JPH09218429A - Active matrix substrate, its production and liquid crystal display device - Google Patents
Active matrix substrate, its production and liquid crystal display deviceInfo
- Publication number
- JPH09218429A JPH09218429A JP2451496A JP2451496A JPH09218429A JP H09218429 A JPH09218429 A JP H09218429A JP 2451496 A JP2451496 A JP 2451496A JP 2451496 A JP2451496 A JP 2451496A JP H09218429 A JPH09218429 A JP H09218429A
- Authority
- JP
- Japan
- Prior art keywords
- film
- metal film
- active matrix
- liquid crystal
- matrix substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 61
- 239000000758 substrate Substances 0.000 title claims abstract description 41
- 239000011159 matrix material Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 92
- 239000002184 metal Substances 0.000 claims abstract description 92
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 15
- 239000010407 anodic oxide Substances 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 abstract description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 abstract description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052719 titanium Inorganic materials 0.000 abstract description 4
- 239000010936 titanium Substances 0.000 abstract description 4
- 239000011651 chromium Substances 0.000 abstract description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 155
- 238000010586 diagram Methods 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はアクティブマトリク
ス基板及びその製造方法並びに液晶表示装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix substrate, a method of manufacturing the same, and a liquid crystal display device.
【0002】[0002]
【従来の技術】アクティブマトリクス方式の液晶表示装
置は、画素領域ごとに非線形素子を設けてマトリクスア
レイを形成した一方側の基板と、カラーフィルタが形成
された他方側の基板との間に液晶を充填しておき、各画
素領域ごとの液晶の配向状態を制御して、所定の情報を
表示するものである。非線形素子として薄膜トランジス
タなどの3端子素子またはMIM型非線形素子などの2
端子素子を用いるが、液晶表示素子に対する画面の大型
化および低コスト化などの要求に対応するには、MIM
型非線形素子を用いた方式が製造工程が短いために有利
である。しかも、MIM型非線形素子を用いた場合に
は、マトリクスアレイを形成した一方側の基板に走査線
を設け、他方側の基板には信号線を設けることができる
ので、3端子素子の不良の大きな原因となっている走査
線と信号線のクロスオーバー短絡が発生しないというメ
リットもある。これに対して、薄膜トランジスタは書き
込み特性や保持特性に優れているために画質が優れてい
る,画素の高密度化が可能である等の利点がある。2. Description of the Related Art In an active matrix type liquid crystal display device, a liquid crystal is provided between a substrate on one side on which a non-linear element is provided in each pixel region to form a matrix array and a substrate on the other side on which color filters are formed. After filling, the alignment state of the liquid crystal in each pixel area is controlled to display predetermined information. As a non-linear element, a three-terminal element such as a thin film transistor or two such as a MIM type non-linear element
Although terminal elements are used, MIM is required to meet the demands for larger screens and lower costs for liquid crystal display elements.
The method using the non-linear element is advantageous because the manufacturing process is short. Moreover, when the MIM type non-linear element is used, the scanning line can be provided on the substrate on one side where the matrix array is formed and the signal line can be provided on the substrate on the other side. There is also an advantage that a crossover short circuit between the scanning line and the signal line, which is the cause, does not occur. On the other hand, the thin film transistor has advantages such as excellent image quality because it has excellent writing characteristics and holding characteristics, and enables high density of pixels.
【0003】MIM型非線形素子を用いたアクティブマ
トリクス方式の液晶表示パネルにおいては、液晶表示パ
ネルの等価回路である図7に示すように、各画素領域3
で各走査線71と各信号線72との間にMIM型非線形
素子1(図中、バリスタの符号で示す。)と液晶表示素
子2(図中、コンデンサの符号で示す。)が直列接続さ
れた構成として表され、走査線71および信号線72に
印加された信号に基づいて、液晶表示素子2を表示状態
および非表示状態あるいはその中間状態に切り換えて表
示動作を制御する。In an active matrix type liquid crystal display panel using MIM type non-linear elements, as shown in FIG. 7 which is an equivalent circuit of the liquid crystal display panel, each pixel region 3
The MIM type non-linear element 1 (indicated by a varistor symbol in the drawing) and the liquid crystal display element 2 (indicated by a capacitor symbol in the drawing) are connected in series between each scanning line 71 and each signal line 72. The liquid crystal display element 2 is switched between a display state and a non-display state or an intermediate state thereof based on a signal applied to the scanning line 71 and the signal line 72 to control the display operation.
【0004】図8(a)に示すように、MIM型非線形
素子1において、MIM型非線形素子の第一の金属膜と
第二の金属膜への印加電圧VNLと前記の2つの金属膜の
間を流れる電流INLとは非線形性の関係を有している。
MIM型非線形素子1のしきい値電圧をVth、液晶表
示素子2のしきい値電圧をVb、表示状態となる電位を
(Vb+△V)とすると、図8(b)に示すように選択
期間では、所定の画素領域3における走査線71と信号
線72との間の電位差V(単位画素への印加電圧)を
(Vb+Vth)とすることによって、液晶表示素子2
を非表示状態とする事ができ、走査線71と信号線72
との間の電位差Vを(Vb+Vth+△V)とすること
によって、液晶表示素子2を表示状態とする事ができ
る。一方、非選択期間では単位画素に印加する電位V
を、液晶表示素子2に残留した電位に対して概ね近接す
る様に設定しその差がMIM型非線形素子のしきい値電
圧Vth以下であれば、非選択期間内でMIM型非線形
素子1は常に遮断状態となり、選択期間に定められた状
態をそのまま維持する事になる。As shown in FIG. 8A, in the MIM type non-linear element 1, a voltage VNL applied to the first metal film and the second metal film of the MIM type non-linear element and between the above two metal films. Has a non-linear relationship with the current INL flowing through the.
Assuming that the threshold voltage of the MIM type nonlinear element 1 is Vth, the threshold voltage of the liquid crystal display element 2 is Vb, and the potential in the display state is (Vb + ΔV), as shown in FIG. Then, by setting the potential difference V (applied voltage to the unit pixel) between the scanning line 71 and the signal line 72 in the predetermined pixel region 3 to (Vb + Vth), the liquid crystal display element 2
Can be hidden, and the scanning line 71 and the signal line 72
By setting the potential difference V between and to (Vb + Vth + ΔV), the liquid crystal display element 2 can be brought into a display state. On the other hand, the potential V applied to the unit pixel in the non-selection period
Is set to be substantially close to the potential remaining on the liquid crystal display element 2 and the difference is equal to or less than the threshold voltage Vth of the MIM type non-linear element, the MIM type non-linear element 1 is always in the non-selection period. The cutoff state is maintained, and the state set in the selection period is maintained as it is.
【0005】以上は、MIM型非線形素子の容量が十分
小さく、電圧−電流特性の非線形性が十分高く、電圧の
印加方向によって流れる電流値が同じである理想的なM
IM型非線形素子1を得る事ができ、MIM型非線形素
子に信号を与える配線の抵抗が十分に低くできた場合の
最も基本的な動作例である。The above is an ideal M in which the capacitance of the MIM type non-linear element is sufficiently small, the non-linearity of the voltage-current characteristic is sufficiently high, and the current value flowing in the direction of voltage application is the same.
This is the most basic operation example in the case where the IM type nonlinear element 1 can be obtained and the resistance of the wiring that gives a signal to the MIM type nonlinear element can be made sufficiently low.
【0006】特開昭52−149090に述べられてい
るような一般的な構造をMIM型非線形素子の平面図で
ある図6(a)と、AA´の断面図である図6(b)を
用いて述べる。MIM型非線形素子1は、透明基板61
の表面側に形成され、走査線71を介して走査回路側に
導電接続するTa原子を主成分とした第1の金属膜62
と、その表面側の絶縁膜である金属酸化膜63と、その
表面側に形成されて画素電極65に導電接続するCrか
らなる第2の金属膜64とから構成されている。金属酸
化膜63は、Ta膜の表面に膜厚が均一で、しかもピン
ホールがない状態で形成されるように、第一の金属膜6
2に対する陽極酸化によって形成される。FIG. 6 (a) which is a plan view of a MIM type non-linear element and FIG. 6 (b) which is a cross-sectional view of AA 'have a general structure as described in JP-A-52-149090. I will describe using. The MIM type non-linear element 1 includes a transparent substrate 61.
A first metal film 62 which is formed on the front surface side of Ta and is conductively connected to the scanning circuit side through the scanning line 71 and has Ta atoms as a main component.
A metal oxide film 63, which is an insulating film on the surface side thereof, and a second metal film 64 made of Cr, which is formed on the surface side thereof and electrically conductively connects to the pixel electrode 65. The metal oxide film 63 is formed on the surface of the Ta film so that the first metal film 6 has a uniform film thickness and is formed without pinholes.
2 is formed by anodic oxidation.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、従来の
MIM型非線形素子1を用いた液晶表示パネルにおいて
は、数時間同じ絵を表示したのちに、パネル全面を同じ
色にすると前に表示していた絵が薄く見えるという問題
点があった。以後この現象を焼き付きと呼ぶことにす
る。However, in the liquid crystal display panel using the conventional MIM type non-linear element 1, the same picture is displayed for several hours, and then the entire surface of the panel is displayed in the same color. There was a problem that the picture looked thin. Hereinafter, this phenomenon will be referred to as burn-in.
【0008】この問題点を解消する手段として、特開昭
57−196588にあるようにMIM型非線形素子の
酸化膜を300℃以上に保った状態で酸素プラズマ処理
で堆積する方法が示されている。この方法では、膜厚の
基板内での均一性が得られないのであまり好ましくな
い。特開昭63−48528には、陽極酸化膜の上層部
を除去してから第2の金属膜を形成する方法が示されて
いるが、酸化膜の除去を基板内に均一にすることが難し
い,これらの酸化膜の除去はドライエッチングになるの
でガラス基板へのダメージが発生し好ましい技術ではな
かった。As a means for solving this problem, Japanese Patent Laid-Open No. 196588/1982 discloses a method of depositing an oxide film of a MIM type non-linear element by oxygen plasma treatment while keeping it at 300 ° C. or higher. . This method is not so preferable because the uniformity of the film thickness within the substrate cannot be obtained. Japanese Unexamined Patent Publication No. 63-48528 discloses a method of forming the second metal film after removing the upper layer portion of the anodic oxide film, but it is difficult to uniformly remove the oxide film within the substrate. However, the removal of these oxide films requires dry etching, which damages the glass substrate and is not a preferable technique.
【0009】さらに、特開昭58−34428に示され
ているように、MIM型非線形素子の構造を極性が反対
になるように直列に配列する方法が示されているが、第
2の金属膜と画素電極膜とのコンタクト抵抗に電圧の印
加方向によって流れる電流値が異なるという極性差があ
るために、どうしても焼き付き現象が残っていた。Further, as shown in Japanese Patent Laid-Open No. 58-34428, there is shown a method of arranging the structures of MIM type non-linear elements in series so that the polarities are opposite to each other. Since the contact resistance between the pixel electrode film and the pixel electrode film has a polarity difference in that the value of the current that flows depends on the direction in which the voltage is applied, the burn-in phenomenon inevitably remains.
【0010】本発明は、MIM型非線形素子を用いたア
クティブマトリクス基板用いた焼き付きのない液晶表示
パネルを提供することを目的とする。It is an object of the present invention to provide a non-burn-in liquid crystal display panel using an active matrix substrate using MIM type non-linear elements.
【0011】また、本発明は、電圧の印加方向によって
も流れる電流値が同じになるMIM型非線形素子を提供
することを目的とする。Another object of the present invention is to provide an MIM type non-linear element in which the value of current flowing is the same depending on the direction of voltage application.
【0012】[0012]
【課題を解決するための手段】本発明のアクティブマト
リクス基板は、第1の金属膜−第1の金属膜の陽極酸化
膜からなる絶縁膜−第2の金属膜構造を有するMIM型
非線形素子を用いたアクティブマトリクス基板におい
て、配線膜と前記MIM型非線形素子との間の導電接続
は画素電極と同一材料を介して行うことを特徴とする。An active matrix substrate of the present invention is an MIM type non-linear element having a first metal film, an insulating film formed of an anodized film of the first metal film, and a second metal film structure. In the active matrix substrate used, the conductive connection between the wiring film and the MIM type nonlinear element is made through the same material as the pixel electrode.
【0013】また、本発明のアクティブマトリクス基板
は、第1の金属膜−第1の金属膜の陽極酸化膜からなる
絶縁膜−第2の金属膜構造を有するMIM型非線形素子
を用いたアクティブマトリクス基板において、配線膜か
ら画素電極まで接触膜の構成は対称となることを特徴と
する。Further, the active matrix substrate of the present invention is an active matrix using an MIM type non-linear element having a first metal film-an insulating film formed of an anodized film of the first metal film-a second metal film structure. In the substrate, the structure of the contact film from the wiring film to the pixel electrode is symmetrical.
【0014】さらに、本発明のアクティブマトリクス基
板は、上記したアクティブマトリクス基板において、M
IM型非線形素子は、極性を反対にして直列に接続した
バック・トゥ・バック構造であることを特徴とする。Furthermore, the active matrix substrate of the present invention is the same as the active matrix substrate described above, in which M
The IM type non-linear element is characterized by having a back-to-back structure in which the polarities are reversed and the polarities are connected in series.
【0015】さらに、本発明のアクティブマトリクス基
板は、これらのアクティブマトリクス基板において、画
素電極と第1または第2の金属膜と導電接続をとる面積
をS1とし、画素電極と同一材料を介する配線膜と第1
又は第2の金属膜と導電接続をとる面積をS2とすれ
ば、 0.4S1≧S2≧2.5S1 の関係であることを特徴とする。Further, in the active matrix substrate of the present invention, in these active matrix substrates, the area for making conductive connection with the pixel electrode and the first or second metal film is S1, and the wiring film made of the same material as the pixel electrode is used. And the first
Alternatively, if S2 is an area for making a conductive connection with the second metal film, the relationship of 0.4S1 ≧ S2 ≧ 2.5S1 is satisfied.
【0016】さらに、本発明のアクティブマトリクス基
板は、上記アクティブマトリクス基板において、前記S
1及びS2の面積は、MIM型非線形素子の面積の3倍
以上であることを特徴とする。Further, the active matrix substrate of the present invention is the same as the active matrix substrate according to the above-mentioned S.
The areas of 1 and S2 are three times or more the area of the MIM type non-linear element.
【0017】また、本発明のアクティブマトリクス基板
の製造方法は、請求項3記載のアクティブマトリクス基
板の製造方法であって、 a)第1の金属膜を形成する工程と、 b)第1の金属膜に対する陽極酸化膜を堆積する工程
と、 c)第1の金属膜を島状に加工する工程と、 d)第2の金属膜を形成する工程と、 e)画素電極および配線膜と素子との接続膜を同時に形
成する工程と、を有することを特徴とする。A method of manufacturing an active matrix substrate according to the present invention is the method of manufacturing an active matrix substrate according to claim 3, wherein a) a step of forming a first metal film, and b) a first metal. A step of depositing an anodic oxide film on the film, c) a step of processing the first metal film into an island shape, d) a step of forming a second metal film, and e) a pixel electrode and a wiring film and an element. And the step of simultaneously forming the connection film of.
【0018】また、本発明の液晶表示装置は、請求項1
乃至5のいずれかの請求項に記載のアクティブマトリク
ス基板を用いたことを特徴とする。Further, the liquid crystal display device of the present invention comprises:
The active matrix substrate according to claim 5 is used.
【0019】さらに、本発明の液晶表示装置は、請求項
6に記載のアクティブマトリクス基板の製造方法によっ
て製造された液晶表示パネルを作製することを特徴とす
る。Further, the liquid crystal display device of the present invention is characterized in that a liquid crystal display panel manufactured by the method for manufacturing an active matrix substrate according to claim 6 is manufactured.
【0020】[0020]
【作用】MIM型非線形素子をスイッチング素子として
用いた液晶表示パネルの焼き付きの原因として、出願人
がMIM型非線形素子の電圧−電流特性を調査した結
果、2つ要因があった。As a cause of burn-in of the liquid crystal display panel using the MIM type non-linear element as the switching element, the applicant investigated the voltage-current characteristics of the MIM type non-linear element and found that there were two factors.
【0021】1つはMIM型非線形素子の第1の金属層
と第2の金属層との間に電圧を印加し続けると、電流が
印加時間とともに増加していくことと関連があることを
確認した。つまり、長時間(1時間以上)液晶表示パネ
ルで表示していた部分と未表示の部分でMIM型非線形
素子の電圧−電流特性が異なり、同じ色をだしてもコン
トラストが異なり焼き付きと認識されることになる。One is that it is related to that the current increases with the application time when the voltage is continuously applied between the first metal layer and the second metal layer of the MIM type nonlinear element. did. In other words, the voltage-current characteristics of the MIM type non-linear element differ between the part that has been displayed on the liquid crystal display panel for a long time (1 hour or more) and the part that has not been displayed, and even if the same color is output, the contrast is different and it is recognized as burn-in. It will be.
【0022】もう1つは、駆動波形としてMIM型非線
形素子にプラスとマイナス同じ電圧を印加するようにし
ても、MIM型非線形素子に流れる電流値が極性によっ
て異なるために、液晶には極性によって印加される電圧
が異なり、常に液晶に直流成分が印加されることで劣化
を起こし液晶表示パネルでは焼き付きと認識されるよう
になることを確認した。従来は、MIM型非線形素子自
身の極性差を解消すれば液晶に直流成分が印加されない
と考えられていた。しかし、MIM型非線形素子の極性
差を解消しても、第2の金属膜とITO膜などの画素電
極とのコンタクト抵抗に極性差が発生するため、液晶に
直流成分が印加されることがわかった。The other is that even if a plus and minus same voltage is applied to the MIM type non-linear element as a drive waveform, the current value flowing in the MIM type non-linear element differs depending on the polarity, so that it is applied to the liquid crystal depending on the polarity. It was confirmed that the applied voltage was different and the DC component was constantly applied to the liquid crystal to cause deterioration, and the liquid crystal display panel recognized it as burn-in. Conventionally, it was considered that a direct current component would not be applied to the liquid crystal if the polarity difference of the MIM type non-linear element itself was eliminated. However, even if the polarity difference of the MIM type non-linear element is eliminated, a polarity difference occurs in the contact resistance between the second metal film and the pixel electrode such as the ITO film, so that it is found that a DC component is applied to the liquid crystal. It was
【0023】本発明では、2つ目の要因である液晶に直
流成分が印加されて発生する焼き付きを、防止するため
のものである。In the present invention, the second factor is to prevent burn-in which occurs when a DC component is applied to the liquid crystal.
【0024】[0024]
【発明の実施の形態】以下、本発明について、実施例に
基づき詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments.
【0025】図1及び2に本発明のMIM型非線形素子
を用いたアクティブマトリクス基板の上面図を示す。図
1は、MIM型非線形素子を、極性が反対になるように
して直列に2素子つなげたバックトウバック構造にした
もので、図2はMIM型非線形素子を1素子にしたもの
である。1 and 2 are top views of an active matrix substrate using the MIM type nonlinear element of the present invention. FIG. 1 shows a back-to-back structure in which two MIM type non-linear elements are connected in series so that their polarities are opposite to each other. FIG. 2 shows one MIM type non-linear element.
【0026】図1及び2の構成の説明を行う。12は、
タンタル、アルミニウム、チタン、タングステン、レニ
ウム、ニオブ、バナジウムなどの陽極酸化可能な金属膜
やこれらの合金膜からなり、配線膜の一部やMIM型非
線形素子の第1の金属膜となっている。14は、MIM
型非線形素子の第2の金属膜でありクロムやチタン、タ
ンタル、アルミニウム、モリブデンなどの金属やこれら
の合金膜からなっており、15は画素電極と配線膜の一
部となるITO膜であり、ITO膜の線幅は断線による
画素欠陥を低減するために12をなす金属膜より太くす
る方が好ましい。また、配線膜の抵抗を低くしたい場合
には、第2の金属膜14に用いた膜を配線膜上に形成し
てもよい。The configuration of FIGS. 1 and 2 will be described. 12 is
It is made of anodizable metal film of tantalum, aluminum, titanium, tungsten, rhenium, niobium, vanadium or the like, or an alloy film thereof, and is a part of the wiring film or the first metal film of the MIM type non-linear element. 14 is MIM
Is a second metal film of the non-linear element, which is made of a metal such as chromium, titanium, tantalum, aluminum, molybdenum, or an alloy film thereof, and 15 is an ITO film which is a part of the pixel electrode and the wiring film, The line width of the ITO film is preferably thicker than that of the metal film forming 12 in order to reduce pixel defects due to disconnection. Further, when it is desired to reduce the resistance of the wiring film, the film used for the second metal film 14 may be formed on the wiring film.
【0027】ここでは、画素電極をITO膜としたが、
これは透過型の液晶表示パネルを考えた場合であり、反
射型で画素電極が反射板にもなる場合は、アルミニウム
やマグネシウムなどの金属膜としてもよい。今後の説明
は透過型の液晶表示パネルを想定して画素電極はITO
膜として考えていく。さらに、透過型の場合でも画素電
極はITO膜だけでなく、他の透明導電膜を用いても差
し支えはない。Although the pixel electrode is an ITO film here,
This is a case of considering a transmissive liquid crystal display panel, and in the case of a reflective pixel electrode also serving as a reflector, a metal film such as aluminum or magnesium may be used. In the following description, assuming that a transmissive liquid crystal display panel is used, the pixel electrode is ITO.
Think of it as a film. Further, even in the case of the transmissive type, the pixel electrode may use not only the ITO film but also another transparent conductive film.
【0028】図1においては、第2の金属膜14と画素
電極15の接触部の面積をS1とし、配線膜と第2の金
属膜14との接触部の面積をS2とする。図2において
は、図2(a)のように電流の流れる経路が配線膜,第
1の金属膜,陽極酸化膜,第2の金属膜,画素電極のよ
うになっている場合は、第2の金属膜14と画素電極1
5との接触部の面積をS1とし、配線膜と第1の金属膜
12との接触部の面積をS2とする。また、図2(b)
のように電流の流れる経路が配線膜,第2の金属膜,陽
極酸化膜,第1の金属膜,画素電極のようになっている
場合は、第1の金属膜12と画素電極15との接触部の
面積をS1とし、配線膜と第2の金属膜14との接触部
の面積をS2とする。In FIG. 1, the area of the contact portion between the second metal film 14 and the pixel electrode 15 is S1, and the area of the contact portion between the wiring film and the second metal film 14 is S2. In FIG. 2, when the current flow path is the wiring film, the first metal film, the anodic oxide film, the second metal film, and the pixel electrode as shown in FIG. Metal film 14 and pixel electrode 1
The area of the contact portion with 5 is S1, and the area of the contact portion between the wiring film and the first metal film 12 is S2. In addition, FIG.
When the current flow path is such as the wiring film, the second metal film, the anodic oxide film, the first metal film, and the pixel electrode, the first metal film 12 and the pixel electrode 15 The area of the contact portion is S1, and the area of the contact portion between the wiring film and the second metal film 14 is S2.
【0029】図1のように MIM型非線形素子をバッ
クトウバック構造にしたときの、素子構造の断面図を図
4に示す。図4は図1のAA´のライン沿った断面図で
ある。図4に示したaは、第2の金属膜と画素電極との
接触部の面積S1のAA´に沿った長さを示し、同様に
bはS2の長さを示している。FIG. 4 shows a sectional view of the element structure when the MIM type nonlinear element has a back-to-back structure as shown in FIG. FIG. 4 is a sectional view taken along the line AA ′ of FIG. 4A shows the length of the area S1 of the contact portion between the second metal film and the pixel electrode along the line AA ′, and similarly b shows the length of S2.
【0030】〔実施例1〕最初に、配線膜とMIM型非
線形素子との接続に画素電極と同一材料を介して行うと
よい理由を説明する。[Embodiment 1] First, the reason why the wiring film and the MIM type non-linear element should be connected through the same material as the pixel electrode will be described.
【0031】図9に、1画素の等価回路図を示す。
(a)図が本発明に関する図で(b)図が従来の図であ
る。91が走査線で92が信号線になる。さて、液晶に
直流が印加されると液晶表示パネルは、液晶の劣化によ
って焼き付きが発生する。このときの直流成分は、MI
M型非線形素子に選択パルスを印加したときに、電圧印
加方向によって所定の電流を流すに必要な電圧が異なる
ことによって生じる。所定の電流とは、表示する色によ
っても異なるが、100μm角の画素において液晶のセ
ルギャップを5μmにすれば、1×10-8A〜1×10
-7Aとなる。また、一般にMIM型非線形素子に所定の
電流を流すとき、電流が流れる方向によって必要とする
電圧が異なってしまう。このときの電圧差を極性差と定
義する。前記の所定の電流を流したときの極性差が解消
されたならば、液晶が保持状態にある電流をMIM型非
線形素子に流したときの電圧差があっても液晶表示パネ
ルの画質にほとんど影響を与えない。FIG. 9 shows an equivalent circuit diagram of one pixel.
(A) is a figure regarding this invention, (b) is a conventional figure. 91 is a scanning line and 92 is a signal line. Now, when a direct current is applied to the liquid crystal, the liquid crystal display panel causes image sticking due to deterioration of the liquid crystal. The DC component at this time is MI
This is caused when the selection pulse is applied to the M-type non-linear element, the voltage required to flow a predetermined current varies depending on the voltage application direction. The predetermined current varies depending on the displayed color, but if the cell gap of the liquid crystal is 5 μm in a 100 μm square pixel, 1 × 10 −8 A to 1 × 10
-7 A. Further, generally, when a predetermined current is passed through the MIM type non-linear element, the required voltage varies depending on the direction of the current flow. The voltage difference at this time is defined as the polarity difference. If the polarity difference when the above-mentioned predetermined current is passed is eliminated, even if there is a voltage difference when the current in the liquid crystal holding state is passed through the MIM type non-linear element, it will almost affect the image quality of the liquid crystal display panel. Don't give.
【0032】MIM型非線形素子の極性差と、該素子を
用いた液晶表示パネルの焼き付きとの関係は図10のよ
うになる。横軸を極性差にとり、縦軸は焼き付き量を示
す任意単位である。焼き付きが認識されるようにするた
めには、極性差を0.1V以下にする必要があるという
人間の目による目視の結果がある。図10の矢印の範囲
内にあればよい。また、極性差が0.1V付近では、少
しの極性差の変化で焼き付き量が変化するため、できる
だけ極性差は小さくすることが望ましい。The relationship between the polarity difference of the MIM type non-linear element and the burn-in of the liquid crystal display panel using the element is as shown in FIG. The horizontal axis is the polarity difference and the vertical axis is an arbitrary unit indicating the amount of image sticking. There is a visual result by the human eye that the polarity difference needs to be 0.1 V or less in order to recognize the burn-in. It only needs to be within the range of the arrow in FIG. When the polarity difference is around 0.1 V, the image sticking amount changes with a slight change in the polarity difference, so it is desirable to reduce the polarity difference as much as possible.
【0033】MIM型非線形素子の極性差をなくすこと
は、陽極酸化の化成液を調整したり、素子構造について
は極性を反対にして直列に接続したり、第1の金属膜と
第2の金属膜の材料を同じにすれば可能となる。但し、
図9(b)に示すように従来の方法では、金属膜と画素
電極をなすITO膜との間に流れる電流に極性差が生じ
るために、MIM型非線形素子の極性差が解消されて
も、液晶に直流成分が印加されていた。金属膜とITO
膜の抵抗値は、ITO膜から金属膜に電流が流れる場
合、接触部の面積を200μm2にすれば接触状況や金属
の種類によって多少異なるが2〜10MΩになるが、金
属膜からITO膜に電流が流れる場合、1MΩ以下にあ
る。例えば、画素の書き込みに必要な1×10-7Aもの
電流が1画素に流れるとき、MIM型非線形素子の抵抗
は100MΩ程度であり、金属膜とITO膜との接触抵
抗の極性差が最大で10MΩになると、液晶には最大
0.3V程度の直流成分が印加することになる。これだ
けの直流成分が液晶に印加されると、図10からわかる
ように液晶表示パネルの焼き付きは認識されやすくな
る。To eliminate the polarity difference of the MIM type non-linear element, the anodizing chemical solution is adjusted, the polarities of the element structure are reversed, and the elements are connected in series, or the first metal film and the second metal film are connected. It is possible if the material of the film is the same. However,
As shown in FIG. 9B, in the conventional method, a polarity difference occurs in the current flowing between the metal film and the ITO film forming the pixel electrode, so that even if the polarity difference of the MIM type nonlinear element is eliminated, A direct current component was applied to the liquid crystal. Metal film and ITO
When a current flows from the ITO film to the metal film, the resistance value of the film will be 2 to 10 MΩ depending on the contact situation and the kind of metal, if the contact area is 200 μm 2 , but it changes from the metal film to the ITO film. When a current flows, it is below 1 MΩ. For example, when a current of 1 × 10 −7 A necessary for writing a pixel flows in one pixel, the resistance of the MIM type non-linear element is about 100 MΩ, and the polarity difference of the contact resistance between the metal film and the ITO film is maximum. When it becomes 10 MΩ, a maximum DC component of about 0.3 V is applied to the liquid crystal. When such a DC component is applied to the liquid crystal, it is easy to recognize the burn-in of the liquid crystal display panel, as can be seen from FIG.
【0034】そこで、図9(a)に示すように金属膜と
ITO膜との接触抵抗を配線膜とMIM型非線形素子と
の間に、第2の金属膜とITO膜の接触部と極性を反対
にして入れてやれば、素子部分の極性差は解消されて、
液晶には直流成分が印加されることはなくなり、液晶表
示パネルの焼き付きはなくなる。このとき、図1,2に
示されている金属膜とITO膜の接触部のS1とS2の
面積は、大きい方は小さい方の2.5倍以内にすればよ
い。このようにすれば、配線膜から画素電極までの極性
の差が最大で0.1V以内となり、液晶表示パネルが焼
き付きを起こすことはない。理想的には、S1とS2の
面積が等しくなるようにすべきである。S1とS2の面
積の制御は、図1における一点鎖線AA’の垂直方向で
第2の金属膜の幅が一定になるので、AA’方向の長さ
つまり図5のa及びbの長さが等しくなるようにすれば
よい。そのために、S1及びS2の面積はMIM型非線
形素子の面積(バックトウバック構造の場合は1素子分
の大きさ)の3倍以上にすれば、素子サイズの大きさ分
AA’方向にずれても、S1とS2の面積比率は2.5
倍以内になる。なお、製造プロセスの余裕を考えると、
S1及びS2の面積は、MIM型非線形素子の面積の1
0倍以上にするとよい。 〔実施例2〕MIM型非線形素子をバックトゥバック構
造にしたときの、アクティブマトリクス基板の製造方法
を図5で説明する。Therefore, as shown in FIG. 9 (a), the contact resistance between the metal film and the ITO film is set between the wiring film and the MIM type non-linear element so that the contact portion between the second metal film and the ITO film has a polarity. If you put it in the opposite way, the polarity difference of the element part will be eliminated,
The direct current component is not applied to the liquid crystal, and the burn-in of the liquid crystal display panel is eliminated. At this time, the area of S1 and S2 at the contact portion between the metal film and the ITO film shown in FIGS. By doing so, the difference in polarity from the wiring film to the pixel electrode is within 0.1 V at maximum, and the liquid crystal display panel does not burn. Ideally, the areas of S1 and S2 should be equal. Since the width of the second metal film is constant in the direction perpendicular to the alternate long and short dash line AA ′ in FIG. 1 when controlling the area of S1 and S2, the length in the AA ′ direction, that is, the lengths of a and b in FIG. It should be equal. Therefore, if the area of S1 and S2 is set to be three times or more the area of the MIM type non-linear element (the size of one element in the case of the back-to-back structure), it shifts in the AA 'direction by the size of the element size. Also, the area ratio between S1 and S2 is 2.5.
It will be less than double. In addition, considering the margin of the manufacturing process,
The area of S1 and S2 is 1 of the area of the MIM type non-linear element.
It is better to make it 0 times or more. [Embodiment 2] A method of manufacturing an active matrix substrate when the MIM type non-linear element has a back-to-back structure will be described with reference to FIG.
【0035】図5(a)のように、第1の金属膜12を
所定の形状に加工した後に、陽極酸化法によって第1の
金属膜12に対する金属酸化膜13を堆積する。その
後、図5(b)に示すように第2の金属膜14を所定の
形状に加工する。このとき第2の金属膜14は、配線膜
になるように金属膜12の配線膜部分にも膜を残すよう
に加工してもよい。次に、図5(c)に示すように素子
を形成する部分と配線膜を形成する部分に第1の金属膜
12を分離する。最後に、画素電極と配線膜をなすIT
O膜15を堆積する。例えば、第2の金属膜14を配線
膜に用いる際には、抵抗の高いITO膜を配線膜として
用いなくてもよい。つまり、ITO膜を配線膜としても
ちいても配線抵抗はほとんど変わらない。そうすれば、
画素電極のITO膜の面積を大きくすることができ、液
晶表示パネルの開口率向上につながる。このときは、I
TO膜15と第2の金属膜14の接触面積S1に対し
て、ITO膜と配線膜となりうる第2の金属膜との接触
面積はかなり大きくする必要がある。最低でも、極性差
が問題にならないようにするためには、S1の10倍以
上にする必要があり、望ましくは20倍以上にする必要
がある。このときの1画素に対応する等価回路は図9
(a)のようになっている。また、MIM型非線形素子
も対称な形になり極性差が生じることはない。As shown in FIG. 5A, after processing the first metal film 12 into a predetermined shape, a metal oxide film 13 for the first metal film 12 is deposited by an anodic oxidation method. After that, as shown in FIG. 5B, the second metal film 14 is processed into a predetermined shape. At this time, the second metal film 14 may be processed so as to be a wiring film so that the film is left in the wiring film portion of the metal film 12. Next, as shown in FIG. 5C, the first metal film 12 is separated into a portion where an element is formed and a portion where a wiring film is formed. Finally, the IT that forms the pixel electrode and the wiring film
The O film 15 is deposited. For example, when the second metal film 14 is used as the wiring film, the ITO film having high resistance may not be used as the wiring film. That is, even if the ITO film is used as the wiring film, the wiring resistance hardly changes. that way,
The area of the ITO film of the pixel electrode can be increased, which leads to improvement of the aperture ratio of the liquid crystal display panel. At this time, I
The contact area between the ITO film and the second metal film that can be the wiring film needs to be considerably larger than the contact area S1 between the TO film 15 and the second metal film 14. At a minimum, in order to prevent the polarity difference from becoming a problem, it is necessary to make it 10 times or more, preferably 20 times or more of S1. The equivalent circuit corresponding to one pixel at this time is shown in FIG.
It is like (a). Further, the MIM type non-linear element also has a symmetrical shape and no polarity difference occurs.
【0036】この方法は、図3に示すような従来の配線
膜とMIM型非線形素子の間に画素電極と同一材料を介
さない場合と製造プロセスは同じであり、製造コストが
変わらず表示品質を向上できる。This method has the same manufacturing process as the case where the same material as the pixel electrode is not interposed between the conventional wiring film and the MIM type non-linear element as shown in FIG. 3, and the manufacturing cost does not change and the display quality is improved. Can be improved.
【0037】〔実施例3〕実施例2で示したが、MIM
型非線形素子の構造をバックトウバック構造にすれば請
求項2に書いたような配線膜から画素電極までの接触膜
は、ITO膜−第2の金属膜−金属酸化膜−第1の金属
膜−金属酸化膜−第2の金属膜−ITO膜となり第1の
金属膜を中心にして対称な膜構造になっている。もう1
つの方法として、第1の金属膜と第2の金属膜の材料を
同じにしてもよい。こうすることで、電圧の印加方向を
どちらにしても流れる電流値は等しくなり、極性差は生
じない。また、この構造にすれば、素子の電圧−電流特
性や接触部S1およびS2の抵抗が、同一液晶表示パネ
ル内でばらついても、そのばらつきを自己補償する構造
になっているので、極性差のパネル内でのばらつきは解
消される。[Third Embodiment] As shown in the second embodiment, the MIM
If the structure of the non-linear element is a back-to-back structure, the contact film from the wiring film to the pixel electrode as described in claim 2 has an ITO film-second metal film-metal oxide film-first metal film. -Metal oxide film-Second metal film-ITO film, which has a symmetrical film structure around the first metal film. Another one
As one method, the materials of the first metal film and the second metal film may be the same. By doing so, the current values that flow are equal regardless of the voltage application direction, and no polarity difference occurs. Further, according to this structure, even if the voltage-current characteristics of the element and the resistances of the contact portions S1 and S2 vary within the same liquid crystal display panel, the variation is self-compensated, so that there is no difference in polarity. Variations within the panel are eliminated.
【0038】第2の金属膜と画素電極であるITO膜を
同一にする方法もあるが、MIM型非線形素子の構造
が、第1の金属膜−金属酸化膜−ITO膜となる構造に
なれば、ITO膜の金属成分を多くして透過率を小さく
しないと、電圧印加時の電流値変動が大きく、この現象
が原因での液晶表示パネルの焼き付きが発生してしま
う。また、電圧印加時の電流値変動を抑えれば、ITO
中の金属成分が多くなり透過率が小さくなって暗い液晶
表示パネルとなり、明るいという利点がなくなってしま
う。従って、この方法は、いずれにしても液晶表示パネ
ルの表示品質を低下させるので好ましくない。There is also a method of making the second metal film and the ITO film which is the pixel electrode the same, but if the structure of the MIM type non-linear element becomes the structure of the first metal film-metal oxide film-ITO film. Unless the metal content of the ITO film is increased to reduce the transmittance, the current value changes greatly when a voltage is applied, and this phenomenon causes image sticking of the liquid crystal display panel. In addition, if the fluctuation of the current value during voltage application is suppressed, the ITO
The amount of metal components in the inside increases and the transmittance decreases, resulting in a dark liquid crystal display panel, and the advantage of being bright is lost. Therefore, this method is not preferable because it deteriorates the display quality of the liquid crystal display panel in any case.
【0039】〔実施例4〕配線膜とMIM型非線形素子
との間の導電接続を、画素電極と同一材料を介して行う
方法としてMIM型非線形素子の構造が、図1のように
バックトウバック構造にする方法と、図2のようにクロ
ス型の構造(第1の金属膜と第2の金属膜を同一材料に
する場合も含む)には、以下の相違がある。[Embodiment 4] As a method of conducting the conductive connection between the wiring film and the MIM type non-linear element through the same material as the pixel electrode, the structure of the MIM type non-linear element has a back-to-back structure as shown in FIG. There are the following differences between the method of forming the structure and the cross-type structure as shown in FIG. 2 (including the case where the first metal film and the second metal film are made of the same material).
【0040】クロス型の構造では、図5に示したバック
トウバック構造の製造方法に対して、図2(a),
(b)どちらの構造でも、第1の金属膜102と画素電
極105との接触部を形成する際には、金属酸化膜10
3を除去する必要があり、1工程増してしまう。しかし
ながら、MIM型非線形素子の面積がバックトウバック
構造よりも小さくなるので、アクティブマトリクス基板
の開口率を大きくすることができるので、明るい液晶表
示パネルには適している。In the cross type structure, as compared with the method of manufacturing the back toe back structure shown in FIG.
(B) In either structure, when the contact portion between the first metal film 102 and the pixel electrode 105 is formed, the metal oxide film 10 is formed.
3 needs to be removed, which increases the number of steps by one. However, since the area of the MIM type non-linear element is smaller than that of the back-to-back structure, the aperture ratio of the active matrix substrate can be increased, which is suitable for a bright liquid crystal display panel.
【0041】〔実施例5〕上述のように、MIM型非線
形素子を介して、液晶に直流成分が印加されなければ焼
き付きが低減されるだけではなく、画面がざらついて見
えるフリッカーも抑えられ非常に見やすい液晶表示パネ
ルになる。[Embodiment 5] As described above, if the direct current component is not applied to the liquid crystal through the MIM type non-linear element, not only the burn-in is reduced but also the flicker which makes the screen rough is suppressed. The LCD panel is easy to see.
【0042】[0042]
【0043】[0043]
【発明の効果】以上の通り、配線膜とMIM型非線形素
子との間の導電接続を、画素電極と同一材料を介して行
うことで液晶に直流成分が印加されないようになり、焼
き付きが発生しない液晶表示パネルを製造工程が増える
ことなく提供できる。As described above, since the conductive connection between the wiring film and the MIM type non-linear element is made through the same material as the pixel electrode, the direct current component is not applied to the liquid crystal and the burn-in does not occur. A liquid crystal display panel can be provided without increasing the number of manufacturing processes.
【0044】さらに、配線膜から画素電極までの接触膜
の構成を対称にすることで同一液晶表示パネル内のMI
M型非線形素子の極性差を常に零にできるので、歩留ま
りの高い液晶表示パネルを提供できる。Further, by making the structure of the contact film from the wiring film to the pixel electrode symmetrical, the MI in the same liquid crystal display panel can be improved.
Since the polarity difference of the M-type non-linear element can be always zero, a liquid crystal display panel with high yield can be provided.
【0045】[0045]
【図1】本発明のMIM型非線形素子の平面図。FIG. 1 is a plan view of a MIM type non-linear element of the present invention.
【図2】本発面のMIM型非線形素子の平面図。FIG. 2 is a plan view of a MIM type non-linear element of the present plane.
【図3】従来のMIM型非線形素子の平面図。FIG. 3 is a plan view of a conventional MIM type nonlinear element.
【図4】本発明のMIM型非線形素子の断面図。FIG. 4 is a sectional view of the MIM type non-linear element of the present invention.
【図5】本発明のMIM型非線形素子の製造工程を表す
断面図。FIG. 5 is a cross-sectional view showing a manufacturing process of the MIM type nonlinear element of the present invention.
【図6】従来のMIM型非線形素子の平面図及び断面
図。6A and 6B are a plan view and a cross-sectional view of a conventional MIM type nonlinear element.
【図7】アクティブマトリクス方式の液晶表示装置の等
価回路図。FIG. 7 is an equivalent circuit diagram of an active matrix liquid crystal display device.
【図8】a図 従来のMIM型非線形素子の印加電圧と
電流値の関係を示す図。b図 液晶表示素子の単位画素
への印加電圧と明るさの関係を示す図陽極酸化膜の化成
温度と酸化膜中に占めるアニオン種の含まれる酸化膜厚
の割合を示す図。8A is a diagram showing a relationship between an applied voltage and a current value of a conventional MIM type non-linear element. FIG. FIG. 5B is a diagram showing the relationship between the voltage applied to the unit pixel of the liquid crystal display element and the brightness. FIG. 6B is a diagram showing the formation temperature of the anodic oxide film and the ratio of the oxide film thickness of the anion species contained in the oxide film.
【図9】a図 本発明の1画素の等価回路図。 b図
従来の1画素の等価回路図。9A is an equivalent circuit diagram of one pixel of the present invention. FIG. Figure b
The equivalent circuit diagram of the conventional one pixel.
【図10】MIM型非線形素子の極性差と液晶表示パネ
ルの焼き付きを示す図。FIG. 10 is a diagram showing the polarity difference of the MIM type nonlinear element and the burn-in of the liquid crystal display panel.
1 MIM型非線形素子 2 液晶表示素子 3 画素領域 10,60 透明基板 11,61 TaOX膜 12,62 第一の金属膜 13,63 金属酸化膜 14,64 第二の金属膜 15,65 画素電極 71,91 走査線 72,92 信号線 DESCRIPTION OF SYMBOLS 1 MIM type non-linear element 2 Liquid crystal display element 3 Pixel region 10,60 Transparent substrate 11,61 TaOX film 12,62 First metal film 13,63 Metal oxide film 14,64 Second metal film 15,65 Pixel electrode 71 , 91 scanning lines 72, 92 signal lines
Claims (8)
からなる絶縁膜−第2の金属膜構造を有するMIM型非
線形素子を用いたアクティブマトリクス基板において、 配線膜と前記MIM型非線形素子との間の導電接続は画
素電極と同一材料を介して行うことを特徴とするアクテ
ィブマトリクス基板。1. An active matrix substrate using a MIM type non-linear element having a first metal film, an insulating film made of an anodized film of the first metal film, and a second metal film structure, wherein a wiring film and the MIM are provided. An active matrix substrate, characterized in that the conductive connection with the non-linear element is made through the same material as the pixel electrode.
からなる絶縁膜−第2の金属膜構造を有するMIM型非
線形素子を用いたアクティブマトリクス基板において、 配線膜から画素電極まで接触膜の構成は対称となること
を特徴とするアクティブマトリクス基板。2. An active matrix substrate using a MIM type non-linear element having a first metal film, an insulating film formed of an anodized film of the first metal film, and a second metal film structure, from a wiring film to a pixel electrode. The active matrix substrate is characterized in that the contact film has a symmetrical structure.
クス基板において、 前記MIM型非線形素子は、極性を反対にして直列に接
続したバック・トゥ・バック構造を有することを特徴と
するアクティブマトリクス基板。3. The active matrix substrate according to claim 1, wherein the MIM type non-linear element has a back-to-back structure in which polarities are opposite to each other and which are connected in series. .
トリクス基板において、 画素電極と第1又は第2の金属膜と導電接続をとる面積
をS1とし、画素電極と同一材料を介する配線膜と第1
又は第2の金属膜と導電接続をとる面積をS2とすれ
ば、 0.4S1≧S2≧2.5S1 の関係であることを特徴とするアクティブマトリクス基
板。4. The active matrix substrate according to claim 1, 2 or 3, wherein an area for conductively connecting the pixel electrode to the first or second metal film is S1, and a wiring film made of the same material as the pixel electrode. And the first
Alternatively, if an area for making conductive connection with the second metal film is S2, then the relationship of 0.4S1 ≧ S2 ≧ 2.5S1 is satisfied.
いて、 前記S1及びS2の面積は、MIM型非線形素子の面積
の3倍以上であることを特徴とするアクティブマトリク
ス基板。5. The active matrix substrate according to claim 4, wherein the areas of S1 and S2 are three times or more the area of the MIM type non-linear element.
板の製造方法であって、 a)第1の金属膜を形成する工程と、 b)第1の金属膜に対する陽極酸化膜を堆積する工程
と、 c)第1の金属膜を島状に加工する工程と、 d)第2の金属膜を形成する工程と、 e)画素電極および配線膜と素子との接続膜を同時に形
成する工程と、を有することを特徴とするアクティブマ
トリクス基板の製造方法。6. The method for manufacturing an active matrix substrate according to claim 3, comprising: a) forming a first metal film, and b) depositing an anodic oxide film on the first metal film. , C) a step of processing the first metal film into an island shape, d) a step of forming a second metal film, and e) a step of simultaneously forming a connection film between a pixel electrode and a wiring film and an element. A method of manufacturing an active matrix substrate, comprising:
ィブマトリクス基板を用いたことを特徴とする液晶表示
装置。7. A liquid crystal display device using the active matrix substrate according to any one of claims 1 to 5.
板の製造方法によって製造されたことを特徴とする液晶
表示装置。8. A liquid crystal display device manufactured by the method for manufacturing an active matrix substrate according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2451496A JPH09218429A (en) | 1996-02-09 | 1996-02-09 | Active matrix substrate, its production and liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2451496A JPH09218429A (en) | 1996-02-09 | 1996-02-09 | Active matrix substrate, its production and liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09218429A true JPH09218429A (en) | 1997-08-19 |
Family
ID=12140289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2451496A Pending JPH09218429A (en) | 1996-02-09 | 1996-02-09 | Active matrix substrate, its production and liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09218429A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6046063A (en) * | 1998-03-27 | 2000-04-04 | Hyundai Electronics Industries Co., Ltd. | Method of manufacturing liquid crystal display |
CN100451782C (en) * | 2003-11-18 | 2009-01-14 | 三星电子株式会社 | Liquid crystal display, thin film diode panel, and manufacturing method of the same |
-
1996
- 1996-02-09 JP JP2451496A patent/JPH09218429A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6046063A (en) * | 1998-03-27 | 2000-04-04 | Hyundai Electronics Industries Co., Ltd. | Method of manufacturing liquid crystal display |
CN100451782C (en) * | 2003-11-18 | 2009-01-14 | 三星电子株式会社 | Liquid crystal display, thin film diode panel, and manufacturing method of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2977858B2 (en) | Method of manufacturing MIM device and liquid crystal display device including the device | |
GB2306747A (en) | Liquid crystal display and method of manufacturing the same | |
JPH09218429A (en) | Active matrix substrate, its production and liquid crystal display device | |
JP3343739B2 (en) | Liquid crystal display device and active element substrate | |
JPH07104318A (en) | Mim type nonlinear element and its manufacture | |
JP3306986B2 (en) | Liquid crystal device manufacturing method | |
JPH10247754A (en) | Two-terminal nonlinear device, manufacture thereof, and liquid crystal display panel | |
JPH11249177A (en) | Active matrix substrate, production thereof and liquid crystal display panel | |
JP3166317B2 (en) | Method of manufacturing electrical device | |
JP3666378B2 (en) | Manufacturing method of MIM type nonlinear element | |
JPH08262499A (en) | Switching element and liquid crystal display | |
JPH0345930A (en) | Two-terminal type nonlinear element | |
JPH0720500A (en) | Mim type nonlinear element and its production | |
JPH07120791A (en) | Active matrix type liquid crystal display device | |
JP3454567B2 (en) | Driving method of liquid crystal display device | |
JP3387588B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JP3303345B2 (en) | Liquid crystal display panel manufacturing method | |
JP3200971B2 (en) | Liquid crystal display panel and method of manufacturing the same | |
JP2003262890A (en) | Liquid crystal display device | |
JPH03174123A (en) | Electrooptical device and production thereof | |
JP2845956B2 (en) | Driving method of active matrix liquid crystal display device | |
JPH095795A (en) | Mim type nonlinear element, thin-film transistor and their production as well as liquid crystal display device | |
JPH11249175A (en) | Active matrix substrate, production thereof and liquid crystal display panel | |
JPH11109421A (en) | Active matrix substrate and its production as well as liquid crystal display panel | |
JPH06301064A (en) | Mim-type nonlinear element and its production |