JPH06287703A - Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load - Google Patents

Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load

Info

Publication number
JPH06287703A
JPH06287703A JP9555993A JP9555993A JPH06287703A JP H06287703 A JPH06287703 A JP H06287703A JP 9555993 A JP9555993 A JP 9555993A JP 9555993 A JP9555993 A JP 9555993A JP H06287703 A JPH06287703 A JP H06287703A
Authority
JP
Japan
Prior art keywords
heat treatment
steel
bearing
rolling
fatigue life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9555993A
Other languages
Japanese (ja)
Other versions
JP3233729B2 (en
Inventor
Satoshi Yasumoto
聡 安本
Toshiyuki Hoshino
俊幸 星野
Akihiro Matsuzaki
明博 松崎
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP09555993A priority Critical patent/JP3233729B2/en
Publication of JPH06287703A publication Critical patent/JPH06287703A/en
Application granted granted Critical
Publication of JP3233729B2 publication Critical patent/JP3233729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To improve rolling fatigue life and heat treatment productivity by specifying respective contents of C, Mo, Al, Sb, Si, Mn, Cr, etc., and controlling the grain size of oxide non-metallic inclusions. CONSTITUTION:The bearing steel has a composition consisting of, by weight, 0.5-1.5% C, 0.5-2% Mo, 0.005-0.07% Al, 0.001-0.05% Sb, and the balance Fe or further containing, besides the above, one or more kinds selected from 0.05-0.5% Si, 0.05-2% Mn, 0.05-2.5% Cr, 0.05-1% Ni, 0.05-1% Cu, 0.0005-0.01% B, and 0.0005-0.012% N. Moreover, the maximum grain size of oxide non-metallic inclusions is regulated to <=8mum. By this method, working load at the time of heat treatment can be reduced and microstructural change due to repeated stress load at the time of heavy load rolling can be retarded, and heavy load rolling fatigue life can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに熱処理時に起こる脱炭層の生成を抑制
する効果ならびに軸受使用環境の過酷化に伴って生ずる
特有の劣化, すなわち繰り返し応力負荷によって転動接
触面下に発生するミクロ組織変化(劣化)に対する遅延
特性とに優れた軸受鋼についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly with the effect of suppressing the formation of a decarburized layer during heat treatment and the severer environment of bearing use. This is a proposal for a bearing steel that is excellent in the characteristic deterioration that occurs as a result, that is, the delay characteristics for the microstructural change (deterioration) that occurs under the rolling contact surface due to repeated stress loading.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中非金属介在物の影響が最も大きいと考えられていた。
そのため、最近の研究の主流は、鋼中酸素量の低減を通
じて非金属介在物の量, 大きさを制御することによって
軸受寿命を向上させる方策がとられてきた。例えば、軸
受の転動疲労寿命の一層の向上を目指して開発されたも
のとしては、特開平1−306542号公報や特開平3−1268
39号公報などの提案があり、これらは、鋼中の酸化物系
非金属介在物の組成, 形状あるいは分布状態をコントロ
ールする技術である。しかしながら、非金属介在物の少
ない軸受鋼を製造するには、鋼中酸素量の低減が不可欠
であるところ、これも既に限界に達しており、高価な溶
製設備の設置あるいは従来設備の大幅な改良が必要であ
り、経済的な負担が大きいという問題があった。
2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel is one of the important properties that long rolling fatigue life is important, but it is considered that the influence of non-metallic inclusions in steel is the most significant factor affecting rolling fatigue life. Was there.
Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel. For example, as those developed with the aim of further improving the rolling contact fatigue life of bearings, there are Japanese Patent Laid-Open Nos. 1-306542 and 3-1268.
There are proposals such as Japanese Patent No. 39, which are technologies for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel. However, in order to manufacture bearing steel with few non-metallic inclusions, it is essential to reduce the amount of oxygen in the steel, but this has already reached the limit, and expensive melting equipment or a large amount of conventional equipment has to be installed. There was a problem that improvement was necessary and the financial burden was large.

【0003】また、上記高炭素軸受鋼(JIS-SUJ 2)の特
性改善を図るためのもう1つの動きは、加工性、特に熱
処理時の脱炭層の生成を抑制することの研究である。一
般に、上記JIS-SUJ 2 に規定された軸受鋼は、0.95〜1.
10wt%のCを含むことから、非常に硬質であり、それ故
に、球状化焼なましを行って加工性を向上させた後に成
形加工し、その後焼入れ, 焼もどし処理を施すことによ
って、転がり軸受に必要な強度と靱性を得ていた。とこ
ろが、このような特性改善のための熱処理が何回もかさ
なると、素材表面には、Cと雰囲気ガスとの反応によっ
て、脱炭層と呼ばれる“低C濃度領域”が発生すること
が知られている。この脱炭層は、転がり軸受の硬さ低下
のみならず転動疲労寿命劣化の原因となることから、切
削または研削加工により除去するのが普通であった。そ
のために材料歩留り、さらには生産性の低下を余儀なく
されていたのである。これに対して従来、上記脱炭層の
生成を防止する手段として、熱処理時における炉内の雰
囲気ガス中のカーボンポテンシャルをコントロールする
方法や、特開平2−54717 号公報に開示されている, 球
状化焼なましの初期段階に浸炭処理を施す方法などが提
案されている。しかし、上記の各方法はいずれも、熱処
理あるいはその前処理時の雰囲気清浄によるものである
ことから、熱処理コストが嵩むのみならず、材料の組成
や熱処理時間等に応じた適切なガス組成の設定といった
煩雑な操作を必要とするところに問題があった。
Another move to improve the characteristics of the above-mentioned high carbon bearing steel (JIS-SUJ 2) is a study on workability, especially suppressing formation of a decarburized layer during heat treatment. In general, the bearing steel specified in JIS-SUJ 2 above is 0.95 to 1.
Since it contains 10 wt% of C, it is very hard. Therefore, rolling bearings can be obtained by performing spheroidizing annealing to improve workability, then forming, and then quenching and tempering. Had the necessary strength and toughness. However, it is known that when the heat treatment for improving the characteristics is repeated many times, a "low C concentration region" called a decarburized layer is generated on the surface of the material due to the reaction between C and the atmosphere gas. There is. This decarburized layer not only lowers the hardness of the rolling bearing but also causes the deterioration of rolling contact fatigue life, and therefore it is usually removed by cutting or grinding. For this reason, the material yield and the productivity have been unavoidably reduced. On the other hand, heretofore, as a means for preventing the formation of the decarburized layer, a method of controlling the carbon potential in the atmosphere gas in the furnace during the heat treatment and the spheroidizing method disclosed in JP-A-2-54717 have been disclosed. A method of carburizing at the initial stage of annealing has been proposed. However, since each of the above methods is performed by cleaning the atmosphere during the heat treatment or the pretreatment thereof, not only the heat treatment cost increases but also the setting of an appropriate gas composition according to the composition of the material, the heat treatment time, etc. There was a problem in that a complicated operation was required.

【0004】[0004]

【発明が解決しようとする課題】上述した従来技術につ
いて発明者らは最近、種々の研究を行った。その結果、
意外にも軸受転動寿命を決めている要因には、従来から
一般に論じられてきた上述した現象;すなわち、上述し
た“非金属介在物”の存在や熱処理時に生じる“脱炭
層”(低C濃度領域)の生成以外の要因もあるというこ
とを突き止めた。というのは、従来技術の下で単に非金
属介在物や脱炭層を減少させても、軸受の転動疲労寿
命、特に、高負荷あるいは高温といった過酷な条件下で
の軸受寿命の向上に対しては大きな効果が得られないと
いうケースを多く経験したからである。このことから、
発明者らは、軸受寿命を左右する要因として、非金属
介在物の存在, 脱炭層の生成の他に、さらに高負荷
転動時の転動接触面下に生成するミクロ組織変化の3つ
があることを知見したのである。
DISCLOSURE OF THE INVENTION The inventors have recently conducted various studies on the above-mentioned conventional technique. as a result,
Unexpectedly, the factors that determine the rolling life of bearings are the above-mentioned phenomena that have been generally discussed in the past; namely, the presence of the above-mentioned "non-metallic inclusions" and the "decarburization layer" (low C concentration) that occurs during heat treatment. We have found that there are other factors besides the generation of (region). This is because even if the non-metallic inclusions and decarburized layer are simply reduced under the conventional technology, it is possible to improve the rolling contact fatigue life of the bearing, especially the improvement of the bearing life under severe conditions such as high load or high temperature. Because I experienced many cases where I could not get a big effect. From this,
The inventors of the present invention have three factors that influence the bearing life: the presence of non-metallic inclusions, the formation of a decarburized layer, and the microstructural change that occurs under the rolling contact surface during high load rolling. I found out that.

【0005】そこで、発明者らは、最近の軸受使用環境
を考慮した上での軸受寿命、とくに転がり軸受の剥離の
発生原因について、さらに調査を行った。その結果、軸
受使用環境の激化に伴って、軸受の内・外輪と転動体と
転動体との接触転動時に発生する剪断応力により、転動
接触面の下層部分(表層部)に、図1(a) の写真に示す
ような、帯状の白色生成物と棒状の析出物からなるミク
ロ組織変化層が発生することが判った。そして、このミ
クロ組織変化層は転動回数を増すにつれて次第に成長
し、終いにはこのミクロ組織変化部から、図1(b)の写真
に示すような疲労剥離が生じて軸受寿命につながること
がわかったのである。さらに、軸受使用環境の過酷化す
なわち, 高面圧化(小型化), 使用温度の上昇は、これ
らミクロ組織変化が発生するまでの時間を縮め、著しい
軸受寿命の低下を招くことになるということを突き止め
た。すなわち、使用環境の過酷化に伴う軸受寿命を向上
させるには、単に非金属介在物の制御や脱炭層の抑制だ
けでは不十分であり、さらに、上述した転動接触面下で
発生するミクロ組織変化が発生するまでの時間を遅延さ
せることが必要であるということを知見したのである。
Therefore, the present inventors have further investigated the bearing life in consideration of the recent bearing usage environment, in particular, the cause of separation of rolling bearings. As a result, due to the shearing stress generated at the time of contact rolling between the inner and outer races of the bearing, the rolling elements, and the rolling elements due to the intensifying environment in which the bearings are used, the lower layer portion (surface layer portion) of the rolling contact surface has As shown in the photograph of (a), it was found that a microstructure change layer composed of a white strip-shaped product and a rod-shaped precipitate was generated. The microstructure change layer gradually grows as the number of rolling increases, and finally the microstructure change part causes fatigue delamination as shown in the photograph of Fig. 1 (b), which leads to the bearing life. Was understood. In addition, the harsh bearing operating environment, that is, higher surface pressure (miniaturization) and higher operating temperature, will shorten the time until these microstructural changes occur, resulting in a marked reduction in bearing life. I found out. That is, in order to improve the bearing life due to the harsh operating environment, it is not enough to simply control the non-metallic inclusions or suppress the decarburization layer, and further, the microstructure generated under the rolling contact surface described above. We have found that it is necessary to delay the time until changes occur.

【0006】そこで、本発明の目的は、非金属介在物粒
径の制御を通じて総体的な転動疲労寿命の向上を図るこ
とにあわせ、特に過酷な使用条件の下での軸受使用中に
発生が予想されるミクロ組織変化を遅延させることによ
り、この面における軸受寿命を改善し、さらに、熱処理
時の脱炭層の形成をも抑えて熱処理生産性( 加工除去量
を減少させることによる効果)の向上をも図り、もって
高寿命の軸受鋼を得ようとすることにある。
Therefore, the object of the present invention is to improve the overall rolling contact fatigue life by controlling the particle size of non-metallic inclusions, and in addition, the occurrence of the problem occurs during the use of the bearing under particularly severe operating conditions. By delaying the expected microstructural changes, the bearing life on this side is improved, and the formation of a decarburized layer during heat treatment is also suppressed to improve heat treatment productivity (the effect of reducing the amount of machining removal). The aim is to obtain long-life bearing steel.

【0007】[0007]

【課題を解決するための手段】さて、発明者らは、上述
した知見に基づき軸受寿命として、新たに“ミクロ組織
変化遅延特性”というものにも着目した。そして、この
特性の向上を図るには、当然そのための合金設計(成分
組成)が必要であり、このことの実現なくして軸受のよ
り一層の寿命向上は図れないという認識に立ち、さら
に、脱炭層の形成を抑制することを併せ達成する種々の
実験と検討とを行った。その結果、意外にも、Mo, Alお
よびSbを適正量複合添加すれば、繰り返し応力負荷によ
る転動接触面下に生成する上述したミクロ組織変化を著
しく遅延できると同時に、熱処理時の脱炭層の発生抑制
もでき、これに非金属介在物の最大粒径の制御も併せて
行えば、望ましい軸受鋼を得ることができることを見い
出し、本発明に想到した。
Based on the above-mentioned findings, the present inventors have also noticed a new "microstructure change delay characteristic" as the bearing life. In order to improve these characteristics, it is of course necessary to design an alloy (component composition) for that purpose, and it is recognized that the life of the bearing cannot be further improved without realizing this. Various experiments and investigations were performed to achieve the suppression of the formation of the. As a result, surprisingly, by adding an appropriate amount of Mo, Al and Sb in combination, it is possible to remarkably delay the above-mentioned microstructural change generated under the rolling contact surface due to repeated stress loading, and at the same time, to remove the decarburized layer during heat treatment. It was found that the desired bearing steel can be obtained by controlling the generation of the non-metallic inclusions and controlling the maximum grain size of the non-metallic inclusions.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0 wt%,A
l:0.005 〜0.07wt%, Sb:0.001 〜0.05wt%未満を
含有し、残部がFeおよび不可避的不純物からなり、酸化
物系非金属介在物の最大粒径が8μm 以下である、繰り
返し応力負荷によるミクロ組織変化の遅延特性と熱処理
生産性とに優れた軸受鋼(第1発明)。 (2) C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0 wt%,A
l:0.005 〜0.07wt%, Sb: 0.001〜0.05wt%未満を
含有し、さらにSi:0.05〜0.5 wt%, Mn:0.05〜2.0
wt%,Cr:0.05〜2.5 wt%, Ni:0.05〜1.0 wt%,Cu:
0.05〜1.0 wt%, B:0.0005〜0.01wt%,及びN:0.0
005〜0.012 wt%のうちから選ばれるいずれか1種また
は2種以上を含み、残部がFeおよび不可避的不純物から
なり、酸化物系非金属介在物の最大粒径が8μm 以下で
ある、繰り返し応力負荷によるミクロ組織変化の遅延特
性と熱処理生産性とに優れた軸受鋼(第2発明)。 (3) C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0 wt%,A
l:0.005 〜0.07wt%, Sb:0.001 〜0.05wt%未満を
含有し、Si:0.5 超〜2.5 wt%, Cr:2.5 超〜8.0 wt
%,Ni:1.0 超〜3.0 wt%, N:0.012 超〜0.050 wt%,
V:0.05〜1.0 wt%, Nb:0.05〜1.0 wt%,W:0.05
〜1.0 wt%, Zr:0.02〜0.5 wt%,Ta:0.02〜0.5 wt
%, Hf:0.02〜0.5 wt%およびCo:0.05〜1.5 wt%の
うちから選ばれるいずれか1種または2種以上を含み、
残部がFeおよび不可避的不純物からなり、酸化物系非金
属介在物の最大粒径が8μm 以下である、繰り返し応力
負荷によるミクロ組織変化の遅延特性と熱処理生産性と
に優れた軸受鋼(第3発明)。 (4) C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0 wt%,A
l:0.005 〜0.07wt%, Sb:0.001 〜0.05wt%未満を含
有し、さらにSi:0.05〜0.5 wt%, Mn:0.05〜2.0 wt
%,Cr:0.05〜2.5 wt%, Ni:0.05〜1.0 wt%,Cu:0.
05〜1.0 wt%, B:0.0005〜0.01wt%,及びN:0.000
5〜0.012 wt%のうちから選ばれるいずれか1種または
2種以上を含み、さらにまた、Si:0.5 超〜2.5 wt%,
Cr:2.5 超〜8.0 wt%,Ni:1.0 超〜3.0 wt%, N:0.0
12 超〜0.050 wt%,V:0.05〜1.0 wt%, Nb:0.05〜
1.0 wt%,W:0.05〜1.0 wt%, Zr:0.02〜0.5 wt%,
Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%およびCo:
0.05〜1.5 wt%のうちから選ばれるいずれか1種または
2種以上を含み、残部がFeおよび不可避的不純物からな
り、酸化物系非金属介在物の最大粒径が8μm 以下であ
る、繰り返し応力負荷によるミクロ組織変化の遅延特性
と熱処理生産性とに優れた軸受鋼(第4発明)。
That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Mo: over 0.5 to 2.0 wt%, A
l: 0.005 to 0.07wt%, Sb: 0.001 to less than 0.05wt%, the balance Fe and unavoidable impurities, the maximum particle size of oxide non-metallic inclusions is 8μm or less, repeated stress load Bearing steel excellent in retardation property of microstructure change due to and heat treatment productivity (first invention). (2) C: 0.5 to 1.5 wt%, Mo: over 0.5 to 2.0 wt%, A
l: 0.005-0.07wt%, Sb: 0.001-0.05wt%, Si: 0.05-0.5wt%, Mn: 0.05-2.0
wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt%, Cu:
0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, and N: 0.0
005 to 0.012 wt% selected from the group consisting of one or more selected from the group consisting of Fe and unavoidable impurities, the maximum particle size of oxide-based non-metallic inclusions being 8 μm or less, repetitive stress Bearing steel excellent in delay characteristics of microstructure change due to load and heat treatment productivity (second invention). (3) C: 0.5 to 1.5 wt%, Mo: over 0.5 to 2.0 wt%, A
l: 0.005 to 0.07 wt%, Sb: 0.001 to less than 0.05 wt%, Si: more than 0.5 to 2.5 wt%, Cr: more than 2.5 to 8.0 wt
%, Ni: over 1.0 to 3.0 wt%, N: over 0.012 to 0.050 wt%,
V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W: 0.05
~ 1.0 wt%, Zr: 0.02-0.5 wt%, Ta: 0.02-0.5 wt%
%, Hf: 0.02 to 0.5 wt% and Co: 0.05 to 1.5 wt%, including one or more selected from the group,
The balance is Fe and unavoidable impurities, and the maximum grain size of oxide-based non-metallic inclusions is 8 μm or less, which is excellent in retardation property of microstructure change due to repeated stress load and heat treatment productivity (3rd invention). (4) C: 0.5 to 1.5 wt%, Mo: over 0.5 to 2.0 wt%, A
l: 0.005-0.07wt%, Sb: 0.001-0.05wt%, Si: 0.05-0.5wt%, Mn: 0.05-2.0wt%
%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt%, Cu: 0.
05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, and N: 0.000
5 to 0.012 wt% selected from the group of 1 or 2 or more, and Si: more than 0.5 to 2.5 wt%,
Cr: over 2.5 ~ 8.0 wt%, Ni: over 1.0 ~ 3.0 wt%, N: 0.0
More than 12 ~ 0.050 wt%, V: 0.05 ~ 1.0 wt%, Nb: 0.05 ~
1.0 wt%, W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%,
Ta: 0.02-0.5 wt%, Hf: 0.02-0.5 wt% and Co:
Repetitive stress, containing one or more selected from 0.05 to 1.5 wt%, the balance consisting of Fe and unavoidable impurities, and the maximum particle size of oxide-based nonmetallic inclusions being 8 μm or less. Bearing steel excellent in retardation property of microstructure change due to load and heat treatment productivity (fourth invention).

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, N:0.0040wt%, O:0.0012wt%)
と、 SUJ 2 ( C:1.01wt%, Si:0.24wt%, Mn:0.46wt
%, Cr:1.32wt%, N:0.0042wt%, O:0.0015wt%)
と、MoとSbとを添加した2種の材料 (C:1.00wt%, Si:0.23wt%, Cr:1.35wt%, M
n:0.46wt%, Mo:0.75wt%, Sb:0.0015wt%, N:0.0
042wt%, Al:0.18wt%, O:0.0009wt%) (C:1.02wt%, Si:0.21wt%, Cr:1.34wt%, M
n:0.45wt%, Mo:0.77wt%, Sb:0.0018wt%, N:0.0
042wt%, Al:0.020 wt%, O:0.0034wt%) (C:1.00wt%, Si:0.20wt%, Cr:1.30wt%, M
n:0.43wt%, Mo:1.28wt%, Sb:0.0040wt%, N:0.0
032wt%, Al:0.047 wt%, O:0.0008wt%) (C:1.01wt%, Si:0.21wt%, Cr:1.31wt%, M
n:0.42wt%, Mo:1.29wt%, Sb:0.0042wt%, N:0.0
031wt%, Al:0.048 wt%, O:0.0016wt%) についての供試鋼材を作製した。次いで、これらの供試
材を焼ならし、球状化焼なまし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から15mmφ×22mmの
円筒型の試験片と、12mmφ×22mmの転動疲労試験用試験
片とを作製した。
The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35 wt%, N: 0.0040 wt%, O: 0.0012 wt%)
And SUJ 2 (C: 1.01wt%, Si: 0.24wt%, Mn: 0.46wt
%, Cr: 1.32wt%, N: 0.0042wt%, O: 0.0015wt%)
And two materials containing Mo and Sb (C: 1.00 wt%, Si: 0.23 wt%, Cr: 1.35 wt%, M
n: 0.46wt%, Mo: 0.75wt%, Sb: 0.0015wt%, N: 0.0
042wt%, Al: 0.18wt%, O: 0.0009wt%) (C: 1.02wt%, Si: 0.21wt%, Cr: 1.34wt%, M
n: 0.45wt%, Mo: 0.77wt%, Sb: 0.0018wt%, N: 0.0
042wt%, Al: 0.020wt%, O: 0.0034wt%) (C: 1.00wt%, Si: 0.20wt%, Cr: 1.30wt%, M
n: 0.43wt%, Mo: 1.28wt%, Sb: 0.0040wt%, N: 0.0
032wt%, Al: 0.047wt%, O: 0.0008wt%) (C: 1.01wt%, Si: 0.21wt%, Cr: 1.31wt%, M
n: 0.42wt%, Mo: 1.29wt%, Sb: 0.0042wt%, N: 0.0
031 wt%, Al: 0.048 wt%, O: 0.0016 wt%) was prepared. Then, after normalizing these test materials, spheroidizing annealing, after performing each treatment of quenching and tempering, a cylindrical test piece of 15 mm φ × 22 mm from each test material, 12 mm φ × 22 mm A test piece for rolling fatigue test was prepared.

【0010】なお、転動疲労寿命試験は、上記転動疲労
用試験片をラジアルタイプ型の転動疲労寿命試験機を用
い、ヘルツ最大接触応力:600kgf/mm2, 繰返し応力数 4
6500cpmの負荷条件の下で試験したものである。試験の
結果は、ワイブル分布確立紙上にプロットし, 非金属介
在物の制御によって影響される材料強度の上昇による転
動疲労寿命の向上を示す数値と見られるB10(10%累積
破損確率) と高負荷転動時の繰り返し応力負荷によるミ
クロ組織変化発生を遅延させることによる転動疲労寿命
の向上を示す数値と見られるB50(50%累積破損確率)
とを求めた。また、脱炭層の試験については、上記の円
筒状試験片を10mmの位置で高さ方向に垂直に切断後、ナ
イタールにて腐食し、ミクロ組織変化による円周上の全
脱炭層の最大値( 以後、「最大脱炭層」という)で評価
した。
In the rolling fatigue life test, the above-mentioned rolling fatigue test piece was used with a radial type rolling fatigue life tester, and Hertz maximum contact stress: 600 kgf / mm 2 , cyclic stress number 4
It was tested under a load condition of 6500 cpm. The results of the test are plotted on Weibull distribution establishment paper and are considered to be the numerical values showing the improvement of rolling fatigue life due to the increase of material strength affected by the control of non-metallic inclusions, and B 10 (10% cumulative failure probability) and B 50 (50% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructure change due to repeated stress loading during high load rolling
And asked. Further, for the test of the decarburized layer, after cutting the above cylindrical test piece vertically in the height direction at a position of 10 mm, it is corroded by Nital and the maximum value of the total decarburized layer on the circumference due to the microstructure change ( Hereinafter, it was evaluated by "the maximum decarburized layer".

【0011】その結果を表1に示す。この表1に示す結
果から判るように、介在物制御をすることなく、単に多
量のMoとSbとを複合添加しただけのものについては、前
記B10値についての改善は小さく、一方、B50値につい
てはかなり高い数値を示して改善されていることが判
る。例えば、軸受寿命はSUJ 2 に比べてB10値で約2
倍、B50値で約23倍もの改善を示していた。これに対し
て、多量のMoとSbとを複合添加し、かつ非金属介在物の
最大粒径を制御したものでは、高負荷転動中に生成する
ミクロ組織変化の遅延特性に対しても顕著な効果を示
し、その分破損(寿命)を遅延させることが期待できる
他、非金属介在物を原因とする剥離に対しても改善効果
が認められた。また、最大脱炭層に関しては、SUJ 2が
0.10mmであったが、Sb:約0.002wt %含むものでは0.03
mm、Sb:約0.004 wt%含むものでは0.01mmと、適当なSb
の含有が脱炭層の発生抑制に効果のあることも判った。
The results are shown in Table 1. As can be seen from the results shown in Table 1, in the case of simply adding a large amount of Mo and Sb without controlling inclusions, the improvement in the B 10 value is small, while the B 50 value is small. It can be seen that the value is considerably high and is improved. For example, bearing life is about 2 at B 10 value compared to SUJ 2.
And the B 50 value improved about 23 times. On the other hand, in the case of adding a large amount of Mo and Sb in combination, and controlling the maximum particle size of the non-metallic inclusions, it is remarkable for the delay property of the microstructure change generated during high load rolling. It was expected that the damage (life) would be delayed by that amount, and that the improvement effect was also observed for the peeling caused by non-metallic inclusions. Regarding the maximum decarburized layer, SUJ 2
0.10 mm, but 0.03 wt% Sb: 0.002 wt%
mm, Sb: 0.01 mm when containing about 0.004 wt%, suitable Sb
It has also been found that the inclusion of is effective in suppressing the generation of the decarburized layer.

【0012】[0012]

【表1】 [Table 1]

【0013】また、図2は、上記軸受転動疲労寿命の実
験結果をまとめたものであって、非金属介在物に起因す
る軸受寿命とミクロ組織変化に起因する寿命の変化との
関係を示す模式図である。この図に明らかなように、累
積破損確率10%のB10値で示される軸受寿命(以下、こ
れを「B10転動疲労寿命」という)は、単にMoを多量に
添加しただけではあまり向上しないが、非金属介在物制
御をも併せて行った場合に顕著な効果を示している。一
方、累積破損確率50%のB50値で示される軸受寿命 (以
下、これを「B50高負荷転動疲労寿命」という)につい
てみると、このMo多量添加の効果は非金属介在物制御と
は関係なく、極めて顕著なものとなっている。そこで発
明者らは、こうした知見をもとに、累積破損確率10%お
よび50%のB10値およびB50値で示される軸受寿命を向
上させ、かつ熱処理時の脱炭層の成長の抑制を図るに
は、どのような合金設計が有効であるかという観点か
ら、以下に説明するような成分組成の範囲を決定した。
FIG. 2 is a summary of the results of the above-mentioned bearing rolling fatigue life, showing the relationship between the bearing life due to non-metallic inclusions and the life change due to microstructural changes. It is a schematic diagram. As is clear from this figure, the bearing life indicated by the B 10 value with a cumulative failure probability of 10% (hereinafter referred to as “B 10 rolling contact fatigue life”) is much improved by simply adding a large amount of Mo. However, when the non-metallic inclusion control is also performed, a remarkable effect is shown. On the other hand, looking at the bearing life indicated by the B 50 value with a cumulative failure probability of 50% (hereinafter referred to as “B 50 high load rolling contact fatigue life”), the effect of adding a large amount of Mo is that non-metallic inclusion control Is irrelevant and has become extremely prominent. Therefore, based on these findings, the present inventors improve the bearing life indicated by the B 10 value and the B 50 value of the cumulative damage probability of 10% and 50%, and suppress the growth of the decarburized layer during heat treatment. In view of what kind of alloy design is effective, the range of component composition as described below was determined.

【0014】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定する。
C: 0.5 to 1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts on the strengthening of martensite, and in order to secure the strength after quenching and tempering and thereby improve the rolling fatigue life. Contained in. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, machinability and forgeability will deteriorate, so it is limited to the range of 0.5 to 1.5 wt%.

【0015】Si:0.05〜0.5 wt%, 0.5 超〜2.5 wt%以
下 Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ, 焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5 wt%の範囲とする。また、このSiは、
0.5 wt%超を添加すると、繰り返し応力負荷の下でのミ
クロ組織変化の遅延をもたらして転動疲労寿命を向上さ
せる効果がある。しかし、その含有量が 2.5wt%を超え
ると、その効果が飽和する一方で、加工性や靱性を低下
させるので、ミクロ組織変化遅延特性のより一層の向上
のためには、 0.5超〜2.5 wt%を添加することが有効で
ある。
Si: 0.05 to 0.5 wt%, more than 0.5 to 2.5 wt% or less Si is used as a deoxidizer during the melting of steel, and is also solid-dissolved in the matrix to increase the resistance to tempering and quenching, It is effective as an element that increases the strength after tempering and improves the rolling fatigue life. The content of Si added for this purpose is in the range of 0.05 to 0.5 wt%. Also, this Si is
Addition of more than 0.5 wt% has the effect of delaying the microstructural change under cyclic stress loading and improving rolling fatigue life. However, if the content exceeds 2.5 wt%, the effect saturates, but the workability and toughness decrease, so in order to further improve the microstructural change retardation property, it exceeds 0.5 to 2.5 wt%. It is effective to add%.

【0016】Mn:0.05〜2.0 wt% Mnは、鋼の溶製時の脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上さ
せ、転動疲労寿命の向上に有効に作用する。このために
Mnは、0.05〜2.0wt%の範囲内で添加する。
Mn: 0.05 to 2.0 wt% Mn acts as a deoxidizing agent during the melting of steel, and is an element effective in reducing the oxygen content of steel. Also, by improving the hardenability of steel, it improves the toughness and hardness of the base martensite, and effectively acts to improve the rolling fatigue life. For this
Mn is added within the range of 0.05 to 2.0 wt%.

【0017】Cr:0.05〜2.5 wt%, 2.5 超〜8.0 wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては転動
疲労寿命を向上させる成分である。この効果を得るため
には、0.05〜2.5 wt%の添加で十分である。さらに、こ
のCrは、 2.5wt%を超えて多量に添加した場合には、繰
返し応力負荷によるミクロ組織変化を遅延せしめて、こ
の面での転動疲労寿命を向上させるのに有効である。そ
して、この目的のためのCr添加の効果は、 8.0wt%を超
えると飽和するのみならず、却って焼入れ時の固溶C量
の低下を招いて強度が低下する。従って、この目的のた
めに添加するときは、 2.5超〜8.0 wt%としなければな
らない。
Cr: 0.05 to 2.5 wt%, more than 2.5 to 8.0 wt% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and eventually improves rolling contact fatigue life. To obtain this effect, addition of 0.05 to 2.5 wt% is sufficient. Furthermore, when Cr is added in a large amount exceeding 2.5 wt%, it is effective in delaying the microstructure change due to repeated stress loading and improving the rolling fatigue life in this aspect. The effect of Cr addition for this purpose is not only saturated when it exceeds 8.0 wt%, but rather causes a decrease in the amount of solid solution C during quenching, resulting in a decrease in strength. Therefore, when it is added for this purpose, it must be more than 2.5 to 8.0 wt%.

【0018】Ni:0.05〜1.0 wt%, 1.0 超〜3.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、転動疲労寿命を向上さ
せるので、この目的のためには0.05〜1.0 wt%の範囲内
で添加する。さらに、このNiは、 1.0wt%を超えて添加
した場合には、転動時のミクロ組織変化を遅らせ、それ
により転動疲労寿命を向上させる。しかし、この場合で
も3wt%を超えて添加すると、多量の残留γを析出して
強度の低下ならびに寸法安定性を害することになる他、
コストアップになるため、この作用効果を期待する場合
には、1.0 超〜3.0 wt%の範囲内で添加することが必要
である。
Ni: 0.05 to 1.0 wt%, more than 1.0 to 3.0 wt% Ni increases the hardenability to increase the strength after quenching and tempering, improve toughness, and improve rolling contact fatigue life. Is added in the range of 0.05 to 1.0 wt%. Further, this Ni, when added in excess of 1.0 wt%, delays the microstructure change during rolling, thereby improving rolling fatigue life. However, even in this case, if it is added in excess of 3 wt%, a large amount of residual γ will be deposited, resulting in a decrease in strength and a loss of dimensional stability.
If this effect is expected, it is necessary to add it in the range of more than 1.0 to 3.0 wt% because it increases the cost.

【0019】Mo: 0.5超〜2.0 wt% Moは、基本的には残留炭化物の安定化により耐摩耗性を
向上させる元素であり、とくに焼入れ性を増大して焼入
れ焼もどし後の強度向上に寄与すると共に、安定炭化物
の析出により、耐摩耗性と転動疲労寿命とを向上させ
る。ただし、本発明においてこのMoは、もっと重要な役
割を果たしており、特にその添加量が0.5 wt%を超える
ような多量を添加すると、上述した繰り返し応力の負荷
によるミクロ組織変化を遅らせる効果が著しくなり、こ
の面での転動疲労寿命を向上させる。しかし、その量が
1.5wt%を超えると、被削性, 鍛造性を低下させ、コス
トアップの因ともなるため、 0.5超〜2.0 wt%の範囲内
で添加することが必要である。
Mo: more than 0.5 to 2.0 wt% Mo is an element that basically improves wear resistance by stabilizing residual carbides, and especially contributes to an increase in hardenability and an increase in strength after quenching and tempering. In addition, precipitation of stable carbide improves wear resistance and rolling contact fatigue life. However, in the present invention, this Mo plays a more important role, and particularly when a large amount of Mo is added, which exceeds 0.5 wt%, the effect of delaying the above-mentioned microstructural change due to the loading of cyclic stress becomes remarkable. , Improve rolling fatigue life in this aspect. But the amount
If it exceeds 1.5 wt%, the machinability and forgeability will be reduced, and it will cause cost increase, so it is necessary to add it in the range of more than 0.5 to 2.0 wt%.

【0020】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、この面から転動疲労寿命を向上させる元素である。
この作用は、0.05以上で顕れ、1.0 wt%で飽和する。
Cu: 0.05 to 1.0 wt% Cu is an element that enhances the strength after quenching and tempering by increasing quenching, and from this aspect improves rolling fatigue life.
This effect appears at 0.05 or more and becomes saturated at 1.0 wt%.

【0021】Sb:0.001 〜0.005 wt% このSbは、この発明においてAlとともに重要な役割を担
っている元素である。とくに、このSbは、熱処理時にお
いて、鋼材表層部のCと雰囲気ガスとの反応を抑制して
脱炭層の発生を阻止することによって、熱処理生産性向
上に寄与する。しかも、Alとの複合添加により、該脱炭
層の抑制にあわせてミクロ組織変化の遅延に対しても効
果を示すことから、積極的に添加する。このような2つ
の作用は、このSb含有量が0.001 wt%以上で顕著なもの
となるが、0.005 wt%以上を添加すると熱間加工性およ
び靱性の劣化を招くようになる。従って、Sbは 0.001〜
0.005 wt%未満の範囲で含有させることとした。
Sb: 0.001 to 0.005 wt% This Sb is an element that plays an important role together with Al in the present invention. In particular, this Sb contributes to the improvement of the heat treatment productivity by suppressing the reaction between C in the surface layer portion of the steel material and the atmospheric gas during the heat treatment to prevent the generation of the decarburized layer. Moreover, since the combined addition with Al has an effect on the retardation of the microstructure change as well as the suppression of the decarburized layer, it is positively added. These two effects become remarkable when the Sb content is 0.001 wt% or more, but when 0.005 wt% or more is added, hot workability and toughness deteriorate. Therefore, Sb is 0.001 ~
It was decided to contain it in the range of less than 0.005 wt%.

【0022】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability to increase the strength after quenching and tempering and improves the rolling fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.

【0023】Al:0.05〜0.07 wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靱性向上に寄
与する。また、焼入れ焼きもどし後の強度を高めること
による転動疲労性の向上にも有効に作用する。このよう
な作用のためにAlは、0.05〜0.07 wt%添加することが
有効である。
Al: 0.05-0.07 wt% Al is used as a deoxidizer during the melting of steel, and at the same time,
Combines with N in the steel to refine the crystal grains and contribute to the improvement of the toughness of the steel. Further, it also effectively acts to improve rolling fatigue by increasing the strength after quenching and tempering. For such an action, it is effective to add Al in an amount of 0.05 to 0.07 wt%.

【0024】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains and to form a solid solution in the matrix to enhance the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
Add within 0.012 wt%. Also, this N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural change due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability decreases, so for this purpose it exceeds 0.012 to 0.
Add 05wt%.

【0025】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desirable because it lowers the toughness and rolling fatigue life of the steel, so it is desirable to be as low as possible.
It is 0.025 wt%.

【0026】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves the machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.

【0027】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善する成
分、強度の上昇を通じて転動疲労寿命を改善するための
成分、および脱炭層の生成を抑えて軸受の加工性と生産
性を向上させるための成分限定の理由について説明し
た。ところで、本発明ではさらに、V, Nb, W, Zr, T
a, HfおよびCoのうちから選ばれるいずれか1種または
2種以上を添加して軸受寿命をさらに改善するようにし
てもよい。上記各元素の好適添加範囲と添加の目的、上
限値、下限値限定の理由につき、表2にまとめて示す。
As described above, the component for improving the rolling fatigue life by delaying the microstructural change due to the repeated stress load, the component for improving the rolling fatigue life by increasing the strength, and the decarburized layer formation are suppressed. The reason for limiting the components for improving the processability and productivity of was explained. By the way, in the present invention, further, V, Nb, W, Zr, T
The bearing life may be further improved by adding one or more selected from a, Hf and Co. Table 2 shows the preferable addition range of each of the above elements, the purpose of addition, and the reasons for limiting the upper limit value and the lower limit value.

【0028】[0028]

【表2】 [Table 2]

【0029】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
The addition of Sn, As, etc. does not hinder the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved. You may add according to it.

【0030】[0030]

【実施例】表3, 4, 5に示す化学組成を有する鋼材を
転炉で溶製したのち連続鋳造し、得られた鋼材を1240℃
で30h の拡散焼鈍の後に65mmφの棒鋼に圧延した。次い
で、切削加工により棒鋼D/4部から15mmφ×20mmの円
筒状試験片ならびに転動疲労用試験片を採取した。その
後、これらの試験片について、雰囲気制御なしに(大気
雰囲気中で) 、焼ならし・球状化焼なまし・焼入れ・焼
もどしの順で試験を行った。さらに、転動疲労用試験片
は、脱炭層を完全に除去する目的で1mm以上の研磨およ
びラッピング仕上を行い、試験片寸法を12mmφ×22mmと
した。熱処理後の脱炭層深さは、15mmφ×20mmの円筒状
試験片を10mmの位置で高さ方向と垂直に切断し、ナイタ
ールにて腐食後、ミクロ組織観察による円周上の全脱炭
層の最大値 (以下、「最大脱炭層」と称する) で評価し
た。転動疲労寿命試験は、ラジアルタイプの転動疲労寿
命試験機によりヘルツ最大接触応力:600 kgf/mm2 , 繰
り返し応力数:約46500 cpm の条件で行ったものであ
る。試験結果は、ワイブル分布に従うものとして確率紙
上にまとめ、鋼材No.1の平均寿命 (累積破損確率:10%
および50%における、剥離発生までの総負荷回数) をそ
れぞれ1として評価した。その評価結果を、表3, 4,
5にあわせて示す。
[Example] Steels having the chemical compositions shown in Tables 3, 4, and 5 were melted in a converter and continuously cast, and the obtained steels were heated to 1240 ° C.
After diffusion annealing for 30 h, it was rolled into a steel bar of 65 mmφ. Then, a cylindrical test piece of 15 mmφ × 20 mm and a test piece for rolling fatigue were collected from the D / 4 part of the steel bar by cutting. Thereafter, these test pieces were tested in the order of normalizing, spheroidizing annealing, quenching, and tempering without controlling the atmosphere (in the air atmosphere). Further, the rolling fatigue test piece was ground and lapped to a size of 1 mm or more for the purpose of completely removing the decarburized layer, and the size of the test piece was 12 mmφ × 22 mm. The depth of the decarburized layer after heat treatment is the maximum of the total decarburized layer on the circumference measured by microstructure observation after cutting a 15 mmφ × 20 mm cylindrical test piece at a position of 10 mm perpendicular to the height direction and corroding with Nital. The value (hereinafter referred to as "maximum decarburized layer") was evaluated. The rolling fatigue life test was performed by a radial type rolling fatigue life tester under the conditions of Hertz maximum contact stress: 600 kgf / mm 2 and cyclic stress number: about 46500 cpm. The test results are summarized on the probability paper as if they follow the Weibull distribution, and the average life of steel No. 1 (cumulative damage probability: 10%
The total number of loads before peeling occurred at 50% and 50%) was evaluated as 1. The evaluation results are shown in Tables 3, 4 and
Shown in accordance with 5.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】表3, 4, 5に示す結果から明らかなよう
に、鋼中C量が本発明範囲外である鋼材No.5, 鋼中Mo量
が本発明鋼の範囲外である鋼材No.6は、軸受平均寿命の
10値, B50値とも、従来鋼(鋼材No.1)と同じか少し
悪い値となっている。一方、鋼中Sb量が本発明鋼範囲外
である鋼材No.4のB50転動疲労寿命は、従来鋼 (鋼材N
o.1) の約4倍も優れているものの、最大脱炭層は0.11m
mと従来例(SUJ2) と比較してそれほど改善されていな
い。また、Sbを全く含有しない鋼材No.2も、最大脱炭層
が悪い結果を示している。また、介在物最大粒径の大き
い鋼材No.3は、B10寿命比が低い値となっている。一
方、第1発明鋼である鋼材No.7のB50値で示す軸受平均
寿命は、従来鋼(鋼材No.1) に比較して約4倍も優れて
おり、Moの添加がミクロ組織変化を著しく遅延し、その
結果転動疲労寿命の向上に有効に作用したことが窺え
る。しかも、最大脱炭層深さも0.01mmであり、従来鋼N
o.1に比べてはるかに少なく、Sbが本発明適正範囲を外
れている鋼No.4と比べても約1/10と改善効果が顕著であ
る。
As is clear from the results shown in Tables 3, 4 and 5, steel No. 5 having a C content in the steel outside the scope of the present invention and steel No. having a Mo content in the steel outside the scope of the steel of the present invention. In No. 6, both the B 10 and B 50 values of the average bearing life are the same as or slightly worse than those of the conventional steel (steel material No. 1). On the other hand, the B 50 rolling contact fatigue life of steel material No. 4 whose Sb content in the steel is outside the range of the steel of the present invention is
The maximum decarburization layer is 0.11m although it is about 4 times better than
m is not so much improved compared to the conventional example (SUJ2). Further, the steel material No. 2 containing no Sb also shows a bad result in the maximum decarburized layer. Steel No. 3 having a large maximum particle size of inclusions has a low B 10 life ratio. On the other hand, the bearing average life indicated by the B 50 value of the steel material No. 7 which is the first invention steel is about 4 times better than that of the conventional steel (steel material No. 1), and the addition of Mo changes the microstructure. It can be seen that this significantly delayed the rolling contact, and as a result, effectively acted to improve the rolling contact fatigue life. Moreover, the maximum decarburized layer depth is 0.01 mm,
It is much smaller than that of o.1 and is about 1/10 of the improvement effect of steel No. 4 in which Sb is outside the proper range of the present invention, which is a remarkable improvement effect.

【0035】また、Mo, Al, Sbに加えてさらにSi, Mn,
Cr, Ni, Cu, Al, BおよびNのいずれか少なくとも1種
以上を添加してなる鋼No.8〜17(第2発明鋼)は、軸受
寿命を決めるB50転動疲労寿命特性の改善に効果がある
他、最大脱炭層深さも0.02mm以下と著しく改善されてい
ることが判った。
In addition to Mo, Al and Sb, Si, Mn,
Steel Nos. 8 to 17 (second invention steels) made by adding at least one of Cr, Ni, Cu, Al, B and N have improved B 50 rolling contact fatigue life characteristics that determine bearing life. It was also found that the maximum decarburized layer depth was significantly improved to less than 0.02 mm.

【0036】さらに、Mo, Al, Sbに加えてさらにSi, C
r, V, Nb, W, Zr, Ta, Hf, CoおよびNを所定の量以
上を積極的に加えた鋼No. 18〜29の場合には、熱処理生
産性の向上にあわせ上記軸受寿命 (B50転動疲労寿命)
も改善されていることが確かめられた。これは、本発明
で推奨する上記各改善成分のすべてを選択的に添加して
なる鋼No. 30〜44の場合も同様であって、すべての軸受
転動寿命および熱処理生産性の両方を同時に改善する効
果のあることが判った。
Further, in addition to Mo, Al and Sb, Si and C are further added.
In the case of steel Nos. 18 to 29 in which r, V, Nb, W, Zr, Ta, Hf, Co and N are positively added in a predetermined amount or more, the above-mentioned bearing life ( B 50 rolling fatigue life)
It was confirmed that it was also improved. This is the same in the case of Steel No. 30 to 44 which is obtained by selectively adding all of the above-mentioned improving components recommended in the present invention, and all the bearing rolling life and heat treatment productivity are simultaneously improved. It was found to be effective in improving.

【0037】[0037]

【発明の効果】以上説明したとおり、本発明によれば、
基本的にはSbの添加と 0.5超〜2.0 wt%の高Moを複合添
加することにより、熱処理時の加工負荷を軽減でき (Sb
の添加効果) 、しかも、高負荷転動疲労寿命時の繰り返
し応力負荷に伴うミクロ組織変化の遅延をもたらし (高
Mo含有効果) 、所謂B50高負荷転動疲労寿命の向上を達
成して、高寿命の熱処理生産性の高い軸受用の鋼を提供
することができる。また、非金属介在物の制御を通じて
材料強度を高めることによって、この面における転動疲
労寿命の向上も図れる。さらに、従来技術の下では不可
欠とされていた、より一層の鋼中酸素量の低減あるいは
鋼中に存在する酸化物系非金属介在物の組成, 形状, な
らびにその分布状態をコントロールするために必要とな
る製鋼設備の改良あるいは建設が不必要である。なお、
本発明にかかる軸受鋼の開発によって、転がり軸受の小
型化ならびに軸受使用温度のより以上の上昇が可能とな
る。
As described above, according to the present invention,
Basically, the processing load during heat treatment can be reduced by adding Sb and high Mo of more than 0.5 to 2.0 wt% (Sb
(Addition effect), and also causes a delay in microstructural change due to repeated stress loading during high-load rolling fatigue life (high
It is possible to achieve a so-called B 50 high load rolling contact fatigue life improvement and to provide a bearing steel with a long life and high heat treatment productivity. Further, by increasing the material strength by controlling non-metallic inclusions, it is possible to improve the rolling fatigue life in this aspect. Furthermore, it is necessary to further reduce the oxygen content in steel and control the composition, shape, and distribution state of oxide-based nonmetallic inclusions present in steel, which was indispensable under the conventional technology. It is not necessary to improve or construct steelmaking equipment. In addition,
The development of the bearing steel according to the present invention makes it possible to reduce the size of the rolling bearing and further increase the bearing operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に発
生するミクロ組織変化のようすを示す金属組織の顕微鏡
写真。
1 (a) and 1 (b) are micrographs of a metal structure showing a microstructure change occurring under repeated stress loading.

【図2】非金属介在物に起因する軸受寿命とミクロ組織
変化に起因する軸受寿命とに及ぼすMo添加の影響を示す
説明図。
FIG. 2 is an explanatory diagram showing the effect of Mo addition on the bearing life due to non-metallic inclusions and the bearing life due to microstructural changes.

【図3】鋼種による非金属介在物最大粒径とB10転動疲
労寿命との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the maximum grain size of non-metallic inclusions and B 10 rolling contact fatigue life depending on the steel type.

フロントページの続き (72)発明者 松崎 明博 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内Front page continuation (72) Inventor Akihiro Matsuzaki 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture, Kawasaki Steel Corporation Technical Research Division (72) Inventor Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Iron & Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0
wt%,Al:0.005 〜0.07wt%, Sb:0.001 〜0.05wt%未
満を含有し、残部がFeおよび不可避的不純物からなり、
酸化物系非金属介在物の最大粒径が8μm 以下である、
繰り返し応力負荷によるミクロ組織変化の遅延特性と熱
処理生産性とに優れた軸受鋼。
1. C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0
wt%, Al: 0.005 to 0.07 wt%, Sb: 0.001 to less than 0.05 wt%, the balance consisting of Fe and unavoidable impurities,
The maximum particle size of oxide-based non-metallic inclusions is 8 μm or less,
Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading and heat treatment productivity.
【請求項2】C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0
wt%,Al:0.005 〜0.07wt%, Sb: 0.001〜0.50wt%未
満を含有し、さらにSi:0.05〜0.5 wt%, Mn:0.05〜
2.0 wt%,Cr:0.05〜2.5 wt%, Ni:0.05〜1.0 wt%,
Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt%,及び
N:0.0005〜0.012 wt%のうちから選ばれるいずれか1
種または2種以上を含み、残部がFeおよび不可避的不純
物からなり、酸化物系非金属介在物の最大粒径が8μm
以下である、繰り返し応力負荷によるミクロ組織変化の
遅延特性と熱処理生産性とに優れた軸受鋼。
2. C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0
wt%, Al: 0.005-0.07wt%, Sb: 0.001-0.50wt%, Si: 0.05-0.5wt%, Mn: 0.05-
2.0 wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt%,
Any one selected from Cu: 0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, and N: 0.0005 to 0.012 wt%
Or 2 or more, the balance consisting of Fe and unavoidable impurities, and the maximum particle size of oxide-based non-metallic inclusions is 8 μm
The following bearing steels have excellent microstructure change delay characteristics due to repeated stress loading and heat treatment productivity.
【請求項3】C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0
wt%,Al:0.005 〜0.07wt%, Sb:0.001 〜0.05wt%未
満を含有し、Si:0.5 超〜2.5 wt%, Cr:2.5 超〜8.
0 wt%,Ni:1.0 超〜3.0 wt%, N:0.012 超〜0.050 w
t%,V:0.05〜1.0 wt%, Nb:0.05〜1.0 wt%,W:
0.05〜1.0 wt%, Zr:0.02〜0.5 wt%,Ta:0.02〜0.5
wt%, Hf:0.02〜0.5 wt%およびCo:0.05〜1.5 wt
%のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなり、酸化物系
非金属介在物の最大粒径が8μm 以下である、繰り返し
応力負荷によるミクロ組織変化の遅延特性と熱処理生産
性とに優れた軸受鋼。
3. C: 0.5-1.5 wt%, Mo: over 0.5-2.0
wt%, Al: 0.005-0.07 wt%, Sb: 0.001-0.05 wt%, Si: over 0.5-2.5 wt%, Cr: over 2.5-8.
0 wt%, Ni: over 1.0 to 3.0 wt%, N: over 0.012 to 0.050 w
t%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W:
0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5
wt%, Hf: 0.02-0.5 wt% and Co: 0.05-1.5 wt
%, A microstructure containing recurring stress load, containing at least one selected from the group consisting of Fe and unavoidable impurities and the maximum grain size of oxide-based nonmetallic inclusions being 8 μm or less. Bearing steel with excellent change delay properties and heat treatment productivity.
【請求項4】C: 0.5〜1.5 wt%, Mo:0.5 超〜2.0
wt%,Al:0.005 〜0.07wt%, Sb:0.001 〜0.05wt%未
満を含有し、さらにSi:0.05〜0.5 wt%, Mn:0.05〜
2.0 wt%,Cr:0.05〜2.5 wt%, Ni:0.05〜1.0 wt%,
Cu:0.05〜1.0 wt%, B:0.0005〜0.01wt%,及び
N:0.0005〜0.012 wt%のうちから選ばれるいずれか1
種または2種以上を含み、さらにまた、Si:0.5 超〜2.
5 wt%, Cr:2.5 超〜8.0 wt%,Ni:1.0 超〜3.0 wt%,
N:0.012 超〜0.050 wt%,V:0.05〜1.0 wt%, N
b:0.05〜1.0 wt%,W:0.05〜1.0 wt%, Zr:0.02〜
0.5 wt%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%
およびCo:0.05〜1.5 wt%のうちから選ばれるいずれか
1種または2種以上を含み、残部がFeおよび不可避的不
純物からなり、酸化物系非金属介在物の最大粒径が8μ
m 以下である、繰り返し応力負荷によるミクロ組織変化
の遅延特性と熱処理生産性とに優れた軸受鋼。
4. C: 0.5 to 1.5 wt%, Mo: more than 0.5 to 2.0
wt%, Al: 0.005-0.07 wt%, Sb: 0.001-0.05 wt%, Si: 0.05-0.5 wt%, Mn: 0.05-
2.0 wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt%,
Any one selected from Cu: 0.05 to 1.0 wt%, B: 0.0005 to 0.01 wt%, and N: 0.0005 to 0.012 wt%
Or more than two kinds, and further, Si: more than 0.5 to 2.
5 wt%, Cr: over 2.5 ~ 8.0 wt%, Ni: over 1.0 ~ 3.0 wt%,
N: over 0.012 ~ 0.050 wt%, V: 0.05 ~ 1.0 wt%, N
b: 0.05-1.0 wt%, W: 0.05-1.0 wt%, Zr: 0.02-
0.5 wt%, Ta: 0.02-0.5 wt%, Hf: 0.02-0.5 wt%
And Co: 0.05 to 1.5 wt% selected from the group consisting of one or more selected from the group consisting of Fe and unavoidable impurities, and the maximum particle size of oxide-based non-metallic inclusions is 8 μm.
Bearing steel with m or less, which is excellent in retardation property of microstructure change due to repeated stress loading and heat treatment productivity.
JP09555993A 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity Expired - Fee Related JP3233729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09555993A JP3233729B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09555993A JP3233729B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity

Publications (2)

Publication Number Publication Date
JPH06287703A true JPH06287703A (en) 1994-10-11
JP3233729B2 JP3233729B2 (en) 2001-11-26

Family

ID=14140952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09555993A Expired - Fee Related JP3233729B2 (en) 1993-03-30 1993-03-30 Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity

Country Status (1)

Country Link
JP (1) JP3233729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936689A (en) * 2012-11-23 2013-02-20 中天钢铁集团有限公司 High-temperature-resistant bearing steel and production process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936689A (en) * 2012-11-23 2013-02-20 中天钢铁集团有限公司 High-temperature-resistant bearing steel and production process thereof

Also Published As

Publication number Publication date
JP3233729B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
JP3383347B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3383348B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06287703A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379786B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379785B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233726B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383346B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3383350B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379787B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3243330B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JPH06279932A (en) Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load and heat treatment productivity
JPH06271982A (en) Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233728B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3383351B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06287708A (en) Bearing stress excellent in property of retarding microstructural change due to repeated stress load
JP3383353B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06287695A (en) Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity
JPH06287705A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JPH06287709A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JPH06287707A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JPH06287693A (en) Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees