態の上
記銀・パラジウム超微粒子独立分散液を滴下することに
よって、スピンコーティングした。50℃以上に加熱し
た状態でスピンコーティングすることにより、基板の表
面には平坦な該分散液の液膜が形成された。この状態の
基板を大気中、250℃の温度で、2分間加熱して有機
溶媒を蒸発させ、次いで温度を300℃に上げて、10
分間焼成した。かくして、銀・パラジウム超微粒子が相
互に融着して、割れのない厚さ1μmの銀・パラジウム
合金薄膜が形成された。
The above substrate is set on a spin coater and
By spinning at 00 rpm, the above-mentioned silver / palladium ultrafine particle independent dispersion in a heated state was dropped from above, thereby performing spin coating. By performing spin coating while heating to 50 ° C. or higher, a flat liquid film of the dispersion was formed on the surface of the substrate. The substrate in this state is heated in air at 250 ° C. for 2 minutes to evaporate the organic solvent, and then the temperature is raised to 300 ° C.
Bake for a minute. Thus, the silver / palladium ultrafine particles were fused together to form a 1 μm thick silver / palladium alloy thin film without cracks.

【0013】その上にフォトレジスト膜をコーティング
し、銀・パラジウム膜をエッチングにより取り除きたい
部分以外を残すようにフォトレジスト膜のパターニング
処理を行った。この基板を真空チャンバー内にセット
し、チャンバー内を真空排気した後に、酸素と塩素とか
らなる混合ガス(10-4Torr)を導入し、高周波プ
ラズマ処理を施して不用部分の銀・パラジウム膜を除去
し、さらに銀・パラジウム膜上に残ったフォトレジスト
を取り除き、Wビア上に幅0.15μmの銀配線を形成
した。得られた薄膜はEM耐性が向上し、その比抵抗値
は1.87μΩcmであった。 (実施例2)実施例1における銀超微粒子独立分散液の
代わりに、ヘリウムガス中に0.01TorrのO2
スを混合した雰囲気中で銀を蒸発させ、有機溶媒にミネ
ラルスピリットを用いて粒子径0.01μmの酸化銀
(Ag2O)超微粒子独立分散液を作製した。この分散
液の粘度は室温で50cPであった。
A photoresist film was coated thereon, and the photoresist film was subjected to a patterning process so as to leave a portion other than a portion where the silver / palladium film was to be removed by etching. This substrate was set in a vacuum chamber, and after evacuation of the chamber, a mixed gas (10 -4 Torr) containing oxygen and chlorine was introduced, and high-frequency plasma treatment was performed to remove unnecessary silver / palladium films. Then, the photoresist remaining on the silver / palladium film was removed, and a silver wiring having a width of 0.15 μm was formed on the W via. The EM resistance of the obtained thin film was improved, and the specific resistance value was 1.87 μΩcm. Instead of (Example 2) Silver in Example 1 ultrafine particles independently dispersed liquid silver was evaporated in an atmosphere of a mixture of O 2 gas 0.01Torr in helium gas, with mineral spirits in an organic solvent particles A silver oxide (Ag 2 O) ultrafine particle independent dispersion having a diameter of 0.01 μm was prepared. The viscosity of this dispersion was 50 cP at room temperature.

【0014】同様の手法を用いてパラジウム超微粒子独
立分散液を作製し、このパラジウム超微粒子独立分散液
を上記分散液と混合し、パラジウムが1.0wt%を占
めるように酸化銀・パラジウム混合液を作製した。
Using the same method, a palladium ultrafine particle independent dispersion is prepared, and this palladium ultrafine particle independent dispersion is mixed with the above dispersion, and a silver oxide / palladium mixed liquid is prepared so that palladium accounts for 1.0 wt%. Was prepared.

【0015】次いで、上記分散液を用いて、実施例1と
同様であるが、分散液を加熱せずに銀・パラジウム膜を
形成したところ、得られた薄膜は、焼結後も縮や割れが
生じることもなく、その比抵抗は1.87μΩcmであ
った。 (実施例3)実施例1における銀超微粒子独立分散液の
代わりに、有機溶媒としてトリデカンを用いて作製した
銀超微粒子独立分散液にマグネシウムの有機化合物の添
加されたものを、実施例1と同様にして作製した。得ら
れた分散液の粘度は室温で30cPであった。
Next, a silver / palladium film was formed in the same manner as in Example 1 except that the dispersion was not heated, and the obtained thin film was shrunk and cracked even after sintering. Did not occur, and its specific resistance was 1.87 μΩcm. (Example 3) Instead of the silver ultrafine particle independent dispersion liquid in Example 1, a silver ultrafine particle independent dispersion liquid prepared by using tridecane as an organic solvent and an organic compound of magnesium was added to Example 1 was used. It was produced in the same manner. The viscosity of the resulting dispersion was 30 cP at room temperature.

【0016】次いで、これらの分散液を用いて、WNバ
リア膜を形成する工程を省き、他は実施例1と同様にし
て基板上に銀膜を形成したところ、得られた薄膜は、基
板との密着性も良好であり、絶縁膜であるSiO2中へ
の銀原子の拡散もなく、その比抵抗は1.93μΩcm
であった。 (実施例4)実施例1のα−テルピネオールにミネラル
スピリットを混合した溶媒中に分散させた室温で50c
Pの銀超微粒子独立分散液を作製し、これを用いて実施
例1と同様にして、基板上に銀膜を形成し、エッチング
により配線パターンを形成した。得られた薄膜の比抵抗
は1.87μΩcmであった。
Next, a step of forming a WN barrier film using these dispersions was omitted, and a silver film was formed on the substrate in the same manner as in Example 1 except that the obtained thin film was Has good adhesion, no diffusion of silver atoms into the insulating film SiO 2 , and a specific resistance of 1.93 μΩcm.
Met. (Example 4) 50 c at room temperature dispersed in a solvent obtained by mixing the mineral spirit with α-terpineol of Example 1
A silver ultrafine particle independent dispersion of P was prepared, and a silver film was formed on a substrate in the same manner as in Example 1 using this, and a wiring pattern was formed by etching. The specific resistance of the obtained thin film was 1.87 μΩcm.

【0017】[0017]

【発明の効果】本発明の銀配線パターンの形成法によれ
ば、LSI基板上にLSIの動作温度(150℃)にお
いて他の材料に比べ、より低い抵抗値をもち、EM耐性
に優れた導電性の均一な微細パターンを形成することが
できる。そして、配線抵抗による信号遅延を低減し、L
SIの高集積化及び高速化をはかることができる。
According to the method for forming a silver wiring pattern of the present invention, a conductive material having a lower resistance value and an excellent EM resistance at a working temperature (150 ° C.) of an LSI on an LSI substrate as compared with other materials. A fine pattern with uniform properties can be formed. Then, signal delay due to wiring resistance is reduced, and L
High integration and high speed of the SI can be achieved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 洋幸 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 (72)発明者 村上 裕彦 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 Fターム(参考) 4K044 AA11 BA08 BA12 BA21 BB01 BB10 CA22 CA24 CA27 CA53 CA62 CA64 4M104 BB08 BB39 DD51 HH01 HH16 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroyuki Yamakawa 5-9-7 Tokodai, Tsukuba, Ibaraki Japan Inside Tsukuba Super Materials Research Laboratory, Japan Vapor Technology Co., Ltd. (72) Inventor Hirohiko Murakami 5 Tokodai, Tsukuba, Ibaraki -9-7 F-term in Tsukuba Super Materials Research Laboratory, Japan Vacuum Engineering Co., Ltd. (Reference) 4K044 AA11 BA08 BA12 BA21 BB01 BB10 CA22 CA24 CA27 CA53 CA62 CA64 4M104 BB08 BB39 DD51 HH01 HH16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 室温で蒸発し難くかつ半導体基板上に銀
配線を形成する際の乾燥・焼成工程で蒸発するような有
機溶媒と、粒径0.001〜0.1μmの銀又は酸化銀
超微粒子とを混合して形成され、該超微粒子の表面が該
有機溶媒で覆われて個々に独立して分散しており、粘度
が室温で1000cP以下である銀超微粒子独立分散液
を半導体基板上へ塗布し、加熱して前記有機溶媒を蒸発
させ、焼成することによって前記超微粒子を融着させ、
半導体基板上に厚さ2μm以下の銀膜を形成し、その後
不用部分をエッチング処理して取り除き、半導体基板上
に銀配線パターンを形成する方法。
1. An organic solvent which is difficult to evaporate at room temperature and evaporates in a drying / firing step when forming a silver wiring on a semiconductor substrate, and a silver or silver oxide having a particle size of 0.001 to 0.1 μm. The ultrafine particles are formed by mixing fine particles, and the surface of the ultrafine particles is covered with the organic solvent and dispersed independently, and the viscosity is 1000 cP or less at room temperature. Coated, heated to evaporate the organic solvent, and by baking to fuse the ultrafine particles,
A method in which a silver film having a thickness of 2 μm or less is formed on a semiconductor substrate, and unnecessary portions are removed by etching, and a silver wiring pattern is formed on the semiconductor substrate.
【請求項2】 前記銀超微粒子独立分散液は、金、銅、
アルミニウム、マグネシウム、スカンジウム、インジウ
ム、亜鉛、ニッケル、パラジウム、白金、コバルト、ロ
ジウム、イリジウム、鉄、ルテニウム、オスミウム、ク
ロム、タングステン、タンタル、チタン、ニオブ、ビス
マス、鉛、ホウ素、ケイ素、スズ、バリウムから選ばれ
た少なくとも一種の金属、または該金属を含む化合物の
少なくとも一種を添加されたものである請求項1に記載
の銀配線パターンを形成する方法。
2. The silver ultrafine particle independent dispersion comprises gold, copper,
From aluminum, magnesium, scandium, indium, zinc, nickel, palladium, platinum, cobalt, rhodium, iridium, iron, ruthenium, osmium, chromium, tungsten, tantalum, titanium, niobium, bismuth, lead, boron, silicon, tin, barium 2. The method for forming a silver wiring pattern according to claim 1, wherein at least one selected metal or a compound containing the metal is added.
【請求項3】 前記有機溶媒がミネラルスピリット、ト
リデカン、ドデシルベンゼン若しくはそれらの混合物、
又はそれらにα−テルピネオール又は炭素数5以上の炭
化水素、アルコール、エーテル、エステル、有機窒素化
合物、有機ケイ素化合物、有機イオウ化合物を混合した
ものである請求項1又は請求項2に記載の銀配線パター
ンを形成する方法。
3. The method according to claim 1, wherein the organic solvent is mineral spirit, tridecane, dodecylbenzene, or a mixture thereof.
The silver wiring according to claim 1 or 2, wherein α-terpineol or a hydrocarbon having 5 or more carbon atoms, an alcohol, an ether, an ester, an organic nitrogen compound, an organic silicon compound, or an organic sulfur compound is mixed therewith. How to form a pattern.
【請求項4】 前記銀超微粒子独立分散液がスピンコー
タ、浸漬、スプレー等の手段によって前記半導体基板に
適用される請求項1乃至3いずれかに記載の銀配線パタ
ーンを形成する方法。
4. The method for forming a silver wiring pattern according to claim 1, wherein the silver ultrafine particle independent dispersion is applied to the semiconductor substrate by means such as a spin coater, immersion, or spraying.
JP11207578A 1999-07-22 1999-07-22 Method of forming silver wiring pattern Pending JP2001035814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11207578A JP2001035814A (en) 1999-07-22 1999-07-22 Method of forming silver wiring pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11207578A JP2001035814A (en) 1999-07-22 1999-07-22 Method of forming silver wiring pattern

Publications (1)

Publication Number Publication Date
JP2001035814A true JP2001035814A (en) 2001-02-09

Family

ID=16542086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11207578A Pending JP2001035814A (en) 1999-07-22 1999-07-22 Method of forming silver wiring pattern

Country Status (1)

Country Link
JP (1) JP2001035814A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040450A2 (en) * 2003-10-14 2005-05-06 Battelle Memorial Institute Method and apparatus for making an organic thin film
JP2006321948A (en) * 2005-05-20 2006-11-30 Sumitomo Electric Ind Ltd Metal particulate dispersion and method for forming metal film by using the same
JP2007073856A (en) * 2005-09-09 2007-03-22 Sony Corp Formation method of conductive pattern, manufacturing method of semiconductor device, and manufacturing method of organic electroluminescent element
JP2007090767A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Gas barrier film
US20070098883A1 (en) * 2003-09-12 2007-05-03 Daisuke Itoh Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape
CN100339914C (en) * 2003-07-23 2007-09-26 夏普株式会社 Silver alloy material, circuit substrate, electronic device, and method for manufacturing circuit substrate
EP1887106A1 (en) * 2005-05-30 2008-02-13 Sumitomo Electric Industries, Ltd. Metal coating film, method for forming same, and metal wiring
US7405156B2 (en) 2004-07-07 2008-07-29 Nec Lcd Technologies, Ltd. Method of forming wiring pattern
US10249804B2 (en) 2016-07-19 2019-04-02 Nichia Corporation Semiconductor device, base, and method for manufacturing same
US10586896B2 (en) 2016-05-11 2020-03-10 Nichia Corporation Semiconductor element, semiconductor device, and method for manufacturing semiconductor element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208321A (en) * 1988-02-13 1989-08-22 Ricoh Co Ltd Production of superconducting oxide thin film
JPH0334211A (en) * 1989-03-30 1991-02-14 Shinku Yakin Kk Metal paste and manufacture thereof
JPH03281783A (en) * 1990-03-29 1991-12-12 Vacuum Metallurgical Co Ltd Formation of thin metallic film
JPH06302879A (en) * 1993-04-16 1994-10-28 Fuji Xerox Co Ltd Current-voltage nonlinear element and its manufacturing method
JPH07122365A (en) * 1993-10-26 1995-05-12 Fuji Xerox Co Ltd Thin film el element and manufacture thereof and sputtering target used therefor
JPH07147469A (en) * 1993-11-24 1995-06-06 Sumitomo Kinzoku Ceramics:Kk Conductor paste
JPH09134891A (en) * 1995-09-06 1997-05-20 Vacuum Metallurgical Co Ltd Formation of thin film of semiconductor substrate
JPH09172084A (en) * 1995-11-02 1997-06-30 E I Du Pont De Nemours & Co Formation of via fill and capture pad and thick film composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208321A (en) * 1988-02-13 1989-08-22 Ricoh Co Ltd Production of superconducting oxide thin film
JPH0334211A (en) * 1989-03-30 1991-02-14 Shinku Yakin Kk Metal paste and manufacture thereof
JPH03281783A (en) * 1990-03-29 1991-12-12 Vacuum Metallurgical Co Ltd Formation of thin metallic film
JPH06302879A (en) * 1993-04-16 1994-10-28 Fuji Xerox Co Ltd Current-voltage nonlinear element and its manufacturing method
JPH07122365A (en) * 1993-10-26 1995-05-12 Fuji Xerox Co Ltd Thin film el element and manufacture thereof and sputtering target used therefor
JPH07147469A (en) * 1993-11-24 1995-06-06 Sumitomo Kinzoku Ceramics:Kk Conductor paste
JPH09134891A (en) * 1995-09-06 1997-05-20 Vacuum Metallurgical Co Ltd Formation of thin film of semiconductor substrate
JPH09172084A (en) * 1995-11-02 1997-06-30 E I Du Pont De Nemours & Co Formation of via fill and capture pad and thick film composition

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339914C (en) * 2003-07-23 2007-09-26 夏普株式会社 Silver alloy material, circuit substrate, electronic device, and method for manufacturing circuit substrate
US20070098883A1 (en) * 2003-09-12 2007-05-03 Daisuke Itoh Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape
US9006296B2 (en) * 2003-09-12 2015-04-14 Harima Chemicals, Inc. Metal nanoparticle dispersion usable for ejection in the form of fine droplets to be applied in the layered shape
WO2005040450A3 (en) * 2003-10-14 2005-08-11 Battelle Memorial Institute Method and apparatus for making an organic thin film
WO2005040450A2 (en) * 2003-10-14 2005-05-06 Battelle Memorial Institute Method and apparatus for making an organic thin film
US7405156B2 (en) 2004-07-07 2008-07-29 Nec Lcd Technologies, Ltd. Method of forming wiring pattern
JP2006321948A (en) * 2005-05-20 2006-11-30 Sumitomo Electric Ind Ltd Metal particulate dispersion and method for forming metal film by using the same
EP1887106A1 (en) * 2005-05-30 2008-02-13 Sumitomo Electric Industries, Ltd. Metal coating film, method for forming same, and metal wiring
EP1887106A4 (en) * 2005-05-30 2009-06-03 Sumitomo Electric Industries Metal coating film, method for forming same, and metal wiring
US8507104B2 (en) 2005-05-30 2013-08-13 Sumitomo Electric Industries, Ltd. Metal coating, forming method thereof, and metal wiring
JP2007073856A (en) * 2005-09-09 2007-03-22 Sony Corp Formation method of conductive pattern, manufacturing method of semiconductor device, and manufacturing method of organic electroluminescent element
JP2007090767A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Gas barrier film
JP4699156B2 (en) * 2005-09-29 2011-06-08 大日本印刷株式会社 Gas barrier film
US10586896B2 (en) 2016-05-11 2020-03-10 Nichia Corporation Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
US11349049B2 (en) 2016-05-11 2022-05-31 Nichia Corporation Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
US10249804B2 (en) 2016-07-19 2019-04-02 Nichia Corporation Semiconductor device, base, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4362170B2 (en) Silver ultrafine particle independent dispersion
US5587111A (en) Metal paste, process for producing same and method of making a metallic thin film using the metal paste
EP0980097B1 (en) Dispersion containing Cu ultrafine particles individually dispersed therein
EP0449309B9 (en) Method of making metalic thin film
US6121685A (en) Metal-alloy interconnections for integrated circuits
CN1218381C (en) Method of raising low-electric layer spreading capacity
JPH0350365B2 (en)
KR20010072473A (en) Integrated circuit trenched features and method of producing same
JP2001035814A (en) Method of forming silver wiring pattern
JP4906597B2 (en) Semiconductor capacitor structure
JP4362173B2 (en) Cu ultrafine particle independent dispersion
JP4080972B2 (en) Semiconductor device having amorphous barrier layer for copper wiring and manufacturing method thereof
JP2001254185A (en) Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method
JP3953237B2 (en) Method for forming metal thin film and method for producing metal fine particle dispersion
CN101036230A (en) Treatment of silicon prior to nickel silicide formation
EP0980094B1 (en) Method for forming Cu-thin film
JP2000124157A (en) FORMATION OF Cu THIN FILM
KR100413632B1 (en) The Method of Cu Electroplating Using Dual Pretreatment of Hydrogen Plasma/Rapid Thermal Annealing
JP2002075999A (en) Method of forming copper wiring pattern
JP7488127B2 (en) METHOD FOR FORMING METAL WIRING AND FILM DEPOSITION APPARATUS
JP2001053028A (en) Formation method of cu thin film
JP2000306912A (en) Metal thin-film forming method
JP2004155638A (en) Metal oxide dispersion
JP4751496B2 (en) (Cu-C) Seed Layer Formation Method
JP2000124307A (en) Forming method for metal-based film and manufacture of electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817