JPH06301063A - Production of mim-type nonlinear element - Google Patents

Production of mim-type nonlinear element

Info

Publication number
JPH06301063A
JPH06301063A JP8887393A JP8887393A JPH06301063A JP H06301063 A JPH06301063 A JP H06301063A JP 8887393 A JP8887393 A JP 8887393A JP 8887393 A JP8887393 A JP 8887393A JP H06301063 A JPH06301063 A JP H06301063A
Authority
JP
Japan
Prior art keywords
film
metal
metal film
mim type
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8887393A
Other languages
Japanese (ja)
Other versions
JP3306986B2 (en
Inventor
Takashi Inoue
孝 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8887393A priority Critical patent/JP3306986B2/en
Publication of JPH06301063A publication Critical patent/JPH06301063A/en
Application granted granted Critical
Publication of JP3306986B2 publication Critical patent/JP3306986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide an inexpensive active-matrix liq. crystal display element without deteriorating the voltage-current characteristic by limiting a process to expose a resist only to two stages, i.e., a stage to work a first metal film, a first metal oxide film and a second metal film at the same time and a stage to work a transparent conductive film. CONSTITUTION:First metal layers 12a and 12b are deposited on the surface side of a transparent substrate with a TaOx film formed on the surface, the surface is anodized to form a first metal oxide film 13 which is heat-treated, and a second metal film 14 is deposited. The first metal films 12a and 12b, the first metal oxide film 13 and the second metal film 14 are then simultaneously worked with a resist of specified shape as a mask. The side face of the first metal film 12 is then anodized to form a second metal oxide film 15. Subsequently, a transparent conductive film 16 such as an ITO film to be used as a picture-element electrode electrically connected to the second metal film 14 is deposited and etched into a specified shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はMIM型非線形素子及び
その製造方法に関し、特に、そのMIM型非線形素子を
低コストで作製できる製造方法および素子間の配線膜の
低抵抗化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MIM type non-linear element and a method of manufacturing the same, and more particularly to a method of manufacturing the MIM type non-linear element at low cost and a reduction in resistance of a wiring film between the elements.

【0002】[0002]

【従来の技術】一般に、アクティブマトリクス方式の液
晶表示装置においては、画素領域ごとに非線形素子を設
けてマトリクスアレイを形成した一方側の基板と、カラ
ーフィルタが形成された他方側の基板との間に液晶を充
填しておき、各画素領域ごとの液晶の配向状態を制御し
て、所定の情報を表示する。ここで、非線形素子として
薄膜トランジスタ(TFT)などの3端子素子または金
属−絶縁体−金属(MIM)型非線形素子などの2端子
素子を用いるが、液晶表示素子に対する画面の大型化お
よび低コスト化などの要求に対応するにはMIM型非線
形素子を用いた方式が製造工程が短いために有利であ
る。しかも、MIM型非線形素子を用いた場合には、マ
トリクスアレイを形成した一方側の基板に走査線を設
け、他方側の基板には信号線を設けることができるの
で、3端子素子の不良の大きな原因となっている走査線
と信号線のクロスオーバー短絡が発生しないというメリ
ットもある。
2. Description of the Related Art Generally, in an active matrix type liquid crystal display device, between a substrate on one side where a matrix array is formed by providing a non-linear element for each pixel region and a substrate on the other side where a color filter is formed. Is filled with liquid crystal and the alignment state of the liquid crystal in each pixel area is controlled to display predetermined information. Here, as the non-linear element, a three-terminal element such as a thin film transistor (TFT) or a two-terminal element such as a metal-insulator-metal (MIM) type non-linear element is used, but the screen size and cost of the liquid crystal display element are reduced. In order to meet the above requirement, the method using the MIM type non-linear element is advantageous because the manufacturing process is short. Moreover, when the MIM type non-linear element is used, the scanning line can be provided on the substrate on one side where the matrix array is formed and the signal line can be provided on the substrate on the other side. There is also an advantage that a crossover short circuit between the scanning line and the signal line, which is the cause, does not occur.

【0003】このようなMIM型非線形素子を用いたア
クティブマトリクス方式の液晶表示パネルにおいては、
図4に示すように、各画素領域2で各走査線4と各信号
線5との間にMIM型非線形素子1(図中、バリスタの
符号で示す。)と液晶表示素子3(図中、コンデンサの
符号で示す。)が直列接続された構成として表され、走
査線4および信号線5に印加された信号に基づいて、液
晶表示素子3を表示状態および非表示状態あるいはその
中間状態に切り換えて表示動作を制御する。
In an active matrix type liquid crystal display panel using such a MIM type non-linear element,
As shown in FIG. 4, in each pixel region 2, between each scanning line 4 and each signal line 5, a MIM type nonlinear element 1 (indicated by a varistor symbol in the figure) and a liquid crystal display element 3 (in the figure, Are shown as capacitors connected in series, and the liquid crystal display element 3 is switched between a display state and a non-display state or an intermediate state thereof based on a signal applied to the scanning line 4 and the signal line 5. Control the display operation.

【0004】このようなMIM型非線形素子の一般的な
構造を断面図の図5(d)を用いて述べる。MIM型非
線形素子1は、透明基板51の表面側に形成されて、走
査線4を介して走査回路側に導電接続するTa原子を主
成分としTa原子以外の不純物原子を含んだ金属膜52
と、その表面側の金属酸化膜53と、その表面側に形成
されて画素電極55に導電接続するCr膜54とから構
成されている。金属酸化膜53は、Ta膜の表面に膜厚
が均一で、しかもピンホールがない状態で形成されるよ
うに、金属膜52に対する陽極酸化によって形成され
る。
A general structure of such an MIM type non-linear element will be described with reference to a sectional view of FIG. The MIM type non-linear element 1 is formed on the front surface side of the transparent substrate 51 and is a metal film 52 containing Ta atoms as a main component and conductively connected to the scanning circuit side through the scanning lines 4 and containing impurity atoms other than Ta atoms.
And a Cr film 54 formed on the surface side and conductively connected to the pixel electrode 55. The metal oxide film 53 is formed by anodic oxidation on the metal film 52 so that the Ta film has a uniform film thickness and is formed without pinholes.

【0005】この構造を実現する一般的なプロセス例は
以下のようになる。
A general process example for realizing this structure is as follows.

【0006】1.ガラス基板上に、Ta膜をスパッタリ
ングで堆積し、熱酸化をすることで、約1000ÅのT
25膜を形成する工程と、 2.次に、図5(a)に示すように、コスパッタリング
法や電子ビーム蒸着法でTa原子を主成分としTa原子
以外の不純物原子を含んだ第一の金属膜を約5000Å
堆積し、パターニングする工程と、 3.次に、図5(b)に示すように、例えばクエン酸の
希薄水溶液を化成液とし30Vで陽極酸化し、第一の金
属膜の表面側に酸化膜を形成する工程と、 4.次に、図5(b)の状態の基板を真空中で400〜
600℃の温度で1〜2時間熱処理する工程と、 5.次に、図5(c)に示すように、第二の金属膜とな
るCr膜を1500Å程スパッタリング法で堆積し、パ
ターニングする工程と、 6.次に、画素電極となる透明導電膜の1つであるIT
O膜をスパッタリング法で約2000Å堆積し、パター
ニングする工程から従来はなっていた。
1. By depositing a Ta film on a glass substrate by sputtering and performing thermal oxidation, a T film of about 1000Å can be obtained.
1. a step of forming an a 2 O 5 film; Next, as shown in FIG. 5A, a first metal film containing Ta atoms as a main component and impurity atoms other than Ta atoms was formed by co-sputtering or electron beam evaporation to a thickness of about 5000 Å.
2. Deposit and pattern. Next, as shown in FIG. 5B, a step of forming an oxide film on the surface side of the first metal film by anodizing at 30 V using, for example, a dilute aqueous solution of citric acid as a chemical conversion solution, 4. Next, the substrate in the state of FIG.
4. Heat treatment at a temperature of 600 ° C. for 1 to 2 hours, Next, as shown in FIG. 5C, a step of depositing and patterning a Cr film to be a second metal film by a sputtering method of about 1500 Å, 6. Next, IT which is one of the transparent conductive films to be the pixel electrodes
It has been conventionally practiced from a step of depositing an O film of about 2000 liters by a sputtering method and patterning it.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、MIM
型非線形素子を用いた液晶表示装置の製造工程において
は、第一の金属膜,第二の金属膜及び画素電極と3つの
膜それぞれにレジストを塗布して加工する必要がある。
アクティブマトリクス方式の液晶表示装置は、TFT方
式とMIM方式に大別されるが、MIM方式は素子基板
の対向基板側にも膜の加工が1回必要であるために、歩
留まりを低下させスループットを落とすレジストの露光
工程が3回もあると、露光工程が5回程度であるTFT
方式に対して圧倒的に安くアクティブマトリクス基板を
提供することが難しい。そこで、MIM型非線形素子の
電気的特性を劣化させることなく素子基板のレジスト露
光工程を2回にすることが望まれる。
[Problems to be Solved by the Invention] However, MIM
In the manufacturing process of the liquid crystal display device using the type non-linear element, it is necessary to apply a resist to each of the first metal film, the second metal film, the pixel electrode and the three films for processing.
The liquid crystal display device of the active matrix system is roughly classified into the TFT system and the MIM system. In the MIM system, since the film needs to be processed once on the opposite substrate side of the element substrate, the yield is lowered and the throughput is increased. If the exposure process of the resist to be dropped is three times, the exposure process is performed about five times.
It is difficult to provide an active matrix substrate that is overwhelmingly cheap compared with the method. Therefore, it is desired to perform the resist exposure step of the element substrate twice without deteriorating the electrical characteristics of the MIM type nonlinear element.

【0008】レジスト露光工程を2回にする方法の1つ
として特開昭61−250676に示されているよう
に、シリコン膜の上にITO膜を形成して不活性ガス中
でアニールするとシリコン膜とITO膜の界面に酸化膜
が形成されるので、露光の回数はシリコン膜とITO膜
の2回でMIM型非線形素子が完了するというものであ
る。ところが、シリコン−二酸化シリコン−ITOのM
IM型非線形素子では液晶表示装置を駆動するのに適し
た電気特性は得られないばかりでなく、シリコン膜の配
線抵抗は金属膜に比べてかなり高いので画面全面を表示
するには不適当である。
As shown in Japanese Patent Laid-Open No. 61-250676, one of the methods of performing the resist exposure step twice is to form an ITO film on a silicon film and anneal it in an inert gas to obtain a silicon film. Since an oxide film is formed at the interface between the ITO film and the ITO film, the MIM type non-linear element is completed with two exposures, the silicon film and the ITO film. However, M of silicon-silicon dioxide-ITO
The IM type non-linear element is not suitable for driving the liquid crystal display device, and is not suitable for displaying the entire screen because the wiring resistance of the silicon film is considerably higher than that of the metal film. .

【0009】もう1つの方法として特開昭60−164
724に示されているように、第二の金属膜を100Å
程度に薄くして画素電極膜と同時に加工するというもの
である。ところが、金属膜と画素電極膜が重なっている
のでMIM型非線形素子を形成した基板の透過率が悪く
なるために、液晶表示装置の表示輝度が得られなくな
る。また、電気特性が第二の金属膜の膜厚に敏感なため
に画面内での均一性が得られないという問題点がある。
As another method, Japanese Patent Laid-Open No. 60-164
As shown in 724, 100 Å the second metal film.
It is thinned to a certain extent and processed at the same time as the pixel electrode film. However, since the metal film and the pixel electrode film are overlapped with each other, the transmittance of the substrate on which the MIM type non-linear element is formed is deteriorated, so that the display brightness of the liquid crystal display device cannot be obtained. Further, there is a problem in that the electrical characteristics are sensitive to the film thickness of the second metal film, so that the uniformity in the screen cannot be obtained.

【0010】上記問題点の他に、MIM型非線形素子を
用いた液晶表示素子は第一の金属膜が走査線にもなりう
るので、走査信号の遅延を起こさないように配線抵抗は
低いことが望まれるが、従来のようなTa膜では薄膜状
態の比抵抗が180μΩ・cmと非常に高いために画素
ムラ,クロストークのない満足できる画質の大型パネル
を表示させることが難しかった。
In addition to the above problems, in the liquid crystal display device using the MIM type non-linear element, the first metal film can also serve as a scanning line, so that the wiring resistance is low so as not to cause a delay of the scanning signal. Although desired, the conventional Ta film has a very high specific resistance of 180 μΩ · cm in a thin film state, so that it is difficult to display a large panel with satisfactory image quality without pixel unevenness and crosstalk.

【0011】[0011]

【課題を解決するための手段】そこで、透明基板の表面
側に以下のようなMIM型非線形素子を用いたマトリク
スアレイの製造方法を提供する。
Therefore, there is provided a method of manufacturing a matrix array using the following MIM type non-linear element on the surface side of a transparent substrate.

【0012】1)透明基板の表面側にアルミニウム(A
l)原子を含む第一の金属膜Aを堆積する工程と、 2)次に、第一の金属膜Aの表面側にタンタル(Ta)
原子を含む第一の金属膜Bを堆積する工程と、 3)次に、第一の金属膜の表面を酸化して第一の金属酸
化膜を堆積する工程と、 4)次に、上記膜が堆積された透明基板を150℃以上
の温度で熱処理する工程と、 5)次に、第二の金属膜を堆積する工程と、 6)次に、第一の金属膜Aと第一の金属膜Bと第一の金
属酸化膜と第二の金属膜を一度のレジスト露光で所定の
形状に加工する工程と、 7)次に、第一の金属膜の側面を酸化し第二の金属酸化
膜を堆積する工程と、 8)次に、透明導電膜を堆積して、所定の形状に加工す
る工程と、 9)次に、前記透明導電膜をエッチングマスクとして、
第二の金属膜を加工する工程からなる。上記工程におい
てレジストを露光する工程は、第一の金属膜,第一の金
属酸化膜及び第二の金属膜を一度に加工する工程と、透
明導電膜を加工する工程の2工程となる。ところで、第
二の金属膜は二度目の加工が必要になるが、この加工マ
スクは透明導電膜とする。第二の金属酸化膜は主たる成
分が酸化アルミニウムとなるので第一の金属酸化膜より
も絶縁性が高く、主たるMIM型非線形素子をなす部分
は第一の金属膜−第一の金属酸化膜−第二の金属膜とな
るので電気的安定性は向上する。また、第一の金属膜の
一部にアルミニウムを使用するので走査線の配線抵抗は
1桁以上低下する。
1) Aluminum (A
l) a step of depositing the first metal film A containing atoms, and 2) next, tantalum (Ta) on the surface side of the first metal film A.
A step of depositing a first metal film B containing atoms, 3) a step of oxidizing the surface of the first metal film to deposit a first metal oxide film, and 4) a step of depositing the above film. A step of heat-treating the transparent substrate on which is deposited at a temperature of 150 ° C. or higher, 5) a step of depositing a second metal film, and 6) a first metal film A and a first metal. A step of processing the film B, the first metal oxide film, and the second metal film into a predetermined shape by one-time resist exposure, and 7) then oxidizing the side surface of the first metal film to perform the second metal oxidation. A step of depositing a film, 8) a step of depositing a transparent conductive film and processing it into a predetermined shape, and 9) a step of using the transparent conductive film as an etching mask.
It comprises a step of processing the second metal film. The steps of exposing the resist in the above steps are two steps, a step of processing the first metal film, the first metal oxide film, and the second metal film at once, and a step of processing the transparent conductive film. By the way, the second metal film needs to be processed a second time, and the processing mask is a transparent conductive film. Since the main component of the second metal oxide film is aluminum oxide, the second metal oxide film has higher insulation than the first metal oxide film, and the portion forming the main MIM type non-linear element is the first metal film-first metal oxide film- Since it becomes the second metal film, the electrical stability is improved. Further, since aluminum is used as a part of the first metal film, the wiring resistance of the scanning line is reduced by one digit or more.

【0013】[0013]

【実施例】以下、本発明について、実施例に基づき詳細
に説明する。
EXAMPLES The present invention will be described in detail below based on examples.

【0014】図1には、本発明の液晶表示素子の上面図
を示す。MIM型非線形素子1は、走査線4上の一部に
作られており、4はMIM型非線形素子の第一の金属膜
と同じ材料で形成されている走査線であり、画素電極は
16で示してある。
FIG. 1 shows a top view of the liquid crystal display element of the present invention. The MIM type non-linear element 1 is formed on a part of the scanning line 4, 4 is a scanning line made of the same material as the first metal film of the MIM type non-linear element, and 16 pixel electrodes are provided. It is shown.

【0015】図1に於いて、MIM型非線形素子が作ら
れていないAA´及びMIM型非線形素子が作られてい
るBB´線上での断面図をそれぞれ図2(a),(b)
に示す。11はガラスや石英などの透明基板であり、1
1aはスパッタリング法で堆積したりタンタル(Ta)
膜を熱酸化して堆積したタンタル酸化膜(TaOX)で
あり、12aはAl膜またはAl原子を主成分とする陽
極酸化が可能な合金膜で、12bはTa膜またはTa原
子を主成分とする陽極酸化が可能な合金膜である。13
は金属膜12を陽極酸化して作製した第一の金属酸化膜
であり、14は金属膜でその種類はどのようなプロセス
を採用するかで決定される。15は金属膜12の側面に
作られた第二の金属酸化膜であり、16は画素電極であ
る。
2A and 2B are cross-sectional views taken along line AA 'in which the MIM type non-linear element is not formed and BB' in which the MIM type non-linear element is formed in FIG. 1, respectively.
Shown in. Reference numeral 11 is a transparent substrate such as glass or quartz.
1a is deposited by sputtering method or tantalum (Ta)
A tantalum oxide film (TaO x ) deposited by thermal oxidation of the film, 12a is an Al film or an alloy film capable of anodization containing Al atoms as a main component, and 12b contains a Ta film or Ta atoms as a main component. It is an alloy film that can be anodized. Thirteen
Is a first metal oxide film produced by anodizing the metal film 12, and 14 is a metal film whose type is determined by what kind of process is adopted. Reference numeral 15 is a second metal oxide film formed on the side surface of the metal film 12, and 16 is a pixel electrode.

【0016】図3には、図2の構造を実現するためのプ
ロセスを示す。
FIG. 3 shows a process for implementing the structure of FIG.

【0017】図3(a)は、表面にTaOX膜が形成さ
れた透明基板の表面側に第一の金属膜12a及び12b
を堆積し、その表面を陽極酸化して第一の酸化膜13を
形成し150℃以上の熱処理を施し、第二の金属膜14
を堆積したところである。ここで、詳細は後述するがT
a原子を主成分とする第一の金属膜12bの膜厚は、前
記の陽極酸化処理によって第一の金属酸化膜13となり
うる厚さ以上であることが望ましい。例えば、Ta膜を
陽極酸化するとその膜厚の2倍の厚さの酸化膜が形成さ
れるので、第一の金属酸化膜13の膜厚を約800Åに
したければ、第一の金属膜12aの膜厚を400Å以上
にすればよい。
[0017] FIG. 3 (a), the first metal film 12a and 12b on the surface side of the transparent substrate TaO X film formed on the surface
Is deposited, the surface thereof is anodized to form a first oxide film 13, and heat treatment at 150 ° C. or higher is performed to form a second metal film 14
Is just deposited. Here, as will be described later in detail, T
It is desirable that the film thickness of the first metal film 12b containing a atom as a main component be equal to or larger than the thickness that can be the first metal oxide film 13 by the above-described anodic oxidation treatment. For example, when the Ta film is anodized, an oxide film having a thickness twice that of the Ta film is formed. Therefore, if the thickness of the first metal oxide film 13 is about 800 Å, The film thickness may be 400 Å or more.

【0018】第一の金属膜A,Bは、おのおの主にAl
およびTa原子からなり、不純物を添加した合金膜を使
用する際でも陽極酸化が可能な程度の不純物添加量にす
べきである。前記陽極酸化をするときには、第一の金属
膜12で形成される走査線4への外部信号を入れる端子
部分は酸化されるべきではない。そこで、MIM型非線
形素子を形成した出来上がり基板は、図6のように走査
線4が一列に並びその両側に外部信号入力端子61があ
る構成になっている。従って、特開昭58−70555
に示されているように端子61部分は陽極酸化工程で酸
化されないように、ディスペンサー等の装置を用いてレ
ジストなどの有機膜を62の部分に塗布してやればよ
い。その後、酸化工程が終了後レジストなどを剥離す
る。
The first metal films A and B are mainly composed of Al.
The amount of impurities added should be such that anodic oxidation can be performed even when an alloy film containing Ta and Ta and containing impurities is used. When the anodic oxidation is performed, the terminal portion for inputting an external signal to the scanning line 4 formed of the first metal film 12 should not be oxidized. Therefore, the finished substrate on which the MIM type non-linear element is formed has a configuration in which the scanning lines 4 are arranged in a line as shown in FIG. 6 and the external signal input terminals 61 are provided on both sides thereof. Therefore, JP-A-58-70555
In order to prevent the terminal 61 portion from being oxidized in the anodic oxidation process as shown in FIG. 1, an organic film such as a resist may be applied to the portion 62 using a device such as a dispenser. After that, the resist or the like is peeled off after the oxidation process is completed.

【0019】さらに、第二の金属膜14の堆積は、第一
の金属膜12と導電接続がなされないようにすべきであ
る。つまり、2回目の陽極酸化工程において、基板内で
化成液に浸されていない第一の金属膜12部分と第二の
金属膜14と電気的接続があると、第一の金属膜12と
陰極の間に電圧がかからず、第二の金属酸化膜15が成
長しなくなるからである。
Furthermore, the deposition of the second metal film 14 should be such that no conductive connection is made with the first metal film 12. That is, in the second anodic oxidation step, if there is electrical connection between the first metal film 12 portion and the second metal film 14 that are not immersed in the chemical conversion liquid in the substrate, the first metal film 12 and the cathode This is because no voltage is applied during this period and the second metal oxide film 15 stops growing.

【0020】次に、所定の形状に加工したレジストをマ
スクにして第一の金属膜12aおよびb,第一の金属酸
化膜13,第二の金属膜14を図3(b)に示すように
一度に加工する。第一の金属膜12bの主成分はTaで
あり、第一の金属酸化膜13のそれはTaOxであり、
両方の膜をエッチングできる材料としてはフッ素系の材
料のみであるので、第二の金属膜14もMo,Ti,W
などフッ素系の材料でエッチングされる金属にすると一
度に3層膜を加工できるのでスループットが上がり低コ
スト化に対して好ましい。その後、主成分がAlである
第一の金属膜aをエッチング可能な材料を用いて加工す
る。例えば、リン酸系のエッチング液を用いれば、T
a,TaOX,Mo,W,Tiなどはエッチングされな
いので、第一の金属膜12b,第一の金属酸化膜13,
第二の金属膜14と同じ形状に、第一の金属膜12aを
加工することができる。
Next, using the resist processed into a predetermined shape as a mask, the first metal films 12a and 12b, the first metal oxide film 13 and the second metal film 14 are formed as shown in FIG. 3 (b). Process at once. The main component of the first metal film 12b is Ta, that of the first metal oxide film 13 is TaOx,
Since the fluorine-based material is the only material capable of etching both films, the second metal film 14 is also made of Mo, Ti, W.
When a metal that is etched with a fluorine-based material is used, a three-layer film can be processed at one time, which increases throughput and is preferable for cost reduction. After that, the first metal film a whose main component is Al is processed by using a material that can be etched. For example, if a phosphoric acid-based etching solution is used, T
Since a, TaO x , Mo, W, Ti, etc. are not etched, the first metal film 12b, the first metal oxide film 13,
The first metal film 12a can be processed into the same shape as the second metal film 14.

【0021】次に、図3(c)のように第一の金属膜1
2の側面を陽極酸化して第二の金属酸化膜15を形成す
る。このとき、Taを主成分とする第一の金属膜Bの一
部は陽極酸化によって第一の金属酸化膜になっているの
で、第一の金属膜12の側面の大部分はAlとなるか
ら、第二の金属酸化膜15は酸化アルミニウムとなり絶
縁性の高い膜が形成される。
Next, as shown in FIG. 3C, the first metal film 1
The second side surface is anodized to form a second metal oxide film 15. At this time, since a part of the first metal film B containing Ta as a main component has become the first metal oxide film by anodic oxidation, most of the side surface of the first metal film 12 becomes Al. The second metal oxide film 15 becomes aluminum oxide and a film having a high insulating property is formed.

【0022】ところで、図2(b)に示されているよう
に、液晶の配向状態を制御するMIM型非線形素子1
は、第一の金属膜−第一の金属酸化膜−第二の金属膜か
らなる第一のMIM型非線形素子21と第一の金属膜−
第二の金属酸化膜−ITO膜で形成されている画素電極
からなる第二のMIM型非線形素子22が並列に配置さ
れている。ITO膜が電極になると電圧−電流特性が不
安定になり好ましくないが、第二の金属酸化膜は主成分
が酸化アルミニウムであるから第一の金属酸化膜よりも
絶縁性が大きくなり、MIM型非線形素子1に流れる電
流の大部分は、第一のMIM型非線形素子21を流れる
ことになる。ここで、第二の金属酸化膜にTaOX膜が
含まれると絶縁性が低下してしまうことになる。また、
第一の金属酸化膜中に酸化アルミニウムが含まれると、
第一のMIM型非線形素子21に流れる電流値が少なく
なり液晶を駆動できなくなる。つまり、Ta原子を主成
分とする第一の金属膜Bの膜厚は、陽極酸化法によって
すべてが第一の金属酸化膜13になるのが好ましい。
By the way, as shown in FIG. 2B, the MIM type non-linear element 1 for controlling the alignment state of the liquid crystal.
Is a first metal film, a first metal oxide film, a first MIM type non-linear element 21 made of a second metal film, and a first metal film.
A second MIM type non-linear element 22 composed of a pixel electrode formed of a second metal oxide film-ITO film is arranged in parallel. When the ITO film serves as an electrode, the voltage-current characteristic becomes unstable, which is not preferable, but since the second metal oxide film is mainly composed of aluminum oxide, the second metal oxide film has a higher insulating property than the first metal oxide film, and the MIM type Most of the current flowing through the nonlinear element 1 will flow through the first MIM type nonlinear element 21. Here, if the second metal oxide film contains the TaO x film, the insulating property will be deteriorated. Also,
When aluminum oxide is contained in the first metal oxide film,
The value of the current flowing through the first MIM type non-linear element 21 decreases and the liquid crystal cannot be driven. That is, it is preferable that the thickness of the first metal film B containing Ta atoms as the main component be entirely the first metal oxide film 13 by the anodic oxidation method.

【0023】次に、図3(d)に示すように第二の金属
膜14と導電接続させた画素電極となるITO膜などの
透明導電膜16を堆積し、この上にレジストを所定の形
状に加工しマスクにしてITO膜をエッチングする。こ
こで、ITO膜のエッチング液は、下地膜に金属膜が使
われている部分があるので、金属膜をエッチングしにく
い臭化水素酸水溶液を用いるのが望ましい。この段階で
MIM型非線形素子は完成したが、図1の走査線4上に
第二の金属膜14が残っていて同一走査線上の素子が短
絡した状態になっている。従って、ITO膜のエッチン
グ後は加工されたITO膜をマスクにして走査線4上に
あってMIM型非線形素子1を形成していない部分6の
第二の金属膜をエッチングする。以上のようにレジスト
の露光工程が2工程で液晶駆動用のMIM型非線形素子
が完成する。
Next, as shown in FIG. 3D, a transparent conductive film 16 such as an ITO film which becomes a pixel electrode conductively connected to the second metal film 14 is deposited, and a resist is formed on the transparent conductive film 16 in a predetermined shape. Then, the ITO film is etched by using it as a mask. Here, as the etching solution for the ITO film, since there is a portion where the metal film is used as the base film, it is desirable to use a hydrobromic acid aqueous solution that is difficult to etch the metal film. At this stage, the MIM type non-linear element is completed, but the second metal film 14 remains on the scanning line 4 in FIG. 1 and the elements on the same scanning line are short-circuited. Therefore, after the etching of the ITO film, the second metal film of the portion 6 on the scanning line 4 where the MIM type non-linear element 1 is not formed is etched using the processed ITO film as a mask. As described above, the MIM type non-linear element for driving the liquid crystal is completed by the two resist exposure steps.

【0024】この工程を経て作製されたMIM型非線形
素子を用いた基板が図1であるが、素子が走査線の上に
形成されているので開口率が大きくでき明るい液晶表示
装置ともなり得る。また、図2のようなMIM型非線形
素子は、主に電流が流れる部分が21となり第一の金属
膜12の表面側だけを使用するものであり側面を使用し
ないので基板内で均一な電気特性になる。
The substrate using the MIM type non-linear element manufactured through this process is shown in FIG. 1. Since the element is formed on the scanning line, the aperture ratio can be increased and it can be a bright liquid crystal display device. In addition, in the MIM type non-linear element as shown in FIG. 2, the portion where the current mainly flows is 21 and only the front surface side of the first metal film 12 is used and the side surface is not used. become.

【0025】特開昭61−250676では第二の金属
膜14と画素電極16の機能をITO膜だけにして、レ
ジストの露光工程が2工程でできる図1のような構造の
表示パネルを提案しているが、ITO膜が第二の金属膜
となるMIM型非線形素子では、第一の金属膜にプラス
電圧を印加した場合とマイナス電圧を印加した場合で電
圧−電流特性が異なる,電圧印加時の経時変化が大きく
なる,低温及び高温での特性の変化が大きい等の問題点
があり、液晶駆動素子として用いるのは不適当である。
In Japanese Patent Laid-Open No. 61-250676, a display panel having a structure as shown in FIG. 1 is proposed in which the second metal film 14 and the pixel electrode 16 have the functions of only the ITO film, and the resist exposure process can be performed in two steps. However, in the MIM type non-linear element in which the ITO film is the second metal film, the voltage-current characteristics are different when the positive voltage is applied to the first metal film and when the negative voltage is applied. However, it is not suitable for use as a liquid crystal driving element because of the problems that the change over time becomes large and the characteristics change at low and high temperatures are large.

【0026】もう1つのレジスト露光工程が2工程でで
きる構造として、特開昭60−164724で示されて
いるように第二の金属膜の膜厚を100Å程度にして、
第二の金属膜とITO膜を同時に加工する方法が提案さ
れている。しかし、画素部分の透過率が低下する,電圧
印加時の経時変化が大きくなるなどの問題をかかえてい
るため本発明の構造よりも液晶表示素子としての性能が
低くなっている。
As another structure in which the resist exposure step is performed in two steps, the thickness of the second metal film is set to about 100 Å as shown in JP-A-60-164724.
A method of simultaneously processing the second metal film and the ITO film has been proposed. However, the liquid crystal display device has a lower performance than the structure of the present invention because it has problems such as a decrease in transmittance of the pixel portion and a large change with time when a voltage is applied.

【0027】次に、走査線ともなりうる第一の金属膜1
2の抵抗値が低くなったときの効果を説明する。図4の
ように、直列につながれたMIM型非線形素子1と液晶
表示素子3には、図7(a)のような信号電圧が走査回
路と信号供給回路から加えられている。このときMIM
型非線形素子1にかかる電圧は図7(b)に示すように
なるので、液晶表示素子3には図7(c)の如く電圧が
かかることになり光のスイッチング動作を制御すること
になる。ここで”T”で記した領域がある画素の選択期
間であり、他の領域は非選択期間である。図7は、選択
期間でMIM型非線形素子1をオン状態にしたものを記
してある。
Next, the first metal film 1 which can also serve as a scanning line
The effect when the resistance value of 2 becomes low will be described. As shown in FIG. 4, a signal voltage as shown in FIG. 7A is applied to the MIM type nonlinear element 1 and the liquid crystal display element 3 connected in series from the scanning circuit and the signal supply circuit. At this time MIM
Since the voltage applied to the non-linear element 1 is as shown in FIG. 7B, the voltage is applied to the liquid crystal display element 3 as shown in FIG. 7C, and the light switching operation is controlled. Here, the region indicated by "T" is a selection period of a certain pixel, and the other region is a non-selection period. FIG. 7 shows that the MIM type non-linear element 1 is turned on during the selection period.

【0028】さて、図7(a)のような信号電圧は、走
査回路と信号供給回路に近い画素(図4のA画素)に
は、ほぼ印加波形と同じ波形が加えられる。ところが、
通常走査線4はMIM型非線形素子1の第一の金属層1
2で形成されるので、第一の金属膜12の抵抗値が高い
と信号遅延を起こし走査回路から離れている画素領域は
波形がかなりなまってしまう。例えば、図4のように走
査回路と信号供給回路が配置されたパネルにおいて、1
行目の一番左の画素(図4のA画素)と一番右の画素
(図4のB画素)に印加される電圧波形を比べてみる。
尚、1行目の画素を選んだ理由は、1つの画素に印加さ
れる電圧は信号供給回路から与えられる電圧と走査回路
から与えられる電圧の差で決まるので、信号線5の信号
遅延を無視するためである。従って、n行目では信号線
の遅延も問題になってくる。ここで、この走査線4の信
号遅延が問題になるのは、電圧値の変動が激しい画素の
選択期間にあるのでこの場合に限って説明する。
Now, the signal voltage as shown in FIG. 7A is applied to a pixel (A pixel in FIG. 4) close to the scanning circuit and the signal supply circuit, which waveform is almost the same as the applied waveform. However,
The normal scanning line 4 is the first metal layer 1 of the MIM type nonlinear element 1.
Since the first metal film 12 has a high resistance value, a signal delay occurs and the pixel region distant from the scanning circuit has a considerably blunted waveform. For example, in the panel in which the scanning circuit and the signal supply circuit are arranged as shown in FIG.
The voltage waveforms applied to the leftmost pixel (A pixel in FIG. 4) and the rightmost pixel (B pixel in FIG. 4) in the row will be compared.
The reason why the pixel in the first row is selected is that the voltage applied to one pixel is determined by the difference between the voltage supplied from the signal supply circuit and the voltage supplied from the scanning circuit, so that the signal delay of the signal line 5 is ignored. This is because Therefore, the delay of the signal line also becomes a problem in the nth row. Here, the signal delay of the scanning line 4 becomes a problem in the selection period of the pixel in which the voltage value varies greatly, and therefore only this case will be described.

【0029】図8(a),(b),(c)は図4のA画
素にかかる電圧で、(d),(e),(f)はB画素に
かかる電圧の選択期間の前後の波形であり、同じ信号を
入力した場合のものである。(a)と(d),(b)と
(e),(c)と(f)は、それぞれ画素領域2に印加
される電圧波形,MIM型非線形素子1に印加される電
圧波形,液晶表示素子3に印加される電圧波形を示す。
8A, 8B, and 8C are voltages applied to the A pixel of FIG. 4, and FIGS. 8D, 8E, and 8F are before and after the selection period of the voltage applied to the B pixel. It is a waveform and is for the case where the same signal is input. (A) and (d), (b) and (e), (c) and (f) show the voltage waveform applied to the pixel region 2, the voltage waveform applied to the MIM type nonlinear element 1, and the liquid crystal display, respectively. The voltage waveform applied to the element 3 is shown.

【0030】図4のA画素には、図8(a)の電圧がか
かるのが、B画素には走査線4の信号遅延のために、図
8(d)のような波形のなまりが生じる。その結果、A
画素のMIM型非線形素子1に図8(b)に示すような
電圧が印加されるのに、B画素では図7(e)のように
なり、MIM型非線形素子1に印加される電圧が△VM
だけ低下するので、液晶表示素子3の書き込み電圧に△
Lの電圧差が生じる。走査線4の配線抵抗が十分低く
この電圧差△VLが一階調分に達しないときには、△VL
がディスプレイとして絵を表示させても、人間の目では
違いを感知できない。ところが、画面が大きくなった
り、多階調表示になると、配線抵抗が無視できなくなり
絵を表示したときに△VLに起因する画面のムラが認識
されるようになってくる。また、MIM型非線形素子を
用いた液晶表示素子では、図4に示すように素子と液晶
が直列につながれているので、△VLが大きいとクロス
トーク発生の原因にもなっている。このとき従来のよう
に第一の金属膜12の抵抗値が高いために、△VLの大
きさが問題となるときでも、図2に示すように第一の金
属層をAlを主成分とする第一の金属膜12aとTaを
主成分とする第一の金属膜12bの2層膜にすれば、抵
抗値は1桁以上低下させることができるので、△VL
1/10以下になり画面のムラが人間の目で感知しにく
くなる。
The voltage shown in FIG. 8A is applied to the pixel A in FIG. 4, but the waveform blunt as shown in FIG. 8D occurs in the pixel B due to the signal delay of the scanning line 4. . As a result, A
The voltage shown in FIG. 8B is applied to the MIM type nonlinear element 1 of the pixel, but as shown in FIG. 7E for the B pixel, the voltage applied to the MIM type nonlinear element 1 is Δ. V M
Therefore, the writing voltage of the liquid crystal display element 3 is reduced by Δ
A voltage difference of V L occurs. When the wiring resistance of the scanning line 4 is sufficiently low and this voltage difference ΔV L does not reach one gradation, ΔV L
Even if a picture is displayed as a display, the human eyes cannot perceive the difference. However, when the screen becomes large or multi-gradation display is performed, the wiring resistance cannot be ignored, and when a picture is displayed, the unevenness of the screen due to ΔV L comes to be recognized. Further, in the liquid crystal display element using the MIM type non-linear element, since the element and the liquid crystal are connected in series as shown in FIG. 4, a large ΔV L also causes the occurrence of crosstalk. At this time, since the resistance value of the first metal film 12 is high as in the prior art, even when the magnitude of ΔV L becomes a problem, the first metal layer contains Al as the main component as shown in FIG. By using a two-layer film of the first metal film 12a and the first metal film 12b containing Ta as a main component, the resistance value can be reduced by one digit or more, so that ΔV L is also 1/10 or less. It becomes difficult for the human eye to detect the unevenness of the screen.

【0031】[0031]

【発明の効果】以上のとおり本発明において、MIM型
非線形素子を図2のような構造にすることで、2回のレ
ジスト露光工程を行うだけで素子が完成するので、電圧
−電流特性を劣化させることなく、低コストなアクティ
ブマトリクス型の液晶表示装置を提供できる。また、走
査線となりうる第一の金属膜の配線抵抗を低下させれる
ので、大画面化,微細化したときに顕著に表れるクロス
トーク,画素ムラなどをかなり低減し、見やすく綺麗な
液晶表示素子を提供できる。
As described above, in the present invention, the MIM type non-linear element having the structure as shown in FIG. 2 is completed by only performing the resist exposure step twice, so that the voltage-current characteristic is deteriorated. It is possible to provide a low-cost active matrix type liquid crystal display device without doing so. In addition, since the wiring resistance of the first metal film that can be a scanning line can be reduced, crosstalk and pixel unevenness that are noticeable when the screen is enlarged and miniaturized are considerably reduced, and a clear and easy-to-see liquid crystal display device is provided. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のMIM型非線形素子の上面図。FIG. 1 is a top view of a MIM type nonlinear element of the present invention.

【図2】本発面のMIM型非線形素子の断面図。FIG. 2 is a cross-sectional view of a MIM type nonlinear element on the present plane.

【図3】本発面のMIM型非線形素子の製造工程を表す
図。
FIG. 3 is a diagram showing a manufacturing process of a MIM type non-linear element of the present invention.

【図4】アクティブマトリクス方式の液晶表示装置の等
価回路図。
FIG. 4 is an equivalent circuit diagram of an active matrix liquid crystal display device.

【図5】従来のMIM型非線形素子の製造工程を表す
図。
FIG. 5 is a diagram showing a manufacturing process of a conventional MIM type non-linear element.

【図6】本発明のMIM型非線形素子の製造工程におい
て、選択陽極酸化の方法を示す図。
FIG. 6 is a diagram showing a method of selective anodic oxidation in the manufacturing process of the MIM type nonlinear element of the present invention.

【図7】 MIM型非線形素子を用いたマトリクスアレ
イを駆動する電圧波形図。
FIG. 7 is a voltage waveform diagram for driving a matrix array using MIM type non-linear elements.

【図8】 MIM型非線形素子の選択期間に印加する電
圧波形図。
FIG. 8 is a voltage waveform diagram applied during the selection period of the MIM type non-linear element.

【符号の説明】[Explanation of symbols]

1 MIM型非線形素子 2 画素領域 3 液晶表示素子 4 走査線 5 信号線 6 MIM型非線形素子のない走査線領域 11,51 透明基板 11a,51a TaOX膜 12,52 第一の金属膜 12a 第一の金属膜A 12b 第一の金属膜B 13,53 第一の金属酸化膜 14,54 第二の金属膜 15 第二の金属酸化膜 16,55 画素電極 21 第一のMIM型非線形素子 22 第二のMIM型非線形素子 61 外部信号入力端子 62 陽極酸化工程の際に有機膜を塗布する
領域
DESCRIPTION OF SYMBOLS 1 MIM type nonlinear element 2 Pixel area 3 Liquid crystal display element 4 Scan line 5 Signal line 6 Scan line area without MIM type nonlinear element 11,51 Transparent substrate 11a, 51a TaO X film 12,52 First metal film 12a First Metal film A 12b First metal film B 13,53 First metal oxide film 14,54 Second metal film 15 Second metal oxide film 16,55 Pixel electrode 21 First MIM type non-linear element 22 Second MIM type non-linear element 61 External signal input terminal 62 Area where organic film is applied during anodizing process

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透明基板の表面側に形成された金属−絶縁
膜−金属(MIM)型非線形素子の製造方法は、 1)透明基板の表面側にアルミニウム(Al)原子を含
む第一の金属膜Aを堆積する工程と、 2)次に、第一の金属膜Aの表面側にタンタル(Ta)
原子を含む第一の金属膜Bを堆積する工程と、 3)次に、第一の金属膜の表面を酸化して第一の金属酸
化膜を堆積する工程と、 4)次に、前記膜が堆積された透明基板を150℃以上
の温度で熱処理する工程と、 5)次に、第二の金属膜を堆積する工程と、 6)次に、第一の金属膜Aと第一の金属膜Bと第一の金
属酸化膜と第二の金属膜を一度のレジスト露光で所定の
形状に加工する工程と、 7)次に、第一の金属膜の側面を酸化し第二の金属酸化
膜を堆積する工程と、 8)次に、透明導電膜を堆積して、所定の形状に加工す
る工程と、 9)次に、前記透明導電膜をエッチングマスクとして、
第二の金属膜を加工する工程からなることを特徴とする
MIM型非線形素子の製造方法。
1. A method for manufacturing a metal-insulating film-metal (MIM) type non-linear element formed on the front surface side of a transparent substrate comprises: 1) a first metal containing aluminum (Al) atoms on the front surface side of the transparent substrate. 2) Next, tantalum (Ta) is deposited on the surface side of the first metal film A.
Depositing a first metal film B containing atoms, 3) then oxidizing the surface of the first metal film to deposit a first metal oxide film, 4) then depositing the film A step of heat-treating the transparent substrate on which is deposited at a temperature of 150 ° C. or higher, 5) a step of depositing a second metal film, and 6) a first metal film A and a first metal. A step of processing the film B, the first metal oxide film, and the second metal film into a predetermined shape by one-time resist exposure, and 7) then oxidizing the side surface of the first metal film to perform the second metal oxidation. A step of depositing a film, 8) a step of depositing a transparent conductive film and processing it into a predetermined shape, and 9) a step of using the transparent conductive film as an etching mask.
A method of manufacturing a MIM type non-linear element, comprising the step of processing a second metal film.
JP8887393A 1993-04-15 1993-04-15 Liquid crystal device manufacturing method Expired - Fee Related JP3306986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8887393A JP3306986B2 (en) 1993-04-15 1993-04-15 Liquid crystal device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8887393A JP3306986B2 (en) 1993-04-15 1993-04-15 Liquid crystal device manufacturing method

Publications (2)

Publication Number Publication Date
JPH06301063A true JPH06301063A (en) 1994-10-28
JP3306986B2 JP3306986B2 (en) 2002-07-24

Family

ID=13955134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8887393A Expired - Fee Related JP3306986B2 (en) 1993-04-15 1993-04-15 Liquid crystal device manufacturing method

Country Status (1)

Country Link
JP (1) JP3306986B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995826B2 (en) 2003-05-16 2006-02-07 Sharp Kabushiki Kaisha Liquid crystal display device
US7347924B1 (en) * 2002-12-24 2008-03-25 Ij Research, Inc. Anodizing of optically transmissive substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347924B1 (en) * 2002-12-24 2008-03-25 Ij Research, Inc. Anodizing of optically transmissive substrate
US6995826B2 (en) 2003-05-16 2006-02-07 Sharp Kabushiki Kaisha Liquid crystal display device

Also Published As

Publication number Publication date
JP3306986B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
WO1996002867A1 (en) Liquid crystal display and method of manufacturing the same
JP3306986B2 (en) Liquid crystal device manufacturing method
US5539549A (en) Active matrix substrate having island electrodes for making ohmic contacts with MIM electrodes and pixel electrodes
JP3341346B2 (en) Manufacturing method of nonlinear element
JP2778746B2 (en) Liquid crystal display device and method of manufacturing electrode substrate
JPH07258826A (en) Production of thin film semiconductor device
JPH06160877A (en) Thin-film wiring structure and liquid crystal display device formed by using the structure
JPH07104318A (en) Mim type nonlinear element and its manufacture
JP3166317B2 (en) Method of manufacturing electrical device
JPH07104319A (en) Mim type nonlinear element
JPH06301064A (en) Mim-type nonlinear element and its production
JPH11249177A (en) Active matrix substrate, production thereof and liquid crystal display panel
JP3327146B2 (en) Liquid crystal panel, method of manufacturing the same, and electronic equipment using the same
JPH05297415A (en) Liquid crystal display device and its production
JPH06337440A (en) Mim type nonlinear element and manufacture thereof
JPH09218429A (en) Active matrix substrate, its production and liquid crystal display device
JPH0743749A (en) Two-terminal nonlinear element and its production
JPH095795A (en) Mim type nonlinear element, thin-film transistor and their production as well as liquid crystal display device
JP2695827B2 (en) Matrix array substrate
JPH0462050B2 (en)
JPH0836194A (en) Nonlinear resistance element and its production
JP2883208B2 (en) Liquid crystal display device and manufacturing method thereof
JPH0335223A (en) Display device
JPH04263223A (en) Production of liquid crystal display device
JPH06308538A (en) Production of liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees