JPH06295997A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH06295997A
JPH06295997A JP5082204A JP8220493A JPH06295997A JP H06295997 A JPH06295997 A JP H06295997A JP 5082204 A JP5082204 A JP 5082204A JP 8220493 A JP8220493 A JP 8220493A JP H06295997 A JPH06295997 A JP H06295997A
Authority
JP
Japan
Prior art keywords
bit lines
bit line
wiring
bit
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5082204A
Other languages
Japanese (ja)
Inventor
Makoto Shigenobu
誠 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5082204A priority Critical patent/JPH06295997A/en
Publication of JPH06295997A publication Critical patent/JPH06295997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the short circuit of bit lines due to particles generated during the wiring process of a semiconductor storage device, and improve manufactureing yield. CONSTITUTION:In a semiconductor storage device which has a memory cell in each crossing position of a word line and a bit line, and individually reads stored data by selecting the word line and the bit line, first bit lines 4a and second bit lines 4B adjacently arranged to be in parallel with the first bit lines are formed by using different wiring layers. By forming the bit lines which are adjacently arranged in parallel, by using different wiring layers, the wiring width of bit lines formed in the same wiring layer can be increased without enlarging chip area, and the short circuit of bit lines due to particles generated during a wiring process can be remarkably reduced. Reliability also is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体記憶装置におけ
るビット線の配置配線技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bit line arranging and wiring technique in a semiconductor memory device.

【0002】[0002]

【従来の技術】図4は、従来の半導体記憶装置の平面図
である。AはメモリセルとなるNチャネル型MOSFE
T、1はGND拡散層、2a,2bは多結晶シリコンで
形成されるワ−ド線、3a〜3dはメモリセルのドレイ
ン電極、4a〜4dは1層目のメタルで形成されるビッ
ト線、5a〜5dは拡散層と1層目のメタルとのコンタ
クトである。記憶デ−タの読み出しは、ワ−ド線とビッ
ト線との選択によって行われる。例えばワ−ド線2aと
ビット線4aが選択されるとメモリセルAの記憶デ−タ
の読み出しが行われる。
2. Description of the Related Art FIG. 4 is a plan view of a conventional semiconductor memory device. A is an N-channel type MOSFE which becomes a memory cell
T, 1 is a GND diffusion layer, 2a and 2b are word lines formed of polycrystalline silicon, 3a to 3d are drain electrodes of memory cells, 4a to 4d are bit lines formed of the first layer metal, Reference numerals 5a to 5d are contacts between the diffusion layer and the first metal layer. The reading of the memory data is performed by selecting the word line and the bit line. For example, when the word line 2a and the bit line 4a are selected, the storage data of the memory cell A is read.

【0003】図3は、図4に示すX−Yにおける断面図
である。3a〜3dはメモリセルのドレイン電極、4a
〜4dは1層目のメタルで形成されるビット線、6は基
板、7はビット線4a〜4dと基板6との間に形成され
る絶縁膜、8はビット線4a〜4d上に形成される絶縁
膜、L1はビット線の配線間隔を示す。図3に示すよう
に絶縁膜7上に形成されるビット線4a〜4dは、同一
の配線層で形成されていた。
FIG. 3 is a sectional view taken along line XY shown in FIG. 3a to 3d are drain electrodes of the memory cell, 4a
4d is a bit line formed of the first layer metal, 6 is a substrate, 7 is an insulating film formed between the bit lines 4a to 4d and the substrate 6, and 8 is formed on the bit lines 4a to 4d. The insulating film, L1, indicates the wiring interval of the bit lines. As shown in FIG. 3, the bit lines 4a to 4d formed on the insulating film 7 were formed of the same wiring layer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年製
造プロセスの微細化が進展するにしたがって、配線工程
で発生するパ−ティクルの影響を無視できないほどビッ
ト線の間隔L1が狭くなってきている。そして、そのパ
−ティクルのためにビット線のショ−トが生じ、半導体
記憶装置の機能不良という問題点を有する。
However, as the manufacturing process has been miniaturized in recent years, the bit line interval L1 has become so narrow that the influence of particles generated in the wiring process cannot be ignored. Then, due to the particles, a short of the bit line occurs, which causes a problem of malfunction of the semiconductor memory device.

【0005】そこで本発明の目的は、隣接して平行に配
置されたビット線を互いに異なる配線層で形成すること
により、同一配線層で形成されたビット線の配線間隔を
広くし、パ−ティクルによるビット線のショ−トを防ぐ
ことにある。
Therefore, an object of the present invention is to form bit lines arranged adjacent to each other in parallel in different wiring layers so that the wiring intervals of the bit lines formed in the same wiring layer can be widened and the particles can be formed. This is to prevent the short of the bit line due to.

【0006】[0006]

【課題を解決するための手段】本発明の半導体記憶装置
は、ワ−ド線とビット線の交わる位置ごとにメモリセル
を有し、前記ワ−ド線と前記ビット線との選択によっ
て、記憶デ−タの読み出しを個別に行う半導体記憶装置
において、第1のビット線と隣接して平行に配置された
第2のビット線を互いに異なる配線層で形成したことを
特徴とする。
A semiconductor memory device according to the present invention has a memory cell at each position where a word line and a bit line intersect, and a memory is selected by selecting the word line and the bit line. In a semiconductor memory device for individually reading data, a second bit line arranged in parallel with and adjacent to the first bit line is formed by wiring layers different from each other.

【0007】[0007]

【作用】本発明の上記構成によれば、隣接して平行に配
置されたビット線を互いに異なる配線層で形成すること
により、同一配線層で形成されたビット線の配線間隔を
広くし、パ−ティクルによるビット線のショ−トを低減
させ、半導体記憶装置の歩留まりの向上を図ったもので
ある。
According to the above-mentioned structure of the present invention, the bit lines formed in the same wiring layer are widened by forming the bit lines arranged in parallel in the adjacent wiring layers different from each other. -It is intended to reduce the short of the bit line due to the tickle and improve the yield of the semiconductor memory device.

【0008】[0008]

【実施例】図2は、本発明の半導体記憶装置の平面図で
ある。AはメモリセルとなるNチャネル型MOSFE
T、1はGND拡散層、2a,2bは多結晶シリコンで
形成されるワ−ド線、3a〜3dはメモリセルのドレイ
ン電極、4a,4cは1層目のメタルで形成されるビッ
ト線、4B,4Dは2層目のメタルで形成されるビット
線、5a,5cは拡散層と1層目のメタルとのコンタク
ト、5B,5Dは拡散層と2層目のメタルとのコンタク
トである。記憶デ−タの読み出しは、ワ−ド線とビット
線との選択によって行われる。例えばワ−ド線2aとビ
ット線4aが選択されるとメモリセルAの記憶デ−タの
読み出しが行われる。
FIG. 2 is a plan view of a semiconductor memory device according to the present invention. A is an N-channel type MOSFE which becomes a memory cell
T, 1 is a GND diffusion layer, 2a and 2b are word lines formed of polycrystalline silicon, 3a to 3d are drain electrodes of memory cells, 4a and 4c are bit lines formed of a first layer metal, 4B and 4D are bit lines formed of the second layer metal, 5a and 5c are contacts between the diffusion layer and the first layer metal, and 5B and 5D are contacts between the diffusion layer and the second layer metal. The reading of the memory data is performed by selecting the word line and the bit line. For example, when the word line 2a and the bit line 4a are selected, the storage data of the memory cell A is read.

【0009】図1は、図2に示すX−Yにおける断面図
である。3a〜3dはメモリセルのドレイン電極、4
a,4cは1層目のメタルで形成されるビット線、4
B,4Dは2層目のメタルで形成されるビット線、6は
基板、7はビット線4a,4cと基板6との間に形成さ
れる絶縁膜、8はビット線4a,4cとビット線4B,
4Dとの間に形成される絶縁膜、9はビット線4B,4
D上に形成される絶縁膜、L1はビット線4aとビット
線4cの配線間隔、L2はビット線4Bとビット線4D
の配線間隔を示す。絶縁膜7上に形成されるビット線4
aは1層目のメタルで形成され、ビット線4aと隣接し
て平行に配置され絶縁膜8上に形成されるビット線4B
は2層目のメタルで形成され、ビット線4Bと隣接して
平行に配置され絶縁膜7上に形成されるビット線4cは
1層目のメタルで形成され、ビット線4cと隣接して平
行に配置され絶縁膜8上に形成されるビット線4Dは2
層目のメタルで形成されている。
FIG. 1 is a sectional view taken along line XY shown in FIG. 3a to 3d are drain electrodes of memory cells, 4
a and 4c are bit lines formed of the first metal layer, 4
B and 4D are bit lines formed of the second metal layer, 6 is a substrate, 7 is an insulating film formed between the bit lines 4a and 4c and the substrate 6, and 8 is bit lines 4a and 4c and bit lines. 4B,
4D, an insulating film formed between the bit lines 4B and 4D
An insulating film formed on D, L1 is a wiring interval between the bit lines 4a and 4c, and L2 is a bit line 4B and a bit line 4D.
Shows the wiring interval. Bit line 4 formed on insulating film 7
a is a bit line 4B formed of the first-layer metal and arranged adjacent to and parallel to the bit line 4a on the insulating film 8.
Is formed of a second-layer metal, is arranged in parallel adjacent to the bit line 4B and is formed on the insulating film 7, is formed of a first-layer metal, and is adjacent to the bit line 4c in parallel. The bit line 4D formed on the insulating film 8 is 2
It is formed of the metal of the second layer.

【0010】1層目のメタルで形成されるビット線4a
とビット線4cの配線間隔L1は、ビット線4aとビッ
ト線4Bの配線間隔と、ビット線4Bの配線幅と、ビッ
ト線4Bとビット線4cの配線間隔の和となる。2層目
のメタルで形成されるビット線4Bとビット線4Dの配
線間隔L2は、ビット線4Bとビット線4cの配線間隔
と、ビット線4cの配線幅と、ビット線4cとビット線
4Dの配線間隔の和となる。よって、1層目のメタルで
形成されるビット線4aとビット線4cの配線間隔、お
よび2層目のメタルで形成されるビット線4Dとビット
線4Dの配線間隔は、従来の1層目のメタルで形成され
たビット線の配線間隔と比べ2倍以上広くできる。
Bit line 4a formed of the first metal layer
The wiring distance L1 between the bit line 4c and the bit line 4c is the sum of the wiring distance between the bit line 4a and the bit line 4B, the wiring width of the bit line 4B, and the wiring distance between the bit line 4B and the bit line 4c. The wiring interval L2 between the bit line 4B and the bit line 4D formed of the second layer metal is the wiring interval between the bit line 4B and the bit line 4c, the wiring width of the bit line 4c, and the bit line 4c and the bit line 4D. It is the sum of the wiring intervals. Therefore, the wiring interval between the bit line 4a and the bit line 4c formed of the first layer metal and the wiring interval between the bit line 4D and the bit line 4D formed of the second layer metal are the same as those of the conventional first layer. It can be made more than twice as wide as the wiring interval of bit lines formed of metal.

【0011】ここで、本発明の効果を歩留まりの面から
検討する。下記の式(1)は、一般的に知られるEin
stein−Boseモデルの歩留り予測式である。Y
は歩留り(%)、Aはチップ面積(cm2)、Dは欠陥密
度(個/cm3)、nはクリティカルマスク枚数である。
Here, the effect of the present invention will be examined in terms of yield. Equation (1) below is a commonly known Ein
It is a yield prediction formula of a Stein-Bose model. Y
Is the yield (%), A is the chip area (cm 2 ), D is the defect density (pieces / cm 3 ), and n is the number of critical masks.

【0012】 Y=100/(1+AD)n ・・・(1) 従来技術での歩留りをY=30%とし、チップ面積A=
0.88(cm2)、クリティカルマスク枚数n=11と
する。この場合、式(1)より従来の欠陥密度Dを導く
と欠陥密度Dは0.13(個/cm3)となる。
Y = 100 / (1 + AD) n (1) The yield in the prior art is Y = 30%, and the chip area A =
The number of critical masks is set to 0.88 (cm 2 ) and n = 11. In this case, when the conventional defect density D is derived from the formula (1), the defect density D becomes 0.13 (pieces / cm 3 ).

【0013】次に、本発明を使用した場合の予測歩留り
を求める。チップ面積Aおよび欠陥密度Dは従来と同様
の0.88(cm2)、0.13(個/cm3)とし、クリテ
ィカルマスク枚数nは配線層が一層増えるためN=11
+1=12とし、式(1)により歩留りYを単純計算す
ると27%となる。これは配線層が一層増えクリティカ
ルマスク枚数nが増えたためであり、式(1)のみでは
一見して本発明での方法は使用するマスクが増加した
分、歩留まりが悪化するように見える。しかし従来技術
での良品歩留り30%の場合、実際の不良原因を分析す
ると残りの不良品70%の内訳はファンクション不良8
5%、その他の不良15%であり、ファンクション不良
の比率が高い。更に詳細にファンクション不良の原因を
分析するとファンクション不良のうち90%がパ−ティ
クルによるビット線ショ−トであった。つまり従来技術
でのパ−ティクルによるビット線ショ−ト不良は全体の
約54%(0.7×0.85×0.9)に達する。本発
明はこの従来技術でのパ−ティクルによるビット線ショ
−ト不良を低減するものであり、本発明により広くした
ビット線の配線間隔よりパ−ティクルの大きさが小さい
場合は、従来発生していたパ−ティクルによるビット線
ショ−ト不良はほぼなくすことができる。
Next, the predicted yield when using the present invention will be determined. The chip area A and the defect density D are 0.88 (cm 2 ) and 0.13 (pieces / cm 3 ) as in the conventional case, and the number n of critical masks is N = 11 because the wiring layer is further increased.
When + 1 = 12 and the yield Y is simply calculated by the equation (1), it is 27%. This is because the number of wiring layers is further increased and the number n of critical masks is increased. At first glance, the method according to the present invention seems that the yield is deteriorated as the number of masks used is increased. However, if the yield of good products in the prior art is 30%, the actual defect cause is analyzed, and the breakdown of the remaining 70% of defective products is the function failure 8
5% and other defects 15%, and the ratio of function defects is high. Further detailed analysis of the cause of the function failure revealed that 90% of the function failures were bit line shorts due to particles. That is, in the prior art, the bit line short defect due to the particles reaches about 54% (0.7 × 0.85 × 0.9) of the whole. The present invention is intended to reduce the bit line short defect due to the particles in the prior art. If the size of the particles is smaller than the wiring interval of the bit lines widened by the present invention, the conventional problem occurs. The bit line short defect due to the particles can be almost eliminated.

【0014】従って、本発明によりパ−ティクルによる
ファンクション不良がない場合、ファンクション不良率
×パ−ティクルによる不良率の積の分だけ従来に比べ歩
留りを向上でき、具体的には約57%(0.73×0.
85×0.9)の歩留まり向上が期待できる。つまり本
発明での歩留まりは式(1)での予測歩留り式の結果の
27%と上記57%の和として82%となり、従来技術
での歩留まり30%に比較して著しく向上する。この歩
留まり概略推定値は式(1)での計算値に改善期待分を
加算したものであるが、本発明での歩留まり向上を式
(1)のみで表わすと、クリティカルマスク枚数nの増
加による歩留まり低下分より欠陥密度Dの減少による歩
留まり向上分が大きいといえる。
Therefore, according to the present invention, when there is no functional failure due to the particles, the yield can be improved as compared with the prior art by the product of the functional failure rate × the defective rate due to the particles, specifically, about 57% (0 .73 × 0.
A yield improvement of 85 × 0.9) can be expected. That is, the yield in the present invention is 82%, which is the sum of 27% of the result of the predicted yield formula in the formula (1) and 57% described above, which is remarkably improved as compared with the yield of 30% in the conventional technique. This yield approximate estimated value is obtained by adding the expected improvement amount to the calculated value in the formula (1). If the yield improvement in the present invention is expressed only in the formula (1), the yield due to the increase in the number n of critical masks is obtained. It can be said that the yield improvement due to the decrease in the defect density D is larger than the decrease.

【0015】またこの概略歩留まり推定方法は本発明に
より広くしたビット線の配線間隔よりパ−ティクルの大
きさが小さく、従来発生していたパ−ティクルによるビ
ット線ショ−ト不良はほぼなくすことができると仮定し
たものであるが、本発明でのビット線の配線間隔を広く
する方法は他の条件の場合でも歩留まり向上に貢献でき
るのは容易に類推できる。さらに本発明での実施例は半
導体記憶装置でのビット線について述べてあるが、半導
体記憶装置でのビット線に限らず、隣接して平行に配置
された配線であれば、互いに異なる配線層で形成するこ
とにより、本発明の方法を適用することが可能である。
Further, in this rough yield estimation method, the size of the particles is smaller than the wiring interval of the bit lines widened by the present invention, and the bit line short defect due to the particles which has been conventionally generated can be almost eliminated. Although it is assumed that it is possible, it can be easily inferred that the method of widening the wiring interval of the bit lines in the present invention can contribute to the improvement of the yield even under other conditions. Further, although the embodiments of the present invention have described bit lines in a semiconductor memory device, the present invention is not limited to bit lines in a semiconductor memory device, and if the wires are arranged in parallel adjacent to each other, different wiring layers may be used. By forming, the method of the present invention can be applied.

【0016】[0016]

【発明の効果】以上説明してきたように、隣接して平行
に配置されたビット線を互いに異なる配線層で形成する
ことにより、チップ面積を増やすこと無く同一配線層で
形成されたビット線の配線間隔を広くし、配線工程で発
生するパ−ティクルによるビット線のショ−トを大幅に
低減でき、歩留まりの向上が計れるとともに信頼性の高
い半導体記憶装置を提供できる。
As described above, by forming adjacent bit lines arranged in parallel in different wiring layers from each other, wiring of bit lines formed in the same wiring layer can be performed without increasing the chip area. It is possible to provide a highly reliable semiconductor memory device in which the interval can be widened and the bit line short due to the particles generated in the wiring process can be greatly reduced, the yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の半導体記憶装置の一実施例を示す断
面図。
FIG. 1 is a sectional view showing an embodiment of a semiconductor memory device of the present invention.

【図2】 本発明の半導体記憶装置の一実施例を示す平
面図。
FIG. 2 is a plan view showing an embodiment of a semiconductor memory device of the present invention.

【図3】 半導体記憶装置の従来例を示す断面図。FIG. 3 is a sectional view showing a conventional example of a semiconductor memory device.

【図4】 半導体記憶装置の従来例を示す平面図。FIG. 4 is a plan view showing a conventional example of a semiconductor memory device.

【符号の説明】[Explanation of symbols]

1 GND拡散層 2a,2b 多結晶シリコンワ−ド線 3a〜3d メモリセルのドレイン電極 4a〜4d 1層目のメタルビット線 4B,4D 2層目のメタルビット線 5a〜5d 拡散層と1層目のメタルとのコンタクト 5B,5D 拡散層と2層目のメタルとのコンタクト 6 基板 7〜9 絶縁膜 L1,L2 ビット線の配線間隔 DESCRIPTION OF SYMBOLS 1 GND diffusion layer 2a, 2b Polycrystalline silicon word line 3a-3d Memory cell drain electrode 4a-4d First layer metal bit line 4B, 4D Second layer metal bit line 5a-5d Diffusion layer and first layer 5B, 5D Contact with diffusion metal and second layer metal 6 Substrate 7-9 Insulating film L1, L2 Bit line wiring interval

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ワ−ド線とビット線の交わる位置ごとに
メモリセルを有し、前記ワ−ド線と前記ビット線との選
択によって、記憶デ−タの読み出しを個別に行う半導体
記憶装置において、第1のビット線と隣接して平行に配
置された第2のビット線を互いに異なる配線層で形成し
たことを特徴とする半導体記憶装置。
1. A semiconductor memory device having a memory cell at each position where a word line and a bit line intersect, and by individually selecting the word line and the bit line, the memory data is read out individually. 2. A semiconductor memory device according to claim 1, wherein the second bit lines arranged adjacent to and parallel to the first bit line are formed in different wiring layers.
JP5082204A 1993-04-08 1993-04-08 Semiconductor storage device Pending JPH06295997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5082204A JPH06295997A (en) 1993-04-08 1993-04-08 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5082204A JPH06295997A (en) 1993-04-08 1993-04-08 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH06295997A true JPH06295997A (en) 1994-10-21

Family

ID=13767900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5082204A Pending JPH06295997A (en) 1993-04-08 1993-04-08 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH06295997A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031420A (en) * 1998-05-30 2000-01-28 Lg Semicon Co Ltd Semiconductor memory element
JP2003282841A (en) * 2001-12-29 2003-10-03 Hynix Semiconductor Inc Wiring of nonvolatile ferroelectric memory
KR20150043143A (en) * 2013-10-14 2015-04-22 삼성디스플레이 주식회사 Substrate formed thin film transistor array and organic light emitting display
US10388712B2 (en) 2014-10-27 2019-08-20 Samsung Display Co., Ltd. Organic light emitting diode display device for reducing defects due to an overlay change

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031420A (en) * 1998-05-30 2000-01-28 Lg Semicon Co Ltd Semiconductor memory element
JP2003282841A (en) * 2001-12-29 2003-10-03 Hynix Semiconductor Inc Wiring of nonvolatile ferroelectric memory
KR20150043143A (en) * 2013-10-14 2015-04-22 삼성디스플레이 주식회사 Substrate formed thin film transistor array and organic light emitting display
US9412800B2 (en) 2013-10-14 2016-08-09 Samsung Display Co., Ltd. Thin film transistor array substrate and organic light-emitting display apparatus including the same
US10388712B2 (en) 2014-10-27 2019-08-20 Samsung Display Co., Ltd. Organic light emitting diode display device for reducing defects due to an overlay change
US11765938B2 (en) 2014-10-27 2023-09-19 Samsung Display Co., Ltd. Organic light emitting diode display device for reducing defects due to an overlay change

Similar Documents

Publication Publication Date Title
US5844295A (en) Semiconductor device having a fuse and an improved moisture resistance
US6429521B1 (en) Semiconductor integrated circuit device and its manufacturing method
US6680539B2 (en) Semiconductor device, semiconductor device pattern designing method, and semiconductor device pattern designing apparatus
US6617234B2 (en) Method of forming metal fuse and bonding pad
JPH06295997A (en) Semiconductor storage device
US6303970B1 (en) Semiconductor device with a plurality of fuses
US6040614A (en) Semiconductor integrated circuit including a capacitor and a fuse element
JPH04215473A (en) Static ram
JP2003332467A (en) Semiconductor device
JP2006080253A (en) Semiconductor storage device
US6847096B2 (en) Semiconductor wafer having discharge structure to substrate
US20040197978A1 (en) Housing for semiconductor devices, semiconductor device pin, and method for the manufacturing of pins
KR100929627B1 (en) Fuse box of semiconductor device and forming method thereof
JPS63308371A (en) Semiconductor storage device
JPH11265891A (en) Semiconductor device
JPH04242959A (en) Cell structure of integrated circuit
JP2006344635A (en) Semiconductor device for evaluation
JP2876658B2 (en) Semiconductor device
JP3866322B2 (en) Semiconductor integrated circuit mounted wafer and manufacturing method of semiconductor integrated circuit device
JP3571981B2 (en) Semiconductor device
KR19980068791A (en) Semiconductor device manufacturing method
JP3466289B2 (en) Semiconductor device
KR19990061317A (en) Semiconductor device
JPS6143471A (en) Wiring structure of semiconductor device
JPH06295996A (en) Semiconductor storage device and its manufacture