JPH06300237A - Fluidized bed type combustion method and apparatus - Google Patents

Fluidized bed type combustion method and apparatus

Info

Publication number
JPH06300237A
JPH06300237A JP8749593A JP8749593A JPH06300237A JP H06300237 A JPH06300237 A JP H06300237A JP 8749593 A JP8749593 A JP 8749593A JP 8749593 A JP8749593 A JP 8749593A JP H06300237 A JPH06300237 A JP H06300237A
Authority
JP
Japan
Prior art keywords
fluidized
fluidized bed
medium layer
fluidized medium
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8749593A
Other languages
Japanese (ja)
Inventor
Hisashi Taoshita
久 田尾下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP8749593A priority Critical patent/JPH06300237A/en
Publication of JPH06300237A publication Critical patent/JPH06300237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To quickly start up a fluidized bed incinerator and minimize the fuel consumption of auxiliary burners by a method wherein the auxiliary burners having specified capacities are arranged between two or more fluidizing gas blow pipes in a pattern corresponding to the required heat load in a fluidized medium bed. CONSTITUTION:Distribution nozzles 7 are in contact with a fluidized medium bed 6 and blow air to fluidize the fluidized bed 6, and air diffusing pipes 10 also blow fluidizing air through nozzles to fluidize the fluidized bed 6. Auxiliary burners 9 are arranged at selected positions between the air diffusion pipes 10 or between distribution nozzles 7 on the furnace bottom. In the case the fluidized medium bed 6 is divided into sections each having the equal volume to be heated by the auxiliary burners 9, the auxiliary burners 9b have a larger capacity than the auxiliary burners 9a. In the case the auxiliary burners 9 having the same capacity are arranged, the fluidized medium bed 6 is divided into sections having different volumes to be heated by the auxiliary burners 9. Thereby, the combustion efficiency in the fluidized medium bed is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は産業廃棄物等の焼却設備
に係り、特に流動層内に設けられた助燃バーナの流動媒
体中における加熱効率を向上させ、流動層燃焼装置の早
期起動および助燃バーナの燃料を節減するのに好適な産
業廃棄物等の流動層燃焼装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an incineration facility for industrial waste, and more particularly, to improve the heating efficiency of a combustion burner provided in a fluidized bed in a fluidized medium, to early start and assist the combustion of a fluidized bed combustion apparatus. The present invention relates to a fluidized bed combustor for industrial waste or the like, which is suitable for saving fuel in a burner.

【0002】[0002]

【従来の技術】従来の産業廃棄物等の流動層焼却炉は、
例えば図10および図12に示されるように、炉側壁部
に設けられた助燃バーナ(層中バーナ)9から流動媒体
層6を加熱し、流動層燃焼させる構造となっている。そ
して、産業廃棄物、例えば製紙汚泥、下水汚泥や、その
他の種々の汚泥を焼却処理する場合には、これらの汚泥
を脱水して、その脱水した汚泥を廃棄物投入口2から流
動層焼却炉1内に投入して流動燃焼させ焼却する方法が
採用されている。この流動層焼却炉は、廃棄物の燃焼が
良好で未燃残渣が少なく、そのうえ臭気および窒素酸化
物(NOx)の発生も少なく2次公害対策に対して最適
なことから、近年、流動層焼却炉1による産業廃棄物等
の焼却処理が増加してきている。図10は、従来の製紙
汚泥等の廃棄物の流動層焼却炉の構造の一例を示す模式
図であり、図12は、従来の下水汚泥等の廃棄物の流動
層焼却炉の構造の一例を示す模式図である。なお、機能
的には上記の両流動層焼却炉共ほぼ同様であるので共通
の符号を用いて説明する。図において、流動層焼却炉1
は、外殻は鋼板、内殻は耐火レンガ、断熱レンガ、アル
ミナ質キャスタブル等によって構成されている。そし
て、廃棄物投入口(被焼却物投入口)2から脱水した汚
泥等が投入される。流動層焼却炉1には排ガス出口3、
覗窓4、2次空気供給口5が設けられている。流動層焼
却炉1の下部には、硅砂等で流動媒体層6が形成され、
流動層燃焼部が構成されている。そして、流動媒体層6
の温度が750℃〜850℃に予熱された状態で、流動
媒体層6中に廃棄物投入口2から脱水した汚泥等を投入
して流動媒体と混合し流動層燃焼させるものである。分
散ノズル7は、流動媒体層6に接して複数個設けられ、
流動用空気を噴出させて流動媒体を流動させるものであ
り、散気管10も分散ノズル7と同様の機能を持つもの
である。風箱8には、空気予熱器(図示せず)で加熱さ
れた空気が送入される。助燃バーナ9は、流動媒体層6
の昇温および被焼却物の助燃のために使用される。図示
していないが、流動媒体層6の上部には起動用バーナが
設置されており、流動媒体層6の層温が500℃程度に
まで昇温したら、助燃バーナ9を使用し、層温をさらに
750℃程度にまで上昇させ、被焼却物の投入を開始す
る。スライドゲートダンパ11は、流動媒体および焼却
物や異物の抜出し装置12の上部に設けられている。図
11、図13は、助燃バーナ9の配置の一例を示す図で
あり、矢印Aは助燃バーナ9からの燃料の噴射方向を示
すものである。廃棄物投入口2から投入された被焼却物
は、750℃〜850℃の流動媒体層6内で流動燃焼さ
れる。この時、FDF(押込み送風機)により散気管1
0または風箱8へ送られた予熱空気は、各々分散ノズル
7または散気管10から噴射させて流動媒体層6を流動
させて流動層燃焼を効果的に行わせる。流動媒体層6内
では、被焼却物である産業廃棄物の乾燥と、乾燥させた
廃棄物の燃焼と、燃焼に伴って発生する可燃性ガスの燃
焼が同時に行われる。流動媒体層6内で燃焼できなかっ
た可燃性ガスは、2次空気供給口5からの2次空気によ
って燃焼され排ガス出口3から炉外に排出される。しか
し、従来の流動層焼却炉1の炉側壁部の助燃バーナ9で
は、例えば図14に示すごとく、助燃バーナ9の火炎は
炉側壁面から約30cm程度の所で燃焼し流動媒体層6
の中央部近傍にまで到達せず、そのため流動媒体層6の
加熱効率(助燃効率)が極めて悪く、流動媒体層6の層
温度分布は、例えば図15に示すごとく、炉中央部は層
温度が低く、したがって流動層燃焼の早期起動が難し
く、また助燃バーナ9には多量の燃料を必要とするなど
極めて不経済であった。そして、助燃バーナ9の流動媒
体層6中での燃焼効果を良好にするという点、すなわち
産業廃棄物焼却設備の起動時において、早期流動層燃焼
の開始を可能にし、かつ助燃バーナによる加熱効率を上
げ燃料油の消費量を最少限に低減させるという点につい
ての配慮は従来全くなされていなかった。なお、廃棄物
等の流動層による焼却に関する従来技術として、例えば
特開昭57−74579号公報、実開昭58−1753
42号公報、実開昭59−92310号公報などが挙げ
られる。
2. Description of the Related Art A conventional fluidized bed incinerator for industrial waste is
For example, as shown in FIG. 10 and FIG. 12, the fluidized medium layer 6 is heated from an auxiliary combustion burner (in-bed burner) 9 provided on the side wall of the furnace to burn the fluidized bed. When incinerating industrial waste such as paper sludge, sewage sludge, and various other sludges, these sludges are dehydrated, and the dehydrated sludges are discharged from the waste input port 2 to a fluidized bed incinerator. The method of throwing in 1 and carrying out fluid combustion and incineration is adopted. This fluidized bed incinerator is suitable for secondary pollution control because of good combustion of waste, less unburned residue, less odor and generation of nitrogen oxides (NOx). Incineration of industrial waste by the furnace 1 is increasing. FIG. 10 is a schematic diagram showing an example of the structure of a conventional fluidized bed incinerator for waste such as papermaking sludge, and FIG. 12 is an example of the structure of a conventional fluidized bed incinerator for waste such as sewage sludge. It is a schematic diagram which shows. Since both of the above fluidized bed incinerators are functionally almost the same, common reference numerals will be used for description. In the figure, fluidized bed incinerator 1
The outer shell is made of steel plate, and the inner shell is made of refractory brick, heat insulating brick, castable alumina and the like. Then, dewatered sludge or the like is input from the waste input port (incinerator input port) 2. The fluidized bed incinerator 1 has an exhaust gas outlet 3,
A viewing window 4 and a secondary air supply port 5 are provided. At the bottom of the fluidized bed incinerator 1, a fluidized medium layer 6 is formed of silica sand or the like,
A fluidized bed combustion unit is configured. And the fluid medium layer 6
In the state where the temperature is preheated to 750 ° C. to 850 ° C., dehydrated sludge or the like is put into the fluid medium layer 6 from the waste inlet 2 and mixed with the fluid medium to be combusted in the fluidized bed. A plurality of dispersion nozzles 7 are provided in contact with the fluidized medium layer 6,
The flowing air is jetted to flow the flowing medium, and the air diffuser 10 also has the same function as the dispersion nozzle 7. Air heated by an air preheater (not shown) is fed into the wind box 8. The auxiliary burner 9 is a fluidized medium layer 6
It is used to raise the temperature and to assist the burning of incinerated materials. Although not shown, a startup burner is installed above the fluidized medium layer 6, and when the bed temperature of the fluidized medium layer 6 rises to about 500 ° C., the auxiliary combustion burner 9 is used to increase the bed temperature. The temperature is further raised to about 750 ° C, and the incineration of the incinerated substances is started. The slide gate damper 11 is provided on the upper part of the device 12 for extracting fluid media, incineration materials, and foreign matter. 11 and 13 are views showing an example of the arrangement of the auxiliary combustion burner 9, and the arrow A indicates the injection direction of fuel from the auxiliary combustion burner 9. The material to be incinerated introduced from the waste introduction port 2 is fluidized and burned in the fluidized medium layer 6 at 750 ° C to 850 ° C. At this time, the air diffuser 1 by the FDF (forced blower)
0 or preheated air sent to the wind box 8 is jetted from the dispersion nozzle 7 or the diffuser pipe 10 to flow the fluidized medium layer 6 to effectively perform fluidized bed combustion. In the fluidized medium layer 6, the industrial waste that is the incineration object is dried, the dried waste is burned, and the combustible gas generated by the combustion is burned at the same time. The combustible gas that could not be combusted in the fluidized medium layer 6 is combusted by the secondary air from the secondary air supply port 5 and discharged from the exhaust gas outlet 3 to the outside of the furnace. However, in the auxiliary combustion burner 9 on the side wall of the conventional fluidized bed incinerator 1, as shown in FIG. 14, for example, the flame of the auxiliary combustion burner 9 is burned at a position about 30 cm from the side wall of the furnace to form the fluidized medium layer 6
Of the fluidized medium layer 6 is extremely poor, and the bed temperature distribution of the fluidized medium layer 6 is as shown in, for example, FIG. Since it is low, it is difficult to start the fluidized bed combustion at an early stage, and the auxiliary burner 9 requires a large amount of fuel, which is extremely uneconomical. And, in that the combustion effect of the auxiliary combustion burner 9 in the fluidized medium layer 6 is improved, that is, when the industrial waste incineration facility is started, early fluidized bed combustion can be started, and the heating efficiency by the auxiliary combustion burner can be improved. Conventionally, no consideration has been given to the reduction of the amount of fuel oil to be raised. Note that as conventional techniques for incineration of wastes and the like in a fluidized bed, for example, JP-A-57-74579 and JP-A-58-1753.
42 and Japanese Utility Model Laid-Open No. 59-92310.

【0003】[0003]

【発明が解決しようとする課題】上述したごとく従来技
術においては、産業廃棄物等を流動層燃焼させるための
助燃バーナが炉側壁部に設けられているため、助燃バー
ナ火炎の流動媒体中における層内滞留時間が短く、層中
央部に達しないため加熱効率が悪く、流動媒体層の昇温
に時間がかかるため廃棄物の焼却運転開始が遅くなり、
かつ助燃バーナの燃料消費量が増大しランニングコスト
が高くなるという問題があった。
As described above, according to the prior art, since the auxiliary combustion burner for combusting the industrial waste and the like in the fluidized bed is provided on the side wall of the furnace, the bed in the fluidizing medium of the auxiliary combustion burner flame is formed. The internal retention time is short, the heating efficiency is poor because it does not reach the center of the bed, and it takes a long time to raise the temperature of the fluidized medium bed, which delays the start of waste incineration operation.
In addition, there is a problem that the fuel consumption of the auxiliary burner increases and the running cost increases.

【0004】本発明の目的は、上記従来技術における問
題点を解消するものであって、流動媒体層中に配設する
複数の助燃バーナを、流動媒体層の内部もしくは炉底部
に設けられている流動媒体を流動させる空気分散ノズル
または散気管の位置もしくはその近傍に、流動媒体層内
の要求熱負荷の大きさに応じて配設し、また助燃バーナ
火炎の噴出方向を下方に向けて層内滞留時間を長くして
加熱効率の向上をはかり、産業廃棄物等の流動層焼却設
備の早期運転起動が可能で、助燃バーナの燃料消費量を
最少限にした経済的な廃棄物の流動層燃焼方法およびそ
の装置を提供することにある。
An object of the present invention is to solve the above problems in the prior art, in which a plurality of auxiliary burners arranged in the fluidized medium layer are provided inside the fluidized medium layer or at the bottom of the furnace. Depending on the size of the required heat load in the fluidized medium layer, it is installed at or near the position of the air dispersion nozzle or air diffuser that causes the fluidized medium to flow, and the jet direction of the auxiliary combustion burner flame is directed downward in the layer. Economical fluidized bed combustion of waste by minimizing the fuel consumption of auxiliary combustion burners by increasing the residence time to improve heating efficiency, enabling early startup of fluidized bed incinerators for industrial waste, etc. A method and an apparatus therefor are provided.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、廃棄物の流動層燃焼装置の流動媒体層内に
設ける複数の助燃バーナを炉側壁部に配設するのではな
く、助燃バーナを、流動媒体を流動させる流動用気体噴
出管である空気分散ノズルまたは散気管の中もしくはそ
の近傍に、流動媒体層内において要求される熱負荷が大
きい部分ほど助燃バーナの燃料油の入熱量を大きく設定
するか、もしくは助燃バーナの配置パターンを密に設定
し、かつ助燃バーナからの噴射油の方向を下方に向けて
助燃バーナ火炎の層内滞留時間を長くして廃棄物等の流
動層燃焼効率の向上をはかり、産業廃棄物等の流動層焼
却設備の早期運転起動が可能で、助燃バーナの燃料消費
量を最少限にした経済的な廃棄物の流動層燃焼方法とす
るものである。本発明は、流動媒体層内に、流動媒体を
流動させる気体噴出口を有する複数の流動用気体噴出管
と、流動媒体層内を加熱する複数の助燃バーナとを少な
くとも配設し、上記流動媒体層内に被焼却物である廃棄
物を投入して流動層燃焼させて廃棄物の焼却を行う流動
層燃焼方法において、上記複数の流動用気体噴出管また
はその近傍に、燃料を流動媒体層内に噴射させて加熱す
る所定容量の助燃バーナを、流動媒体層内の要求熱負荷
容量に応じた配置パターンにより配設して流動層燃焼を
行う流動層燃焼方法である。また本発明は、上記の流動
層燃焼方法において、上記複数の流動用気体噴出管また
はその近傍に、燃料を流動媒体層内に噴射させて加熱す
る助燃バーナを配設し、かつ流動媒体層内の要求熱負荷
容量の大きさに応じて助燃バーナの容量を設定し、該助
燃バーナへ上記要求熱負荷容量に応じた量の燃料を供給
し制御する流動層燃焼方法である。そして、上記助燃バ
ーナは、流動用気体噴出管である空気分散管もしくは空
気分散ノズルの中から選択した設定の配置パターンで配
設することが好ましい。さらに本発明は、流動媒体層内
に、流動媒体を流動させる気体噴出口を有する複数の流
動用気体噴出管と、流動媒体層内を加熱する複数の助燃
バーナを配設し、上記流動媒体層内に被焼却物である廃
棄物を投入して流動層燃焼させて廃棄物の焼却を行う流
動層燃焼装置において、炉内温度、流動媒体層内の温
度、風箱の圧力、排ガス中の窒素酸化物(NOx)、一
酸化炭素(CO)または酸素(O2)濃度を検知して、
流動層燃焼装置の運転状態を検出する手段と、流動層燃
焼装置の起動所要時間および流動媒体層の昇温レート目
標値を設定し、該昇温レート目標値と実測昇温レートと
を比較演算してその偏差を求める手段と、上記の偏差か
ら流動媒体層内に配設されている助燃バーナへの燃料供
給量を調整制御する手段を少なくとも備えた流動層燃焼
装置に関するものである。
In order to achieve the above object of the present invention, a plurality of auxiliary burners provided in the fluidized medium bed of a fluidized bed combustor for waste are not arranged in the side wall of the furnace. The auxiliary combustion burner is placed in or near an air dispersion nozzle, which is a gas injection pipe for flowing a fluidized medium, or an air diffuser, and the fuel oil of the auxiliary combustion burner is introduced into a portion of the fluidized medium layer where the heat load required is large. Either set a large amount of heat or set the arrangement pattern of the auxiliary combustion burners densely, and make the direction of the injected oil from the auxiliary combustion burners downward to increase the residence time in the auxiliary combustion burner flame in the layer and to move the waste etc. This is an economical fluidized bed combustion method that improves bed combustion efficiency, enables early start-up of fluidized bed incinerators for industrial waste, etc., and minimizes fuel consumption of the auxiliary burner. is there. According to the present invention, in a fluidized medium layer, at least a plurality of flow gas ejection pipes having gas ejection ports for flowing the fluidized medium and a plurality of auxiliary combustion burners for heating the fluidized medium layer are arranged. In a fluidized bed combustion method in which waste, which is an object to be incinerated, is put into a bed and burned in a fluidized bed to incinerate the waste, in the fluidized medium bed, fuel is supplied to the plurality of fluid gas jet pipes or in the vicinity thereof. This is a fluidized bed combustion method in which an auxiliary combustion burner having a predetermined capacity to be injected and heated into the fluidized bed is arranged in a layout pattern according to the required heat load capacity in the fluidized medium bed to perform fluidized bed combustion. Further, in the fluidized bed combustion method, the present invention provides an auxiliary combustion burner for injecting fuel into the fluidized medium layer to heat the fluidized gas ejection pipes or in the vicinity thereof, and Is a fluidized bed combustion method in which the capacity of the auxiliary combustion burner is set according to the required heat load capacity and the amount of fuel corresponding to the required heat load capacity is supplied to the auxiliary combustion burner for control. Further, it is preferable that the auxiliary combustion burner is arranged in an arrangement pattern of a setting selected from an air dispersion pipe or an air dispersion nozzle that is a flow gas ejection pipe. Further, according to the present invention, in the fluidized medium layer, a plurality of gas jetting pipes for flowing having a gas jetting port for flowing the fluidized medium and a plurality of auxiliary combustion burners for heating the fluidized medium layer are arranged, In a fluidized bed combustor that incinerates waste by injecting waste to be incinerated into it and burning it in a fluidized bed, the temperature in the furnace, the temperature in the fluidized medium bed, the pressure in the wind box, the nitrogen in the exhaust gas Detects oxide (NOx), carbon monoxide (CO) or oxygen (O 2 ) concentration,
A means for detecting the operating state of the fluidized bed combustion device, a required time for starting the fluidized bed combustion device, and a temperature rise rate target value of the fluidized medium bed are set, and the temperature rise rate target value and the actually measured temperature rise rate are compared and calculated. The present invention relates to a fluidized bed combustion apparatus including at least means for obtaining the deviation and means for adjusting and controlling the amount of fuel supplied to the auxiliary combustion burner arranged in the fluidized medium layer from the above deviation.

【0006】[0006]

【作用】従来の廃棄物の流動層焼却炉においては、例え
ば図16に示すごとく、流動層燃焼炉の炉側壁に助燃バ
ーナを配設しているため、炉側壁部近傍ばかり昇温され
て、図16に示すF領域(流動層焼却炉が大型になれば
なる程、このF領域は大きくなる傾向にある)のよう
に、炉中央部の流動媒体層の昇温がなかなかできなかっ
た。本発明は、助燃バーナを流動用気体噴出管である空
気散気管中または炉底側に設けられた空気分散ノズルに
取付け、流動媒体層内の要求熱負荷が大きい領域ほど燃
料油の入熱量を大きくするか、または流動媒体層内の要
求熱負荷に応じた助燃バーナの配置を行い、かつ助燃バ
ーナから噴射させる燃料油の層内噴射方向を下方に向け
て助燃バーナ火炎の滞留時間を長くするように調整する
ことにより、流動媒体層内全体の燃焼効率を向上させる
ことが可能となる。これによって、従来の流動層燃焼焼
却炉のように炉側壁近傍ばかり昇温し、流動媒体層全体
が昇温できないという問題を解消することができ、産業
廃棄物等の流動層燃焼の早期焼却の開始を達成すること
ができ、また流動媒体層の昇温に大量の燃料油を消費す
ることがなくなり、経済的な廃棄物の焼却運用をはかる
ことができる。
In the conventional fluidized bed incinerator for waste, as shown in FIG. 16, for example, since the auxiliary combustion burner is arranged on the furnace side wall of the fluidized bed combustion furnace, the temperature is raised only near the furnace side wall portion. As in the F region shown in FIG. 16 (the larger the fluidized bed incinerator, the larger the F region tends to be), it was difficult to raise the temperature of the fluidized medium layer in the central part of the furnace. In the present invention, an auxiliary combustion burner is attached to an air diffuser nozzle provided in the air diffuser that is a gas jet pipe for flowing or on the furnace bottom side, and the heat input amount of fuel oil increases as the required heat load in the fluidized medium layer increases. Increase or arrange the auxiliary combustion burner according to the required heat load in the fluidized medium layer, and increase the residence time of the auxiliary combustion burner flame by directing the in-layer injection direction of the fuel oil injected from the auxiliary combustion burner downward. By adjusting in this way, it becomes possible to improve the combustion efficiency of the entire fluidized medium layer. As a result, it is possible to solve the problem that the temperature of the fluidized bed combustion incinerator is raised only near the side wall of the furnace and the temperature of the entire fluidized medium bed cannot be raised. The start can be achieved, a large amount of fuel oil is not consumed to raise the temperature of the fluidized medium layer, and economical waste incineration operation can be achieved.

【0007】[0007]

【実施例】以下に本発明の実施例を挙げ、図面を引用し
てさらに詳細に説明する。図1は製紙汚泥の流動層焼却
炉(角型炉)の構造の一例を示す模式図であり、図2お
よび図3は、図1のA−A矢視図で、助燃バーナ9の配
置の組合せの一例を示す説明図である。図2において、
9a、9bは助燃バーナの容量の大きさが異なることを
示す。また、図3に示すB、C、D、Eの各符号は助燃
バーナ9を配置した流動媒体層6の領域の大きさを示す
ものである。また、図4は下水汚泥の流動層焼却炉(丸
型炉)の構造の一例を示す模式図であり、図5は、図4
のB−B矢視図であり、炉底部に設けられた助燃バーナ
9の配置を示す説明図であって、助燃バーナ9は、円形
の炉底部を8分割した扇形のほぼ中心部に配設した丸型
の流動層焼却炉1を示す。図1および図4において、流
動層焼却炉1は、外殻は鋼板、内殻は耐火レンガ、断熱
レンガ、アルミナ質キャスタブル等で構成されている。
被焼却物投入口2から、脱水した汚泥等が投入される。
流動層焼却炉1には、排ガス出口3、覗窓4、2次空気
供給口5が設けられている。流動媒体層6は、硅砂等の
流動媒体により構成されている。そして、助燃バーナ9
により、流動媒体層6が750℃〜850℃の温度に昇
温した後、廃棄物投入口2から脱水した汚泥等が流動媒
体層6中に投入され、流動媒体と混合して燃焼させる。
なお、分散ノズル7は流動媒体層6と接して設けられ、
空気を噴出させて流動媒体層6を流動させるものであ
り、散気管10も上記分散ノズル7と同様の機能を有す
るものであって、流動用空気を散気管10のノズルから
噴射させて流動媒体を流動させるものである。風箱8に
は、空気予熱器(図示せず)で加熱された予熱空気が導
入される。本実施例では、助燃バーナ9はいずれも散気
管10の中から選択するか、または炉底側の分散ノズル
の中から選択し配置した。そして、これらの助燃バーナ
9から燃料油を炉底方向(矢印Aの方向)に噴射させ
て、層内滞留時間を長くし流動媒体層6の昇温および被
焼却物の助燃を行った。スライドゲートダンパ11は、
流動媒体および焼却異物等を、抜出し装置12から系外
に排出させるものである。図6は、上記角型炉に用いら
れる本発明の助燃バーナ9の構造の一例を示すもので、
図7は、上記丸型炉に用いられる本発明の助燃バーナ9
の構造の一例を示すものである。図において、矢印Aで
示す方向は助燃バーナ9からの燃料噴射方向を示すもの
であり、いずれも炉底方向に向けて噴射させて流動媒体
層6内における燃料の滞留時間の延長をはかり、助燃効
率を向上させるものである。廃棄物投入口(被焼却物投
入口)2から投入された脱水汚泥等の被焼却物は、75
0℃〜850℃程度の温度の流動媒体層6内に混合され
流動燃焼により焼却される。この時、FDFにより散気
管10または風箱8へ送入された予熱空気は、各々の分
散ノズル7または散気管10から噴射されて流動媒体層
6を流動させて廃棄物の焼却を効果的に行う。750℃
〜850℃の温度の流動媒体層6内では、被焼却物の乾
燥、乾燥した被焼却物の燃焼、被焼却物の燃焼に伴って
発生する可燃性ガスの燃焼が同時に行われる。流動媒体
層6内で燃焼しきれなかった可燃性ガスは、2次空気供
給口5からの2次空気によって燃焼されて排ガス出口3
から炉外に排出される。従来の流動層焼却炉では、助燃
バーナで加熱して層温が500℃程度になってから流動
層焼却炉の運転を開始し、図14〜図16に示すごと
く、流動層焼却炉の起動時には、炉側壁部の流動層のみ
が昇温し、流動媒体層6全体が750℃程度の温度にま
で昇温させるのにかなり長時間を必要とし、かつ助燃バ
ーナには大量の燃料油を投入していたが、本実施例に示
す流動層焼却炉のごとく流動媒体層6の要求熱負荷の大
きい部分(炉中央部に比べて炉側壁近傍は炉壁の昇温に
熱エネルギーを必要とするので要求熱負荷が大きい)ほ
ど助燃バーナの燃料油の入熱量が大きくなるように流動
媒体層の要求熱負荷の大きさに対応させた。すなわち、
流動媒体層6の助燃バーナによる加熱容積を等しく分割
した場合には助燃バーナ9容量を、例えば図2に示すご
とく助燃バーナを9a<9bと大きくし、また助燃バー
ナ9の容量が同じものを配設する場合には、流動媒体層
6の助燃バーナによる加熱容積を変化させることにより
対応させた。また、助燃バーナ9の大小、および受け持
つ流動媒体層6の加熱容積の大小に関係なく、助燃バー
ナ9からの燃料の噴射方向は、流動層を流動させる流動
用空気が下から上方向に流れているので、燃料を炉底方
向(矢印Aの方向)に噴射させて助燃バーナ火炎の層内
滞留時間が長くなるように設定し、流動媒体層内におけ
る燃焼効率の向上をはかった。次に、本発明の廃棄物等
の流動層燃焼装置の自動制御について図8を用いて説明
する。図において、流動層焼却炉1を中心に、各種のセ
ンサ(検知器)13を配置して、炉内温度;F1、排ガ
ス中のO2濃度;F2、排ガス中のNOx濃度;F3、排
ガス中のCO濃度;F4、流動媒体層内温度;B1
2、風箱の圧力;B3等を計測し、流動層燃焼装置の運
転状態を記録する。上記の各計測値の信号は回路14を
経て、演算器16に検出信号として入力される。演算器
16の検出器(M)で必要データが抽出され、運転状態
表示演算器(CO)と、流動層燃焼装置の起動所要時間
と流動媒体層内の昇温レート目標値(設定値)を設定
し、このあらかじめ設定された昇温レート設定値と実測
昇温レートとを比較演算する昇温レート比較表示演算器
(COM)により、昇温レート設定値と実測昇温レート
との偏差を演算し、その偏差に基づいて各助燃バーナに
供給する燃料量を調整制御する構成となっている。図9
に、昇温レート比較表示モデルの一例を示す。破線は昇
温レート設定値を示し、実線は実測昇温レートを示す。
そして、昇温レート設定値と実測昇温レートは比較さ
れ、その±昇温レート(偏差)により、制御器17を介
して燃料制御信号18として入力され、燃料の調整を端
末機器により操作して正常な運転状態となるように自動
制御されるものである。なお、燃料供給量はあらかじめ
最小値と最大値を設定し、その範囲内で運用するものと
した。本発明の流動層燃焼装置の丸型炉の実施例とし
て、流動媒体層の中心部に助燃バーナを配設しない構成
としたが、中心部に助燃バーナを配設して他の助燃バー
ナを流動媒体層の均等容積分けとして配設しても良く、
上記実施例と同様の効果が得られる。また、角型炉の例
に示すごとく流動媒体層の中心部に設ける助燃バーナの
容量と炉側壁部に設ける助燃バーナの容量の大きさを調
整して入熱量を制御して流動媒体層の均等加熱化をはか
るか、または助燃バーナの受持つ流動媒体層の加熱容積
を調整して流動媒体層の均等加熱化をはかっても上記実
施例と同様の効果が得られる。また、助燃バーナの空気
分散ノズルあるいは散気管への取付けは、ねじ込み式あ
るいはフランジによるボルト、ナット取付けとしても良
い。本実施例において、助燃バーナを散気管中から垂直
に配設した例を示したが、場合によっては助燃バーナの
組合せ配設の位置まで任意の角度で散気管を流動層内に
貫通させ、最終的に必要とする流動層内に垂直に配設し
ても良い。
Embodiments of the present invention will be described below in more detail with reference to the drawings. FIG. 1 is a schematic view showing an example of the structure of a fluidized bed incinerator (square furnace) for paper sludge, and FIGS. 2 and 3 are views taken along the line AA of FIG. 1 showing the arrangement of the auxiliary burners 9. It is explanatory drawing which shows an example of a combination. In FIG.
9a and 9b show that the capacity of the auxiliary burner is different. The symbols B, C, D and E shown in FIG. 3 indicate the size of the region of the fluidized medium layer 6 in which the auxiliary burner 9 is arranged. 4 is a schematic view showing an example of the structure of a fluidized bed incinerator (round furnace) for sewage sludge, and FIG.
FIG. 6 is a view taken along the line BB of FIG. 4B, which is an explanatory view showing the arrangement of the auxiliary combustion burners 9 provided in the furnace bottom portion, and the auxiliary combustion burners 9 are arranged in a fan-shaped substantially central portion obtained by dividing a circular furnace bottom portion into eight. The round type fluidized bed incinerator 1 is shown. 1 and 4, the fluidized bed incinerator 1 has a steel plate as an outer shell, a refractory brick, a heat insulating brick, and an alumina castable as an inner shell.
Dewatered sludge or the like is input from the incineration object input port 2.
The fluidized bed incinerator 1 is provided with an exhaust gas outlet 3, a viewing window 4, and a secondary air supply port 5. The fluidized medium layer 6 is composed of a fluidized medium such as silica sand. And the auxiliary burner 9
Thus, the fluidized medium layer 6 is heated to a temperature of 750 ° C. to 850 ° C., and then the sludge and the like dehydrated from the waste input port 2 are put into the fluidized medium layer 6 and mixed with the fluidized medium and burned.
The dispersion nozzle 7 is provided in contact with the fluidized medium layer 6,
Air is ejected to flow the fluidized medium layer 6, and the air diffuser 10 also has a function similar to that of the dispersion nozzle 7. The fluidizing air is jetted from the nozzle of the air diffuser 10 to cause the fluidized medium to flow. Is what makes it flow. Preheated air heated by an air preheater (not shown) is introduced into the wind box 8. In this embodiment, all of the auxiliary combustion burners 9 are selected from the diffuser tubes 10 or selected from the dispersion nozzles on the furnace bottom side and arranged. Then, the fuel oil was injected from these auxiliary combustion burners 9 in the furnace bottom direction (direction of arrow A) to lengthen the in-bed residence time to raise the temperature of the fluidized medium layer 6 and assist the combustion of the incineration material. The slide gate damper 11
The fluidized medium, the incinerated foreign matter, and the like are discharged from the extraction device 12 to the outside of the system. FIG. 6 shows an example of the structure of the auxiliary combustion burner 9 of the present invention used in the square furnace.
FIG. 7 shows an auxiliary combustion burner 9 of the present invention used in the round furnace.
2 shows an example of the structure of FIG. In the figure, the direction indicated by arrow A indicates the direction of fuel injection from the auxiliary combustion burner 9. In both cases, fuel is injected toward the bottom of the furnace to extend the residence time of the fuel in the fluidized medium layer 6 to increase the auxiliary combustion. It improves efficiency. The incinerated substances such as dewatered sludge that are input from the waste input port (incinerator input port) 2 are 75
It is mixed in the fluidized medium layer 6 at a temperature of about 0 ° C. to 850 ° C. and incinerated by fluidized combustion. At this time, the preheated air sent to the air diffuser 10 or the wind box 8 by the FDF is jetted from the respective dispersion nozzles 7 or the air diffusers 10 to flow the fluidized medium layer 6 to effectively incinerate the waste. To do. 750 ° C
In the fluidized medium layer 6 at a temperature of up to 850 ° C., the incineration object is dried, the dried incineration object is burned, and the combustible gas generated by the combustion of the incineration object is simultaneously burned. The combustible gas that has not been completely burned in the fluidized medium layer 6 is burned by the secondary air from the secondary air supply port 5, and the exhaust gas outlet 3
Is discharged from the furnace. In the conventional fluidized bed incinerator, the fluidized bed incinerator is started to operate after the bed temperature is heated to about 500 ° C. by heating with the auxiliary combustion burner, and as shown in FIGS. It takes a considerably long time to raise the temperature of only the fluidized bed on the side wall of the furnace to raise the temperature of the entire fluidized medium layer 6 to about 750 ° C., and a large amount of fuel oil is added to the auxiliary burner. However, as in the fluidized bed incinerator shown in the present embodiment, a portion of the fluidized medium layer 6 having a large required heat load (because the vicinity of the furnace side wall requires heat energy to raise the temperature of the furnace side wall as compared with the central part of the furnace). The larger the required heat load is, the larger the heat input amount of the fuel oil of the auxiliary combustion burner is made to correspond to the required heat load of the fluidized medium layer. That is,
When the heating volume of the fluidized medium layer 6 by the auxiliary combustion burner is equally divided, the auxiliary combustion burner 9 capacity is increased to 9a <9b as shown in FIG. 2, and the auxiliary combustion burner 9 having the same capacity is arranged. When the fluidized medium layer 6 is installed, the heating volume of the fluidized medium layer 6 by the auxiliary combustion burner is changed. Further, regardless of the size of the auxiliary combustion burner 9 and the size of the heating volume of the fluidized medium layer 6 which is in charge of the auxiliary combustion burner 9, the direction of fuel injection from the auxiliary combustion burner 9 is that the flowing air flowing through the fluidized bed flows from bottom to top. Therefore, the fuel was injected in the furnace bottom direction (the direction of arrow A) so as to set the in-layer residence time of the auxiliary burner flame to be long, and the combustion efficiency in the fluidized medium layer was improved. Next, the automatic control of the fluidized bed combustion apparatus for wastes of the present invention will be described with reference to FIG. In the figure, various sensors (detectors) 13 are arranged around the fluidized bed incinerator 1, and the temperature inside the furnace is F 1 , the O 2 concentration in the exhaust gas is F 2 , the NOx concentration in the exhaust gas is F 3 , CO concentration in exhaust gas; F 4 , temperature in fluidized medium bed; B 1 ,
B 2, the pressure of the windbox; measured B 3, etc., to record the operating conditions of the fluidized bed combustion system. The signal of each of the above measured values is input as a detection signal to the calculator 16 via the circuit 14. Necessary data is extracted by the detector (M) of the arithmetic unit 16, and the operating state display arithmetic unit (CO), the required start-up time of the fluidized bed combustion device and the temperature rise rate target value (set value) in the fluidized medium bed are displayed. A temperature rise rate comparison display calculator (COM) for setting and comparing the preset temperature rise rate set value with the actually measured temperature rise rate calculates the deviation between the temperature increase rate set value and the actually measured temperature rise rate. However, the amount of fuel supplied to each auxiliary burner is adjusted and controlled based on the deviation. Figure 9
An example of the temperature increase rate comparison display model is shown in FIG. The broken line shows the temperature rise rate set value, and the solid line shows the actually measured temperature rise rate.
Then, the temperature increase rate set value and the actually measured temperature increase rate are compared, and the ± temperature increase rate (deviation) is input as a fuel control signal 18 via the controller 17, and fuel adjustment is operated by the terminal device. It is automatically controlled so as to be in a normal operating state. The minimum and maximum fuel supply amounts were set in advance and the fuel supply amount was set within that range. As an example of the round furnace of the fluidized bed combustion apparatus of the present invention, the auxiliary combustion burner is not arranged in the central portion of the fluidized medium layer, but the auxiliary combustion burner is arranged in the central portion to flow other auxiliary combustion burners. It may be arranged as a uniform volume division of the medium layer,
The same effect as in the above embodiment can be obtained. Further, as shown in the example of the rectangular furnace, the heat input amount is controlled by adjusting the capacity of the auxiliary combustion burner provided in the central portion of the fluidized medium layer and the capacity of the auxiliary combustion burner provided in the side wall of the furnace to control the heat input amount so that the fluidized medium layer is evenly distributed. Even if the heating is performed or the heating volume of the fluidized medium layer supported by the auxiliary combustion burner is adjusted to evenly heat the fluidized medium layer, the same effect as that of the above-described embodiment can be obtained. Further, the auxiliary combustion burner may be attached to the air dispersion nozzle or the air diffusing pipe by screwing or by attaching a bolt or nut by a flange. In the present embodiment, an example in which the auxiliary combustion burner is vertically arranged from the air diffuser is shown, but in some cases, the auxiliary air burner is penetrated into the fluidized bed at an arbitrary angle up to the position of the combined arrangement of the auxiliary burners, and the final It may be arranged vertically in the fluidized bed which is required in particular.

【0008】[0008]

【発明の効果】以上詳細に説明したごとく、本発明の産
業廃棄物等の流動燃焼方法によれば、助燃バーナを流動
媒体を流動させる散気管または炉底側に設けられた空気
分散ノズルもしくはその近傍に、流動媒体層の加熱が均
等に行われるように配設し、流動媒体層の要求熱負荷の
大きさに応じて燃料の入熱量を調整し、また助燃バーナ
からの燃料の噴射方向を流動媒体層の下方に向けて噴射
させて助燃バーナ火炎の流動媒体層内の滞留時間を長く
するように調整することにより流動媒体層内における加
熱効率を向上させることができる。したがって、従来の
流動層焼却炉のように炉側壁付近ばかりが昇温し、流動
媒体層の中央部の温度がなかなか上がらないという問題
点が解消され、廃棄物等の早期焼却運転を開始すること
が可能となり、かつ助燃バーナへ供給される燃料の消費
量を大幅に節減できる効果がある。
As described in detail above, according to the method for fluidized combustion of industrial wastes and the like according to the present invention, an air diffuser for flowing a fluidized medium through an auxiliary combustion burner, an air dispersion nozzle provided on the furnace bottom side, or the same. It is arranged in the vicinity so that the fluidized medium layer is heated uniformly, the heat input amount of the fuel is adjusted according to the required heat load of the fluidized medium layer, and the fuel injection direction from the auxiliary combustion burner is adjusted. The heating efficiency in the fluidized-medium layer can be improved by injecting the fluidized-bed medium downward so as to adjust the residence time of the supplementary burner flame in the fluidized-medium layer to be long. Therefore, unlike the conventional fluidized bed incinerator, the problem that the temperature near the furnace side wall only rises and the temperature of the central part of the fluidized medium layer does not rise easily is solved, and early incineration operation of waste etc. can be started. It is possible to reduce the consumption of fuel supplied to the auxiliary combustion burner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で例示した流動層焼却炉(角型
炉)の構成の一例を示す模式図。
FIG. 1 is a schematic diagram showing an example of the configuration of a fluidized bed incinerator (square furnace) exemplified in an embodiment of the present invention.

【図2】図1のA−A矢視図で助燃バーナの容量を基準
にした配置構成の一例を示す説明図。
FIG. 2 is an explanatory view showing an example of an arrangement configuration based on the capacity of the auxiliary burner in the AA arrow view of FIG. 1.

【図3】図1のA−A矢視図で助燃バーナの加熱容積を
基準にした配置構成の一例を示す説明図。
FIG. 3 is an explanatory diagram showing an example of an arrangement configuration based on the heating volume of the auxiliary combustion burner in the AA arrow view of FIG. 1.

【図4】本発明の実施例で例示した流動層焼却炉(丸型
炉)の構成の一例を示す模式図。
FIG. 4 is a schematic diagram showing an example of the configuration of a fluidized bed incinerator (round furnace) exemplified in the examples of the present invention.

【図5】図4のB−B矢視図で助燃バーナの加熱容積を
基準にした配置構成の一例を示す説明図。
5 is an explanatory view showing an example of an arrangement configuration based on the heating volume of the auxiliary burner in the BB arrow view of FIG. 4. FIG.

【図6】本発明の実施例で例示した流動層焼却炉(角型
炉)の助燃バーナの構造の一例を示す模式図。
FIG. 6 is a schematic diagram showing an example of the structure of an auxiliary combustion burner of the fluidized bed incinerator (square furnace) exemplified in the embodiment of the present invention.

【図7】本発明の実施例で例示した流動層焼却炉(丸型
炉)の助燃バーナの構造の一例を示す模式図。
FIG. 7 is a schematic diagram showing an example of a structure of an auxiliary combustion burner of a fluidized bed incinerator (round furnace) exemplified in the embodiment of the present invention.

【図8】本発明の実施例で例示した流動層焼却炉の自動
昇温制御方法の一例を示す説明図。
FIG. 8 is an explanatory diagram showing an example of an automatic temperature rising control method for the fluidized bed incinerator illustrated in the embodiment of the present invention.

【図9】図8に示す自動昇温制御方法による流動媒体層
の昇温レートモデルの一例を示すグラフ。
9 is a graph showing an example of a temperature rising rate model of a fluidized medium layer by the automatic temperature rising control method shown in FIG.

【図10】従来の流動層焼却炉(角型炉)の構成の一例
を示す模式図。
FIG. 10 is a schematic diagram showing an example of the configuration of a conventional fluidized bed incinerator (square furnace).

【図11】図10のC−C矢視図。FIG. 11 is a view on arrow CC of FIG.

【図12】従来の流動層焼却炉(丸型炉)の構成の一例
を示す模式図。
FIG. 12 is a schematic diagram showing an example of the configuration of a conventional fluidized bed incinerator (round furnace).

【図13】図12のD−D矢視図。13 is a view on arrow D-D of FIG.

【図14】従来の流動層焼却炉の助燃バーナ火炎の状態
を示す模式図。
FIG. 14 is a schematic diagram showing a state of an auxiliary burner flame of a conventional fluidized bed incinerator.

【図15】従来の助燃バーナ加熱による流動媒体層の温
度分布および炉内状態を示す説明図。
FIG. 15 is an explanatory view showing a temperature distribution and a furnace state of a fluidized medium layer by heating of a conventional auxiliary burner.

【図16】従来の流動層焼却炉(角型炉)の流動媒体層
における助燃バーナの配置構成を示す模式図。
FIG. 16 is a schematic diagram showing an arrangement configuration of auxiliary combustion burners in a fluidized medium layer of a conventional fluidized bed incinerator (square furnace).

【図17】従来の助燃バーナの構造の一例を示す模式
図。
FIG. 17 is a schematic diagram showing an example of the structure of a conventional auxiliary combustion burner.

【符号の説明】[Explanation of symbols]

1…流動層焼却炉 2…廃棄物投入口(被焼却物投入口) 3…排ガス出口 4…覗窓 5…2次空気供給口 6…流動媒体層 7…分散ノズル 8…風箱 9、9a、9b…助燃バーナ(層中バーナ) 10…散気管 11…スライドゲートダンパ 12…抜出し装置 13…センサ(検知器) 14…回路 15…計測値 16…演算器 17…制御器 18…燃料制御信号 19…助燃バーナ火炎 20…炉壁 21…炉底 1 ... Fluidized bed incinerator 2 ... Waste input port (incinerator input port) 3 ... Exhaust gas outlet 4 ... Peep window 5 ... Secondary air supply port 6 ... Fluid medium layer 7 ... Dispersion nozzle 8 ... Wind box 9, 9a , 9b ... Auxiliary burner (in-bed burner) 10 ... Air diffuser 11 ... Slide gate damper 12 ... Extractor device 13 ... Sensor (detector) 14 ... Circuit 15 ... Measured value 16 ... Arithmetic unit 17 ... Controller 18 ... Fuel control signal 19 ... Auxiliary burner flame 20 ... Furnace wall 21 ... Furnace bottom

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】流動媒体層内に、流動媒体を流動させる気
体噴出口を有する複数の流動用気体噴出管と、流動媒体
層内を加熱する複数の助燃バーナとを少なくとも配設
し、上記流動媒体層内に被焼却物である廃棄物を投入し
て流動層燃焼させて廃棄物の焼却を行う流動層燃焼方法
において、上記複数の流動用気体噴出管またはその近傍
に、燃料を流動媒体層内に噴射させて加熱する所定容量
の助燃バーナを、流動媒体層内の要求熱負荷に応じたパ
ターンに配設して流動層燃焼を行うことを特徴とする流
動層燃焼方法。
1. A fluidized medium layer having at least a plurality of fluidizing gas jetting pipes each having a gas jetting port for fluidizing the fluidized medium and a plurality of auxiliary burners for heating the fluidized medium layer. In a fluidized bed combustion method of injecting waste, which is an object to be incinerated, into a medium layer to combust the fluidized bed to incinerate the waste, in a plurality of fluid gas jet pipes or in the vicinity thereof, fuel is fluidized medium layer. A fluidized bed combustion method, characterized in that a prescribed volume of auxiliary combustion burners that are injected and heated inside are arranged in a pattern according to the required heat load in the fluidized medium bed to perform fluidized bed combustion.
【請求項2】流動媒体層内に、流動媒体を流動させる気
体噴出口を有する複数の流動用気体噴出管と、流動媒体
層内を加熱する複数の助燃バーナとを少なくとも配設
し、上記流動媒体層内に被焼却物である廃棄物を投入し
て流動層燃焼させて廃棄物の焼却を行う流動層燃焼方法
において、上記複数の流動用気体噴出管またはその近傍
に、燃料を流動媒体層内に噴射させて加熱する助燃バー
ナを配設し、かつ流動媒体層内の要求熱負荷の大きさに
応じて助燃バーナの容量を設定し、該助燃バーナへ上記
要求熱負荷に応じた量の燃料を供給し制御することを特
徴とする流動層燃焼方法。
2. At least a plurality of flowing gas ejection pipes having a gas ejection port for flowing the fluidized medium and a plurality of auxiliary combustion burners for heating the inside of the fluidized medium layer are provided in the fluidized medium layer, and the above-mentioned flow is provided. In a fluidized bed combustion method of injecting waste, which is an object to be incinerated, into a medium layer to combust the fluidized bed to incinerate the waste, in a plurality of fluid gas jet pipes or in the vicinity thereof, fuel is fluidized medium layer. An auxiliary combustion burner for injecting and heating is provided inside, and the capacity of the auxiliary combustion burner is set according to the size of the required heat load in the fluidized medium layer, and the amount of the auxiliary combustion burner is adjusted according to the required heat load. A fluidized bed combustion method characterized by supplying and controlling fuel.
【請求項3】請求項1または請求項2において、助燃バ
ーナは、流動用気体噴出管である複数の空気分散管もし
くは空気分散ノズルの中から選択した設定の配置パター
ンで配設してなることを特徴とする流動層燃焼方法。
3. The auxiliary burner according to claim 1 or 2, wherein the auxiliary burners are arranged in a layout pattern selected from a plurality of air dispersion pipes or air dispersion nozzles, which are flow gas ejection pipes. And a fluidized bed combustion method.
【請求項4】流動媒体層内に、流動媒体を流動させる気
体噴出口を有する複数の流動用気体噴出管と、流動媒体
層内を加熱する複数の助燃バーナとを少なくとも配設
し、上記流動媒体層内に被焼却物である廃棄物を投入し
て流動層燃焼させて廃棄物の焼却を行う流動層燃焼装置
において、炉内温度、流動媒体層内の温度、風箱の圧
力、排ガス中の窒素酸化物(NOx)、一酸化炭素(C
O)または酸素(O2)濃度を検知して、流動層燃焼装
置の運転状態を検出する手段と、流動層燃焼装置の起動
所要時間および流動媒体層の昇温レート目標値を設定
し、該昇温レート目標値と実測昇温レートとを比較演算
してその偏差を求める手段と、上記の偏差から流動媒体
層内に配設されている助燃バーナへの燃料供給量を調整
制御する手段を備えたことを特徴とする流動層燃焼装
置。
4. At least a plurality of flowing gas ejection pipes having a gas ejection port for flowing the fluidized medium and a plurality of auxiliary combustion burners for heating the inside of the fluidized medium layer are provided in the fluidized medium layer, and the above-mentioned flow is provided. In a fluidized bed combustor that incinerates waste by injecting waste to be incinerated into the medium bed and burning it in a fluidized bed, the temperature inside the furnace, the temperature inside the fluidized bed, the pressure in the wind box, and the exhaust gas Nitrogen oxides (NOx), carbon monoxide (C
O) or oxygen (O 2 ) concentration to detect the operating state of the fluidized bed combustor, the time required to start the fluidized bed combustor, and the temperature rise rate target value of the fluidized medium bed. A means for comparing and calculating the temperature rise rate target value and the actually measured temperature rise rate to obtain the deviation, and means for adjusting and controlling the fuel supply amount to the auxiliary combustion burner arranged in the fluidized medium layer from the above deviation. A fluidized bed combustion device characterized by being provided.
JP8749593A 1993-04-14 1993-04-14 Fluidized bed type combustion method and apparatus Pending JPH06300237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8749593A JPH06300237A (en) 1993-04-14 1993-04-14 Fluidized bed type combustion method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8749593A JPH06300237A (en) 1993-04-14 1993-04-14 Fluidized bed type combustion method and apparatus

Publications (1)

Publication Number Publication Date
JPH06300237A true JPH06300237A (en) 1994-10-28

Family

ID=13916553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8749593A Pending JPH06300237A (en) 1993-04-14 1993-04-14 Fluidized bed type combustion method and apparatus

Country Status (1)

Country Link
JP (1) JPH06300237A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094868A (en) * 2009-10-29 2011-05-12 Osaka Gas Co Ltd Gas nozzle for fluidized bed type incinerator
JP2013200086A (en) * 2012-03-26 2013-10-03 Tsukishima Kikai Co Ltd Start-up method of pressure fluidized bed furnace system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094868A (en) * 2009-10-29 2011-05-12 Osaka Gas Co Ltd Gas nozzle for fluidized bed type incinerator
JP2013200086A (en) * 2012-03-26 2013-10-03 Tsukishima Kikai Co Ltd Start-up method of pressure fluidized bed furnace system
WO2013146597A1 (en) * 2012-03-26 2013-10-03 月島機械株式会社 Activation method for pressurized fluidized furnace system
US10006631B2 (en) 2012-03-26 2018-06-26 Tsukishima Kikai Co., Ltd. Method for starting up pressurized fluidized bed incinerator system

Similar Documents

Publication Publication Date Title
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
US4861262A (en) Method and apparatus for waste disposal
KR100308428B1 (en) Dry Gas Gas Incineration Treatment System of Waste
USRE34298E (en) Method for waste disposal
US5553554A (en) Waste disposal and energy recovery system and method
WO2024012182A1 (en) Method for using vertical segmented incinerator to dispose of complex combustible solid waste
CN115307155A (en) Vertical two-section incinerator and method for disposing complex combustible solid waste
KR101074001B1 (en) Incinerator with overheating prevention apparatus using the flue gas recirculation at the incineration of high caloric waste
EP1726877B1 (en) Method and device for controlling injection of primary and secondary air in an incineration system
EP1213534B1 (en) Combustion method in which generation of NOx, CO and dioxine are suppressed and fluidized bed incinerator therefor
JPH06300237A (en) Fluidized bed type combustion method and apparatus
JP3525077B2 (en) Directly connected incineration ash melting equipment and its operation control method
JP2007155301A (en) Incinerator and incineration object incineration method by direct heating carbonization gasification method
JP3247066B2 (en) Freeboard temperature control method for fluidized bed incinerator.
CN113574320B (en) Incinerator with a heat exchanger
JP3223994B2 (en) Incinerator and its flame control method
KR20010076672A (en) Heat recovery installation using sludge fluidized bed destruction by fire apparatus and thereof method
JP2000274630A (en) Fluidized-bed incinerator
KR20000002871A (en) Incinerator drying facilitating device using recirculation of ignition gas
JPH0730898B2 (en) Incinerator for special waste
EP0601584B1 (en) Waste incinerator and waste incinerating method using same
JP3059935B2 (en) Dioxin removal equipment in refuse incinerators
JPH03125808A (en) Fluidized-bed type refuse incinerator
JP2002195534A (en) Method and system for controlling combustion of refuse incinerator
JPH0960834A (en) Fluidized bed type incinerator