JPH06287695A - Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity - Google Patents

Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity

Info

Publication number
JPH06287695A
JPH06287695A JP9555193A JP9555193A JPH06287695A JP H06287695 A JPH06287695 A JP H06287695A JP 9555193 A JP9555193 A JP 9555193A JP 9555193 A JP9555193 A JP 9555193A JP H06287695 A JPH06287695 A JP H06287695A
Authority
JP
Japan
Prior art keywords
steel
over
bearing
repeated stress
productivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9555193A
Other languages
Japanese (ja)
Inventor
Satoshi Yasumoto
聡 安本
Toshiyuki Hoshino
俊幸 星野
Akihiro Matsuzaki
明博 松崎
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9555193A priority Critical patent/JPH06287695A/en
Publication of JPH06287695A publication Critical patent/JPH06287695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To produce bearing steel small in the change of the microstructure caused by repeated stress loads under severe using conditions and high in heat treating productivity. CONSTITUTION:The bearing steel contg., by weight, 0.001 to 0.015% Sb for improving heat treating productivity and contg., particularly, >2.0 to 5.0% Mn and one or >=two kinds selected from >0.5 to 2.5% Si, >2.5 to 8.0% Cr, >1.0 to 3.0% Ni, >0.5 to 2.0% Mo, >0.012 to 0.050% N, 0.05 to 1.0% V, 0.05 to 1.0% Nb, 0.05 to 1.0% W, 0.02 to 0.5% Zr, 0.02 to 0.5% Ta, 0.02 to 0.5% Hf and 0.05 to 1.5% Co as B50 high load rolling fatigue life improving components for prmoting the delay in the change of the microstructure caused by repeated stress loads and in which the maximum grain size of oxide non-metallic inclusions is regulated to <=8mum is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに熱処理時に起こる脱炭層の生成を抑制
する効果ならびに軸受使用環境の過酷化に伴って生ずる
特有の劣化, すなわち繰り返し応力負荷によって転動接
触面下に発生するミクロ組織変化(劣化)に対する遅延
特性とに優れた軸受鋼についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly with the effect of suppressing the formation of a decarburized layer during heat treatment and the severer environment of bearing use. This is a proposal for a bearing steel that is excellent in the characteristic deterioration that occurs as a result, that is, the delay characteristics for the microstructural change (deterioration) that occurs under the rolling contact surface due to repeated stress loading.

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中非金属介在物の影響が最も大きいと考えられていた。
そのため、最近の研究の主流は、鋼中酸素量の低減を通
じて非金属介在物の量, 大きさを制御することによって
軸受寿命を向上させる方策がとられてきた。例えば、軸
受の転動疲労寿命の一層の向上を目指して開発されたも
のとしては、特開平1−306542号公報や特開平3−1268
39号公報などの提案があり、これらは、鋼中の酸化物系
非金属介在物の組成, 形状あるいは分布状態をコントロ
ールする技術である。しかしながら、非金属介在物の少
ない軸受鋼を製造するには、鋼中酸素量の低減が不可欠
であるところ、これも既に限界に達しており、高価な溶
製設備の設置あるいは従来設備の大幅な改良が必要であ
り、経済的な負担が大きいという問題があった。
2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel is one of the important properties that long rolling fatigue life is important, but it is considered that the influence of non-metallic inclusions in steel is the most significant factor affecting rolling fatigue life. Was there.
Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel. For example, as those developed with the aim of further improving the rolling contact fatigue life of bearings, there are Japanese Patent Laid-Open Nos. 1-306542 and 3-1268.
There are proposals such as Japanese Patent No. 39, which are technologies for controlling the composition, shape, or distribution state of oxide-based nonmetallic inclusions in steel. However, in order to manufacture bearing steel with few non-metallic inclusions, it is essential to reduce the amount of oxygen in the steel, but this has already reached the limit, and expensive melting equipment or a large amount of conventional equipment has to be installed. There was a problem that improvement was necessary and the financial burden was large.

【0003】また、上記高炭素軸受鋼(JIS-SUJ 2)の特
性改善を図るためのもう1つの動きは、熱処理時の脱炭
層の生成を抑制することの研究である。一般に、上記JI
S-SUJ 2 に規定された軸受鋼は、0.95〜1.10wt%のCを
含むことから、非常に硬質であり、それ故に、球状化焼
なましを行って加工性を向上させた後に成形加工し、そ
の後焼入れ, 焼もどし処理を施すことによって、転がり
軸受に必要な強度と靱性を得ていた。ところが、このよ
うな特性改善のための熱処理が何回もかさなると、素材
表面には、Cと雰囲気ガスとの反応によって、脱炭層と
呼ばれる“低C濃度領域”が発生することが知られてい
る。この脱炭層は、転がり軸受の硬さ低下のみならず転
動疲労寿命劣化の原因となることから、切削または研削
加工により除去するのが普通であった。そのために材料
歩留り、さらには生産性の低下を余儀なくされていたの
である。これに対して従来、上記脱炭層の生成を防止す
る手段として、熱処理時における炉内の雰囲気ガス中の
カーボンポテンシャルをコントロールする方法や、特開
平2−54717 号公報に開示されている, 球状化焼なまし
の初期段階に浸炭処理を施す方法などが提案されてい
る。しかし、上記の各方法はいずれも、熱処理あるいは
その前処理時の雰囲気清浄によるものであることから、
熱処理コストが嵩むのみならず、材料の組成や熱処理時
間等に応じた適切なガス組成の設定といった煩雑な操作
を必要とするところに問題があった。
Another move to improve the characteristics of the above-mentioned high carbon bearing steel (JIS-SUJ 2) is a study to suppress the formation of a decarburized layer during heat treatment. Generally, the above JI
Since the bearing steel specified in S-SUJ 2 contains 0.95 to 1.10 wt% of C, it is very hard. Therefore, the spheroidizing annealing is performed to improve the workability and then the forming process. Then, by quenching and tempering treatment thereafter, the strength and toughness required for the rolling bearing were obtained. However, it is known that when the heat treatment for improving the characteristics is repeated many times, a "low C concentration region" called a decarburized layer is generated on the surface of the material due to the reaction between C and the atmosphere gas. There is. This decarburized layer not only lowers the hardness of the rolling bearing but also causes the deterioration of rolling contact fatigue life, and therefore it is usually removed by cutting or grinding. For this reason, the material yield and the productivity have been unavoidably reduced. On the other hand, heretofore, as a means for preventing the formation of the decarburized layer, a method of controlling the carbon potential in the atmosphere gas in the furnace during the heat treatment and the spheroidizing method disclosed in JP-A-2-54717 have been disclosed. A method of carburizing at the initial stage of annealing has been proposed. However, in each of the above methods, since the atmosphere cleaning at the time of heat treatment or its pretreatment,
There is a problem in that not only the heat treatment cost increases, but also a complicated operation such as setting an appropriate gas composition according to the composition of the material and the heat treatment time is required.

【0004】[0004]

【発明が解決しようとする課題】上述した従来技術につ
いて発明者らは最近、種々の研究を行った。その結果、
意外にも軸受転動寿命を決めている要因には、従来から
一般に論じられてきた上述した現象;すなわち、上述し
た“非金属介在物”の存在や熱処理時に生じる“脱炭
層”(低C濃度領域)の生成以外の要因もあるというこ
とを突き止めた。というのは、従来技術の下で単に非金
属介在物や脱炭層を減少させても、軸受の転動疲労寿
命、特に、高負荷あるいは高温といった過酷な条件下で
の軸受寿命の向上に対しては大きな効果が得られないと
いうケースを多く経験したからである。このことから、
発明者らは、軸受寿命を左右する要因として、非金属
介在物の存在, 脱炭層の生成の他に、さらに高負荷
転動時の転動接触面下に生成するミクロ組織変化の3つ
があることを知見したのである。
DISCLOSURE OF THE INVENTION The inventors have recently conducted various studies on the above-mentioned conventional technique. as a result,
Unexpectedly, the factors that determine the rolling life of bearings are the above-mentioned phenomena that have been generally discussed in the past; namely, the presence of the above-mentioned "non-metallic inclusions" and the "decarburization layer" (low C concentration) that occurs during heat treatment. We have found that there are other factors besides the generation of (region). This is because even if the non-metallic inclusions and decarburized layer are simply reduced under the conventional technology, it is possible to improve the rolling contact fatigue life of the bearing, especially the improvement of the bearing life under severe conditions such as high load or high temperature. Because I experienced many cases where I could not get a big effect. From this,
The inventors of the present invention have three factors that influence the bearing life: the presence of non-metallic inclusions, the formation of a decarburized layer, and the microstructural change that occurs under the rolling contact surface during high load rolling. I found out that.

【0005】そこで、発明者らは、最近の軸受使用環境
を考慮した上での軸受寿命、とくに転がり軸受の剥離の
発生原因について、さらに調査を行った。その結果、軸
受使用環境の激化に伴って、軸受の内・外輪と転動体と
転動体との接触転動時に発生する剪断応力により、転動
接触面の下層部分(表層部)に、図1(a) の写真に示す
ような、帯状の白色生成物と棒状の析出物からなるミク
ロ組織変化層が発生することが判った。そして、このミ
クロ組織変化層は転動回数を増すにつれて次第に成長
し、終いにはこのミクロ組織変化部から、図1(b)の写真
に示すような疲労剥離が生じて軸受寿命につながること
がわかったのである。さらに、軸受使用環境の過酷化す
なわち, 高面圧化(小型化), 使用温度の上昇は、これ
らミクロ組織変化が発生するまでの時間を縮め、著しい
軸受寿命の低下を招くことになるということを突き止め
た。すなわち、使用環境の過酷化に伴う軸受寿命を向上
させるには、単に非金属介在物の制御や脱炭層の抑制だ
けでは不十分であり、さらに、上述した転動接触面下で
発生するミクロ組織変化が発生するまでの時間を遅延さ
せることが必要であるということを知見したのである。
Therefore, the present inventors have further investigated the bearing life in consideration of the recent bearing usage environment, in particular, the cause of separation of rolling bearings. As a result, due to the shearing stress generated at the time of contact rolling between the inner and outer races of the bearing, the rolling elements, and the rolling elements due to the intensifying environment in which the bearings are used, the lower layer portion (surface layer portion) of the rolling contact surface has As shown in the photograph of (a), it was found that a microstructure change layer composed of a white strip-shaped product and a rod-shaped precipitate was generated. The microstructure change layer gradually grows as the number of rolling increases, and finally the microstructure change part causes fatigue delamination as shown in the photograph of Fig. 1 (b), which leads to the bearing life. Was understood. In addition, the harsh bearing operating environment, that is, higher surface pressure (miniaturization) and higher operating temperature, will shorten the time until these microstructural changes occur, resulting in a marked reduction in bearing life. I found out. That is, in order to improve the bearing life due to the harsh operating environment, it is not enough to simply control the non-metallic inclusions or suppress the decarburization layer, and further, the microstructure generated under the rolling contact surface described above. We have found that it is necessary to delay the time until changes occur.

【0006】そこで、本発明の目的は、非金属介在物粒
径の制御を通じて総体的な転動疲労寿命の向上を図るこ
とにあわせ、特に過酷な使用条件の下での軸受使用中に
発生が予想されるミクロ組織変化を遅延させることによ
り、この面における軸受寿命を改善し、さらに、熱処理
時の脱炭層の形成をも抑えて熱処理生産性( 加工除去量
を減少させることによる効果)の向上をも図り、もって
高寿命の軸受鋼を得ようとすることにある。
Therefore, the object of the present invention is to improve the overall rolling contact fatigue life by controlling the particle size of non-metallic inclusions, and in addition, the occurrence of the problem occurs during the use of the bearing under particularly severe operating conditions. By delaying the expected microstructural changes, the bearing life on this side is improved, and the formation of a decarburized layer during heat treatment is also suppressed to improve heat treatment productivity (the effect of reducing the amount of machining removal). The aim is to obtain long-life bearing steel.

【0007】[0007]

【課題を解決するための手段】さて、発明者らは、上述
した知見に基づき軸受寿命として、新たに“ミクロ組織
変化遅延特性”というものにも着目した。そして、この
特性の向上を図るには、当然そのための合金設計(成分
組成)が必要であり、このことの実現なくして軸受のよ
り一層の寿命向上は図れないという認識に立ち、さら
に、脱炭層の形成を抑制することを併せ達成する種々の
実験と検討とを行った。その結果、意外にも、Mnおよび
Sbを適正量複合添加すれば、繰り返し応力負荷による転
動接触面下に生成する上述したミクロ組織変化を著しく
遅延できると同時に、熱処理時の脱炭層の発生抑制もで
き、これに非金属介在物の最大粒径の制御も併せて行え
ば、望ましい軸受鋼を得ることができることを見い出
し、本発明に想到した。
Based on the above-mentioned findings, the present inventors have also noticed a new "microstructure change delay characteristic" as the bearing life. In order to improve these characteristics, it is of course necessary to design an alloy (component composition) for that purpose, and it is recognized that the life of the bearing cannot be further improved without realizing this. Various experiments and investigations were performed to achieve the suppression of the formation of the. As a result, surprisingly, Mn and
By adding an appropriate amount of Sb in combination, it is possible to significantly delay the above-mentioned microstructural change generated under the rolling contact surface due to repeated stress loading, and at the same time suppress the generation of a decarburized layer during heat treatment. It was found that the desired bearing steel can be obtained by controlling the maximum grain size of the above, and the present invention was conceived.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C: 0.5〜1.5 wt%, Mn:2.0 超〜5.0 wt%,S
b:0.001 〜0.015wt %を含有し、残部がFeおよび不可
避的不純物からなり、酸化物系非金属介在物の最大粒径
が8μm 以下である、繰り返し応力負荷によるミクロ組
織変化の遅延特性と熱処理生産性とに優れた軸受鋼(第
1発明鋼)。 (2) C: 0.5〜1.5 wt%, Mn:2.0 超〜5.0 wt%,S
b: 0.001〜0.015 wt%を含有し、さらにSi:0.05〜0.5
wt%, Cr:0.05〜2.5 wt%,Ni:0.05〜1.0 wt%,
Mo:0.05〜0.5 wt%,Cu:0.05〜1.0 wt%, B:0.000
5〜0.01wt%,Al:0.005 〜0.07wt%, 及びN:0.0005〜
0.012 wt%のうちから選ばれるいずれか1種または2種
以上を含み、残部がFeおよび不可避的不純物からなり、
酸化物系非金属介在物の最大粒径が8μm 以下である、
繰り返し応力負荷によるミクロ組織変化の遅延特性と熱
処理生産性とに優れた軸受鋼(第2発明鋼)。 (3) C: 0.5〜1.5 wt%, Mn:2.0 超〜5.0 wt%,S
b:0.001 〜0.015 wt%を含有し、Si:0.5 超〜2.5 wt
%, Cr:2.5 超〜8.0 wt%,Ni:1.0 超〜3.0 wt%,
Mo:0.5 超〜2.0 wt%,N:0.012 超〜0.050 wt%,
V:0.05〜1.0 wt%,Nb:0.05〜1.0 wt%, W:0.0
5〜1.0 wt%,Zr:0.02〜0.5 wt%, Ta:0.02〜0.5
wt%,Hf:0.02〜0.5 wt%およびCo:0.05〜1.5 wt%の
うちから選ばれるいずれか1種または2種以上を含み、
残部がFeおよび不可避的不純物からなり、酸化物系非金
属介在物の最大粒径が8μm 以下である、繰り返し応力
負荷によるミクロ組織変化の遅延特性と熱処理生産性と
に優れた軸受鋼(第3発明鋼)。 (4) C: 0.5〜1.5 wt%, Mn:2.0 超〜5.0 wt%,S
b:0.001 〜0.015 wt%を含有し、さらにSi:0.05〜0.5
wt%, Cr:0.05〜2.5 wt%,Ni:0.05〜1.0 wt%,
Mo:0.05〜0.5 wt%,Cu:0.05〜1.0 wt%, B:0.000
5〜0.01wt%,Al:0.005 〜0.07wt%, 及びN:0.0005〜
0.012 wt%のうちから選ばれるいずれか1種または2種
以上を含み、さらにまた、Si:0.5 超〜2.5 wt%, Cr:
2.5 超〜8.0 wt%,Ni:1.0 超〜3.0 wt%, Mo:0.5 超
〜2.0 wt%,N:0.012 超〜0.050 wt%, V:0.05〜1.0
wt%,Nb:0.05〜1.0 wt%, W:0.05〜1.0 wt%,Z
r:0.02〜0.5 wt%, Ta:0.02〜0.5 wt%,Hf:0.02
〜0.5 wt%およびCo:0.05〜1.5 wt%のうちから選ばれ
るいずれか1種または2種以上を含み、残部がFeおよび
不可避的不純物からなり、酸化物系非金属介在物の最大
粒径が8μm 以下である、繰り返し応力負荷によるミク
ロ組織変化の遅延特性と熱処理生産性とに優れた軸受鋼
(第4発明鋼)。
That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Mn: over 2.0 to 5.0 wt%, S
b: 0.001 to 0.015 wt%, the balance consisting of Fe and unavoidable impurities, and the maximum grain size of oxide-based nonmetallic inclusions is 8 μm or less. Bearing steel with excellent productivity (first invention steel). (2) C: 0.5 to 1.5 wt%, Mn: over 2.0 to 5.0 wt%, S
b: 0.001 to 0.015 wt%, Si: 0.05 to 0.5
wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt%,
Mo: 0.05 to 0.5 wt%, Cu: 0.05 to 1.0 wt%, B: 0.000
5 to 0.01wt%, Al: 0.005 to 0.07wt%, and N: 0.0005 to
0.012 wt% selected from the group consisting of one or more kinds, the balance being Fe and inevitable impurities,
The maximum particle size of oxide-based non-metallic inclusions is 8 μm or less,
A bearing steel (second invention steel) which is excellent in delay characteristics of microstructure change due to repeated stress loading and heat treatment productivity. (3) C: 0.5 to 1.5 wt%, Mn: over 2.0 to 5.0 wt%, S
b: 0.001 to 0.015 wt%, Si: more than 0.5 to 2.5 wt
%, Cr: over 2.5 ~ 8.0 wt%, Ni: over 1.0 ~ 3.0 wt%,
Mo: over 0.5 to 2.0 wt%, N: over 0.012 to 0.050 wt%,
V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W: 0.0
5 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5
wt%, Hf: 0.02 to 0.5 wt%, Co: 0.05 to 1.5 wt%, and any one or more selected from
The balance is Fe and unavoidable impurities, and the maximum grain size of oxide-based non-metallic inclusions is 8 μm or less, which is excellent in retardation property of microstructure change due to repeated stress load and heat treatment productivity (3rd Invention steel). (4) C: 0.5 to 1.5 wt%, Mn: over 2.0 to 5.0 wt%, S
b: 0.001 to 0.015 wt%, Si: 0.05 to 0.5
wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt%,
Mo: 0.05 to 0.5 wt%, Cu: 0.05 to 1.0 wt%, B: 0.000
5 to 0.01wt%, Al: 0.005 to 0.07wt%, and N: 0.0005 to
It contains one or more selected from 0.012 wt%, and further, Si: more than 0.5 to 2.5 wt%, Cr:
2.5 to 8.0 wt%, Ni: 1.0 to 3.0 wt%, Mo: 0.5 to 2.0 wt%, N: 0.012 to 0.050 wt%, V: 0.05 to 1.0
wt%, Nb: 0.05 to 1.0 wt%, W: 0.05 to 1.0 wt%, Z
r: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02
~ 0.5 wt% and Co: 0.05-1.5 wt%, and one or more selected from the rest, Fe and unavoidable impurities as the balance, and the maximum particle size of the oxide-based non-metallic inclusions. A bearing steel (4th invention steel) having a delay property of microstructure change due to repeated stress loading of 8 μm or less and excellent heat treatment productivity.

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, N:0.0040wt%, O:0.0012wt%)
と、 SUJ 2 ( C:1.01wt%, Si:0.24wt%, Mn:0.46wt
%, Cr:1.32wt%, N:0.0042wt%, O:0.0015wt%)
と、MnとSbとを添加した2種の材料 (C:1.01wt%, Si:0.21wt%, Mn:2.04wt%, C
r:1.32wt%, Sb:0.0040wt%, N:0.0040wt%) (C:1.02wt%, Si:0.23wt%, Mn:2.05wt%, C
r:1.33wt%, Sb:0.0038wt%, N:0.0042wt%) (C:0.98wt%, Si:0.25wt%, Mn:4.28wt%, C
r:1.32wt%, Sb:0.0078wt%, N:0.0038wt%, O:
0.0009wt%) (C:1.00wt%, Si:0.24wt%, Mn:4.29wt%, C
r:1.33wt%, Sb:0.0080wt%, N:0.0041wt%, O:
0.0012wt%) についての供試鋼材を作製した。次いで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から15mmφ×22mmの
円筒型の試験片と、12mmφ×22mmの転動疲労試験用試験
片とを作製した。
The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35 wt%, N: 0.0040 wt%, O: 0.0012 wt%)
And SUJ 2 (C: 1.01wt%, Si: 0.24wt%, Mn: 0.46wt
%, Cr: 1.32wt%, N: 0.0042wt%, O: 0.0015wt%)
And two materials containing Mn and Sb (C: 1.01 wt%, Si: 0.21 wt%, Mn: 2.04 wt%, C
r: 1.32wt%, Sb: 0.0040wt%, N: 0.0040wt%) (C: 1.02wt%, Si: 0.23wt%, Mn: 2.05wt%, C
r: 1.33wt%, Sb: 0.0038wt%, N: 0.0042wt%) (C: 0.98wt%, Si: 0.25wt%, Mn: 4.28wt%, C
r: 1.32wt%, Sb: 0.0078wt%, N: 0.0038wt%, O:
0.0009wt%) (C: 1.00wt%, Si: 0.24wt%, Mn: 4.29wt%, C
r: 1.33wt%, Sb: 0.0080wt%, N: 0.0041wt%, O:
0.0012wt%) of the sample steel was prepared. Then, normalizing these test materials, spheroidizing normalizing, after performing each treatment of quenching and tempering, from each test material 15 mm φ × 22 mm cylindrical test piece, 12 mm φ × 22 mm A test piece for rolling fatigue test was prepared.

【0010】なお、転動疲労寿命試験は、上記転動疲労
用試験片をラジアルタイプ型の転動疲労寿命試験機を用
い、ヘルツ最大接触応力:600kgf/mm2, 繰返し応力数 4
6500cpmの負荷条件の下で試験したものである。試験の
結果は、ワイブル分布確立紙上にプロットし, 非金属介
在物の制御によって影響される材料強度の上昇による転
動疲労寿命の向上を示す数値と見られるB10(10%累積
破損確率) と高負荷転動時の繰り返し応力負荷によるミ
クロ組織変化発生を遅延させることによる転動疲労寿命
の向上を示す数値と見られるB50(50%累積破損確率)
とを求めた。また、脱炭層の試験については、上記の円
筒状試験片を10mmの位置で高さ方向に垂直に切断後、ナ
イタールにて腐食し、ミクロ組織変化による円周上の全
脱炭層の最大値( 以後、「最大脱炭層」という)で評価
した。
In the rolling fatigue life test, the above-mentioned rolling fatigue test piece was used with a radial type rolling fatigue life tester, and Hertz maximum contact stress: 600 kgf / mm 2 , cyclic stress number 4
It was tested under a load condition of 6500 cpm. The results of the test are plotted on Weibull distribution establishment paper and are considered to be the numerical values showing the improvement of rolling fatigue life due to the increase of material strength affected by the control of non-metallic inclusions, and B 10 (10% cumulative failure probability) and B 50 (50% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructure change due to repeated stress loading during high load rolling
And asked. Further, for the test of the decarburized layer, after cutting the above cylindrical test piece vertically in the height direction at a position of 10 mm, it is corroded by Nital and the maximum value of the total decarburized layer on the circumference due to the microstructure change ( Hereinafter, it was evaluated by "the maximum decarburized layer".

【0011】その結果を表1に示す。この表1に示す結
果から判るように、介在物制御をすることなく、単に多
量のMnとSbとを複合添加しただけのものについては、前
記B10値についての改善は小さく、一方、B50値につい
てはかなり高い数値を示して改善されていることが判
る。例えば、軸受寿命はSUJ 2 に比べてB10値で約4
倍、B50値で約21倍もの改善を示していた。これに対し
て、多量のMnとSbとを複合添加し、かつ非金属介在物の
最大粒径を制御したものでは、高負荷転動中に生成する
ミクロ組織変化の遅延特性に対しても顕著な効果を示
し、その分破損(寿命)を遅延させることが期待できる
他、非金属介在物を原因とする剥離に対しても改善効果
が認められた。また、最大脱炭層に関しては、SUJ 2が
0.10mmであったが、Sb:約0.004 wt%含むものでは0.02
mm、Sb:約0.008 wt%含むものでは0.01mmと、適当なSb
の含有が脱炭層の発生抑制に効果のあることも判った。
The results are shown in Table 1. As can be seen from the results shown in Table 1, in the case of simply adding a large amount of Mn and Sb without controlling inclusions, the improvement in the B 10 value was small, while the B 50 was 50. It can be seen that the value is considerably high and is improved. For example, the bearing life is about 4 at B 10 value compared to SUJ 2.
And the B 50 value showed an improvement of about 21 times. On the other hand, in the case of adding a large amount of Mn and Sb in combination, and controlling the maximum grain size of non-metallic inclusions, it is remarkable for the delay property of microstructure change generated during high load rolling. It was expected that the damage (life) would be delayed by that amount, and that the improvement effect was also observed for the peeling caused by non-metallic inclusions. Regarding the maximum decarburized layer, SUJ 2
0.10 mm, but 0.02 with Sb: 0.004 wt%
mm, Sb: 0.01 mm when containing about 0.008 wt%, suitable Sb
It has also been found that the inclusion of is effective in suppressing the generation of the decarburized layer.

【0012】[0012]

【表1】 [Table 1]

【0013】また、図2は、上記軸受転動疲労寿命の実
験結果をまとめたものであって、非金属介在物に起因す
る軸受寿命とミクロ組織変化に起因する寿命の変化との
関係を示す模式図である。この図に明らかなように、累
積破損確率10%のB10値で示される軸受寿命(以下、こ
れを「B10転動疲労寿命」という)は、単にMnを多量に
添加しただけではあまり向上しないが、非金属介在物制
御をも併せて行った場合に顕著な効果を示している。一
方、累積破損確率50%のB50値で示される軸受寿命 (以
下、これを「B50高負荷転動疲労寿命」という)につい
てみると、このMn多量添加の効果は非金属介在物制御と
は関係なく、極めて顕著なものとなっている。そこで発
明者らは、こうした知見をもとに、累積破損確率10%お
よび50%のB10値およびB50値で示される軸受寿命を向
上させ、かつ熱処理時の脱炭層の成長の抑制を図るに
は、どのような合金設計が有効であるかという観点か
ら、以下に説明するような成分組成の範囲を決定した。
FIG. 2 is a summary of the results of the above-mentioned bearing rolling fatigue life, showing the relationship between the bearing life due to non-metallic inclusions and the life change due to microstructural changes. It is a schematic diagram. As is clear from this figure, the bearing life indicated by the B 10 value with a cumulative failure probability of 10% (hereinafter referred to as “B 10 rolling contact fatigue life”) is much improved by simply adding a large amount of Mn. However, when the non-metallic inclusion control is also performed, a remarkable effect is shown. On the other hand, looking at the bearing life indicated by the B 50 value with a cumulative failure probability of 50% (hereinafter referred to as “B 50 high load rolling contact fatigue life”), the effect of adding a large amount of Mn is that non-metallic inclusion control Is irrelevant and has become extremely prominent. Therefore, based on these findings, the present inventors improve the bearing life indicated by the B 10 value and the B 50 value of the cumulative damage probability of 10% and 50%, and suppress the growth of the decarburized layer during heat treatment. In view of what kind of alloy design is effective, the range of component composition as described below was determined.

【0014】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では被削性, 鍛造性が低下するの
で、 0.5〜1.5 wt%の範囲に限定した。
C: 0.5 to 1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts on the strengthening of martensite, and in order to secure the strength after quenching and tempering and thereby improve the rolling fatigue life. Contained in. If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, the machinability and forgeability deteriorate, so the range was limited to 0.5 to 1.5 wt%.

【0015】Si:0.05〜0.5 wt%, 0.5 超〜2.5 wt%以
下 Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ, 焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5 wt%の範囲とする。さらに、このSi
は、0.5 %wt%超を添加すると、繰り返し応力負荷の下
でのミクロ組織変化の遅延をもたらして転動疲労寿命を
向上させる効果がある。しかし、その含有量が 2.5wt%
を超えると、その効果が飽和する一方で加工性や靱性を
低下させるので、ミクロ組織変化遅延特性のより一層の
向上のためには、 0.5超〜2.5 wt%を添加することが有
効である。
Si: 0.05 to 0.5 wt%, more than 0.5 to 2.5 wt% or less Si is used as a deoxidizer during the melting of steel, and is also solid-dissolved in the matrix to increase the resistance to tempering and quenching, It is effective as an element that increases the strength after tempering and improves the rolling fatigue life. The content of Si added for this purpose is in the range of 0.05 to 0.5 wt%. Furthermore, this Si
Has the effect of delaying the microstructural change under cyclic stress loading and improving the rolling fatigue life by adding more than 0.5% by weight. However, its content is 2.5 wt%
If it exceeds 0.1%, the effect is saturated while the workability and toughness are lowered. Therefore, in order to further improve the microstructure change retardation property, it is effective to add more than 0.5 to 2.5 wt%.

【0016】Mn: 2.0超〜5.0 wt% Mnは、本発明においてSbとともに重要な役割を担ってい
る元素であり、とくに2.0 wt%を超えて多量の添加する
ことにより、高負荷転動時の繰返し応力の負荷の下で、
上述したミクロ組織変化の遅延を促して、B50転動疲労
寿命を顕著に改善する。しかし、その量が5.0 wt%を超
えるようなあまりに多量の添加では、残留γが多量に発
生して強度ならびに寸法安定性が低下するため、この目
的のためには、2.0 超〜5.0 wt%の範囲で添加する。
Mn: more than 2.0 to 5.0 wt% Mn is an element that plays an important role together with Sb in the present invention. Particularly, by adding a large amount exceeding 2.0 wt%, Mn can be Under cyclic stress loading,
It accelerates the delay of the microstructure change described above, and significantly improves the B 50 rolling contact fatigue life. However, if the amount added exceeds 5.0 wt%, a large amount of residual γ is generated and the strength and dimensional stability are reduced. Add in range.

【0017】Cr:0.05〜2.5 wt%, 2.5 超〜8.0 wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては転動
疲労寿命を向上させる成分である。この効果を得るため
には、0.05〜2.5 wt%の添加で十分である。さらに、こ
のCrは、 2.5wt%を超えて多量に添加した場合には、繰
返し応力負荷によるミクロ組織変化を遅延せしめて、こ
の面での転動疲労寿命を向上させるのに有効である。そ
して、この目的のためのCr添加の効果は、 8.0wt%を超
えると飽和するのみならず、却って焼入れ時の固溶C量
の低下を招いて強度が低下する。従って、この目的のた
めに添加するときは、 2.5超〜8.0 wt%としなければな
らない。
Cr: 0.05 to 2.5 wt%, more than 2.5 to 8.0 wt% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and eventually improves rolling contact fatigue life. To obtain this effect, addition of 0.05 to 2.5 wt% is sufficient. Furthermore, when Cr is added in a large amount exceeding 2.5 wt%, it is effective in delaying the microstructure change due to repeated stress loading and improving the rolling fatigue life in this aspect. The effect of Cr addition for this purpose is not only saturated when it exceeds 8.0 wt%, but rather causes a decrease in the amount of solid solution C during quenching, resulting in a decrease in strength. Therefore, when it is added for this purpose, it must be more than 2.5 to 8.0 wt%.

【0018】Ni:0.05〜1.0 wt%, 1.0 超〜3.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、転動疲労寿命を向上さ
せるので、この目的のためには0.05〜1.0 wt%の範囲内
で添加する。さらに、このNiは、 1.0wt%を超えて添加
した場合には、転動時のミクロ組織変化を遅らせ、それ
により転動疲労寿命を向上させる。しかし、この場合で
も3wt%を超えて添加すると、多量の残留γを析出して
強度の低下ならびに寸法安定性を害することになる他、
コストアップになるため、この作用効果を期待する場合
には、1.0 超〜3.0 wt%の範囲内で添加することが必要
である。
Ni: 0.05 to 1.0 wt%, more than 1.0 to 3.0 wt% Ni increases the hardenability to increase the strength after quenching and tempering, improve toughness, and improve rolling contact fatigue life. Is added in the range of 0.05 to 1.0 wt%. Further, this Ni, when added in excess of 1.0 wt%, delays the microstructure change during rolling, thereby improving rolling fatigue life. However, even in this case, if it is added in excess of 3 wt%, a large amount of residual γ will be deposited, resulting in a decrease in strength and a loss of dimensional stability.
If this effect is expected, it is necessary to add it in the range of more than 1.0 to 3.0 wt% because it increases the cost.

【0019】Mo:0.05〜0.5 wt%, 0.5 超〜2.0 wt% Moは、残留炭化物の安定化により耐摩耗性を向上させる
元素である。とくに0.05〜0.5 wt%を添加すると、焼入
れ性を増大して焼入れ焼もどし後の強度向上に寄与する
と共に、安定炭化物の析出により、耐摩耗性と転動疲労
寿命とを向上させる。さらにこのMoは、0.5 wt%超とい
う多量を添加すると、転動時のミクロ組織変化を遅らせ
る効果が著しくなり、この面での転動疲労寿命を向上さ
せる。しかし、その量が 1.5wt%を超えると、切削性,
鍛造性を低下させ、コストアップの因ともなるため、こ
の目的のためには 0.5超〜2.0 wt%の範囲内で添加する
ことが必要である。
Mo: 0.05-0.5 wt%, more than 0.5-2.0 wt% Mo is an element that improves wear resistance by stabilizing residual carbides. In particular, the addition of 0.05 to 0.5 wt% increases the hardenability and contributes to the improvement of the strength after quenching and tempering, and the precipitation of stable carbide improves the wear resistance and rolling fatigue life. Furthermore, when Mo is added in a large amount of more than 0.5 wt%, the effect of delaying the microstructure change during rolling becomes remarkable, and the rolling fatigue life in this aspect is improved. However, if the amount exceeds 1.5 wt%, machinability,
Forgeability is deteriorated and it causes a cost increase. Therefore, for this purpose, it is necessary to add it in the range of more than 0.5 to 2.0 wt%.

【0020】Cu:0.05〜1.0 wt% Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、この面から転動疲労寿命を向上させる元素である。
この作用は、0.05以上で顕れ、1.0 wt%で飽和する。
Cu: 0.05 to 1.0 wt% Cu is an element that enhances the strength after quenching and tempering by increasing quenching, and from this aspect improves rolling fatigue life.
This effect appears at 0.05 or more and becomes saturated at 1.0 wt%.

【0021】Sb:0.001 〜0.015 wt% このSbは、この発明においてAlとともに重要な役割を担
っている元素である。とくに、このSbは、熱処理時にお
いて、鋼材表層部のCと雰囲気ガスとの反応を抑制して
脱炭層の発生を阻止することによって、熱処理生産性向
上に寄与する。しかも、Alとの複合添加により、該脱炭
層の抑制にあわせてミクロ組織変化の遅延に対しても効
果を示すことから、積極的に添加する。このような2つ
の作用は、このSb含有量が0.001 wt%以上で顕著なもの
となるが、0.015 wt%を超えて添加してもその効果は飽
和することに加え、却って熱間加工性および靱性の劣化
を招くようになる。従って、Sbは 0.001〜0.015 wt%の
範囲で含有させることとした。
Sb: 0.001 to 0.015 wt% This Sb is an element that plays an important role together with Al in the present invention. In particular, this Sb contributes to the improvement of the heat treatment productivity by suppressing the reaction between C in the surface layer portion of the steel material and the atmospheric gas during the heat treatment to prevent the generation of the decarburized layer. Moreover, since the combined addition with Al has an effect on the retardation of the microstructure change as well as the suppression of the decarburized layer, it is positively added. These two effects become remarkable when the Sb content is 0.001 wt% or more, but even if the Sb content exceeds 0.015 wt%, the effect saturates, and conversely, hot workability and It causes deterioration of toughness. Therefore, Sb was included in the range of 0.001 to 0.015 wt%.

【0022】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability to increase the strength after quenching and tempering and improves the rolling fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.

【0023】Al:0.005 〜0.07 wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靱性向上に寄
与する。また、焼入れ焼きもどし後の強度を高めること
による転動疲労性の向上にも有効に作用する。このよう
な作用のためにAlは、0.005 〜0.07 wt%添加すること
が有効である。
Al: 0.005 to 0.07 wt% Al is used as a deoxidizer during the melting of steel, and at the same time,
Combines with N in the steel to refine the crystal grains and contribute to the improvement of the toughness of the steel. Further, it also effectively acts to improve rolling fatigue by increasing the strength after quenching and tempering. Due to such an effect, it is effective to add 0.005 to 0.07 wt% of Al.

【0024】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力によ
るミクロ組織変化を遅らせることにより転動疲労寿命を
向上させる。ただし、その量が0.05wt%を超えると、加
工性が低下するため、この目的のためには0.012 超〜0.
05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains and to form a solid solution in the matrix to enhance the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
Add within 0.012 wt%. Also, this N is 0.
When added in excess of 012 wt%, rolling fatigue life is improved by delaying microstructural change due to repeated stress. However, if the amount exceeds 0.05 wt%, the workability decreases, so for this purpose it exceeds 0.012 to 0.
Add 05wt%.

【0025】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desirable because it lowers the toughness and rolling fatigue life of the steel, so it is desirable to be as low as possible.
It is 0.025 wt%.

【0026】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves the machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.

【0027】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善する成
分、強度の上昇を通じて転動疲労寿命を改善するための
成分、および脱炭層の生成を抑えて軸受の加工性と生産
性を向上させるための成分限定の理由について説明し
た。ところで、本発明ではさらに、V, Nb, W, Zr, T
a, HfおよびCoのうちから選ばれるいずれか1種または
2種以上を添加して軸受寿命をさらに改善するようにし
てもよい。上記各元素の好適添加範囲と添加の目的、上
限値、下限値限定の理由につき、表2にまとめて示す。
As described above, the component for improving the rolling fatigue life by delaying the microstructural change due to the repeated stress load, the component for improving the rolling fatigue life by increasing the strength, and the decarburized layer formation are suppressed. The reason for limiting the components for improving the processability and productivity of was explained. By the way, in the present invention, further, V, Nb, W, Zr, T
The bearing life may be further improved by adding one or more selected from a, Hf and Co. Table 2 shows the preferable addition range of each of the above elements, the purpose of addition, and the reasons for limiting the upper limit value and the lower limit value.

【0028】[0028]

【表2】 [Table 2]

【0029】なお、本発明においては、被削性を改善す
るために、S,Se, Te, REM, Pb,Bi, Ca, Ti, Mg, P,
Sn, As等を添加しても、上述した本発明の目的である繰
り返し応力負荷によるミクロ組織変化による遅延特性を
阻害することはなく、容易に被削性を改善することがで
きるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P,
The addition of Sn, As, etc. does not hinder the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention, and the machinability can be easily improved. You may add according to it.

【0030】[0030]

【実施例】表3, 4に示す化学組成を有する鋼材を転炉
で溶製したのち連続鋳造し、得られた鋼材を1240℃で30
h の拡散焼鈍の後に65mmφの棒鋼に圧延した。次いで、
切削加工により棒鋼D/4部から15mmφ×20mmの円筒状
試験片ならびに転動疲労用試験片を採取した。その後、
これらの試験片について、雰囲気制御なしに( 大気雰囲
気中で) 、焼ならし・球状化焼なまし・焼入れ・焼もど
しの順で試験を行った。さらに、転動疲労用試験片は、
脱炭層を完全に除去する目的で1mm以上の研磨およびラ
ッピング仕上を行い、試験片寸法を12mmφ×22mmとし
た。熱処理後の脱炭層深さは、15mmφ×20mmの円筒状試
験片を10mmの位置で高さ方向と垂直に切断し、ナイター
ルにて腐食後、ミクロ組織観察による円周上の全脱炭層
の最大値 (以下、「最大脱炭層」と称する) で評価し
た。転動疲労寿命試験は、ラジアルタイプの転動疲労寿
命試験機によりヘルツ最大接触応力:600 kgf/mm2 , 繰
り返し応力数:約46500 cpm の条件で行ったものであ
る。試験結果は、ワイブル分布に従うものとして確率紙
上にまとめ、鋼材No.1の平均寿命 (累積破損確率:10%
および50%における、剥離発生までの総負荷回数) をそ
れぞれ1として評価した。その評価結果を、表3, 4,
5にあわせて示す。
[Examples] Steels having the chemical compositions shown in Tables 3 and 4 were melted in a converter and then continuously cast.
After diffusion annealing of h, it was rolled into a steel bar of 65 mmφ. Then
A cylindrical test piece of 15 mmφ × 20 mm and a test piece for rolling fatigue were sampled from the D / 4 part of the steel bar by cutting. afterwards,
These test pieces were tested in the order of normalizing, spheroidizing annealing, quenching, and tempering without controlling the atmosphere (in the air atmosphere). Furthermore, the test piece for rolling fatigue is
For the purpose of completely removing the decarburized layer, polishing and lapping of 1 mm or more were performed, and the size of the test piece was 12 mmφ × 22 mm. The depth of the decarburized layer after heat treatment is the maximum of the total decarburized layer on the circumference measured by microstructure observation after cutting a 15 mmφ × 20 mm cylindrical test piece at a position of 10 mm perpendicular to the height direction and corroding with Nital. The value (hereinafter referred to as "maximum decarburized layer") was evaluated. The rolling fatigue life test was performed by a radial type rolling fatigue life tester under the conditions of Hertz maximum contact stress: 600 kgf / mm 2 and cyclic stress number: about 46500 cpm. The test results are summarized on the probability paper as if they follow the Weibull distribution, and the average life of steel No. 1 (cumulative damage probability: 10%
The total number of loads before peeling occurred at 50% and 50%) was evaluated as 1. The evaluation results are shown in Table 3, 4,
Shown in accordance with 5.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】表3, 4,5に示す結果から明らかなよう
に、鋼中C量が本発明範囲外である鋼材No.5, 鋼中Mn量
が本発明鋼の範囲外である鋼材No.6は、軸受平均寿命の
10値, B50値とも、従来鋼(鋼材No.1)と同じか少し
悪い値となっている。一方、鋼中Sb量が本発明鋼範囲外
である鋼材No.4のB50転動疲労寿命は、従来鋼 (鋼材N
o.1) の約4倍も優れているものの、最大脱炭層は0.11m
mと従来例(SUJ2) と比較してそれほど改善されていな
い。また、Sbを全く含有しない鋼材No.2も、最大脱炭層
が大きく悪い結果を示している。また、介在物最大粒径
の大きい鋼材No.2は、B10, B50寿命比がいずれも低い
値となっている。一方、第1発明鋼である鋼材No.7, 8
のB50値で示す軸受平均寿命は、従来鋼(鋼材No.1) に
比較して約3〜4倍も優れており、Mnの添加がミクロ組
織変化を著しく遅延し、その結果転動疲労寿命の向上に
有効に作用したことが窺える。しかも、最大脱炭層深さ
も0.01〜0.02mmであり、従来鋼No.1に比べてはるかに少
なく、Sbが本発明適正範囲を外れている鋼No.4と比べて
も約1/10と改善効果が顕著である。
As is clear from the results shown in Tables 3, 4 and 5, steel No. 5 having a C content in the steel outside the range of the present invention and steel No. having a Mn content in the steel outside the range of the steel of the present invention. In No. 6, both the B 10 and B 50 values of the average bearing life are the same as or slightly worse than those of the conventional steel (steel material No. 1). On the other hand, the B 50 rolling contact fatigue life of steel material No. 4 whose Sb content in the steel is outside the range of the steel of the present invention is
The maximum decarburization layer is 0.11m although it is about 4 times better than
m is not so much improved compared to the conventional example (SUJ2). In addition, the steel material No. 2 which does not contain Sb at all shows a bad result because the maximum decarburized layer is large. Steel No. 2 having a large maximum grain size of inclusions has a low B 10 and B 50 life ratio. On the other hand, steel material No. 7, 8 which is the first invention steel
The average bearing life shown by the B 50 value is about 3 to 4 times better than that of the conventional steel (steel No. 1), and the addition of Mn significantly delays the microstructural change, resulting in rolling fatigue. It can be seen that it effectively acted to improve the life. Moreover, the maximum decarburized layer depth is 0.01 to 0.02 mm, which is far less than the conventional steel No. 1 and improved to about 1/10 compared to steel No. 4 in which Sb is outside the proper range of the present invention. The effect is remarkable.

【0035】また、Mn, Sbに加えてさらにSi, Cr, Mo,
Ni, Cu, Al, BおよびNのいずれか少なくとも1種以上
を添加してなる鋼No.9〜18(第2発明鋼)は、軸受寿命
を決めるB50転動疲労寿命特性の改善に効果がある他、
最大脱炭層深さも0.02mm以下と著しく改善されているこ
とが判った。
In addition to Mn and Sb, Si, Cr, Mo,
Steel Nos. 9 to 18 (second invention steel) formed by adding at least one of Ni, Cu, Al, B and N are effective in improving the B 50 rolling contact fatigue life characteristics that determine the bearing life. Other than that,
It was also found that the maximum decarburized layer depth was significantly improved to less than 0.02 mm.

【0036】さらに、Mn, Sbに加えてSi, Cr, Mo, V,
Nb, W, Zr, Ta, Hf, CoおよびNを所定の量以上を積極
的に加えた鋼No. 19〜32の場合には、熱処理生産性の向
上にあわせ上記軸受寿命 (B50転動疲労寿命) も改善さ
れていることが確かめられた。これは、本発明で推奨す
る上記各改善成分のすべてを選択的に添加してなる鋼N
o. 33〜45の場合も同様であって、すべての軸受転動寿
命および熱処理生産性の両方を同時に改善する効果のあ
ることが判った。
Further, in addition to Mn and Sb, Si, Cr, Mo, V,
In the case of Steel Nos. 19 to 32 in which Nb, W, Zr, Ta, Hf, Co and N are positively added in a predetermined amount or more, the above-mentioned bearing life (B 50 rolling It was confirmed that the fatigue life) was also improved. This is a steel N made by selectively adding all of the above improving components recommended in the present invention.
The same applies to the cases of o. 33 to 45, and it was found that there is an effect of simultaneously improving both the rolling life and heat treatment productivity of all the bearings.

【0037】[0037]

【発明の効果】以上説明したとおり、本発明によれば、
基本的にはSbの添加と2.0 超〜5.0 wt%超の高Mnを複合
添加することにより、熱処理時の加工負荷を軽減でき
(Sbの添加効果) 、しかも、高負荷転動疲労寿命時の繰
り返し応力負荷に伴うミクロ組織変化の遅延をもたらし
(高Mn含有効果) 、所謂B50高負荷転動疲労寿命の向上
を達成して、高寿命の熱処理生産性の高い軸受用の鋼を
提供することができる。また、非金属介在物の制御を通
じて材料強度を高めることによって、この面における転
動疲労寿命の向上も図れる。さらに、従来技術の下では
不可欠とされていた、より一層の鋼中酸素量の低減ある
いは鋼中に存在する酸化物系非金属介在物の組成, 形
状, ならびにその分布状態をコントロールするために必
要となる製鋼設備の改良あるいは建設が不必要である。
なお、本発明にかかる軸受鋼の開発によって、転がり軸
受の小型化ならびに軸受使用温度のより以上の上昇が可
能となる。
As described above, according to the present invention,
Basically, the processing load during heat treatment can be reduced by adding Sb and high Mn of more than 2.0 to 5.0 wt% in combination.
(Additional effect of Sb) In addition, it causes a delay in microstructure change due to repeated stress loading during high load rolling fatigue life.
(High Mn content effect) The so-called B 50 high load rolling contact fatigue life can be improved to provide a bearing steel with a long life and high productivity in heat treatment. Further, by increasing the material strength by controlling non-metallic inclusions, it is possible to improve the rolling fatigue life in this aspect. Furthermore, it is necessary to further reduce the oxygen content in steel and control the composition, shape, and distribution state of oxide-based nonmetallic inclusions present in steel, which was indispensable under the conventional technology. It is not necessary to improve or construct steelmaking equipment.
The development of the bearing steel according to the present invention makes it possible to downsize the rolling bearing and further increase the bearing operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は、繰り返し応力負荷の下に発
生するミクロ組織変化のようすを示す金属組織の顕微鏡
写真。
1 (a) and 1 (b) are micrographs of a metal structure showing a microstructure change occurring under repeated stress loading.

【図2】非金属介在物に起因する軸受寿命とミクロ組織
変化に起因する軸受寿命とに及ぼすMn添加の影響を示す
説明図。
FIG. 2 is an explanatory view showing the effect of Mn addition on the bearing life due to non-metallic inclusions and the bearing life due to microstructural changes.

【図3】鋼種による非金属介在物最大粒径とB10転動疲
労寿命との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the maximum grain size of non-metallic inclusions and B 10 rolling contact fatigue life depending on the steel type.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 明博 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akihiro Matsuzaki, 1st Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba Address: Kawasaki Steel Corporation Technical Research Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C: 0.5〜1.5 wt%, Mn:2.0 超〜5.0
wt%,Sb:0.001 〜0.015wt %を含有し、残部がFeおよ
び不可避的不純物からなり、酸化物系非金属介在物の最
大粒径が8μm 以下である、繰り返し応力負荷によるミ
クロ組織変化の遅延特性と熱処理生産性とに優れた軸受
鋼。
1. C: 0.5-1.5 wt%, Mn: over 2.0-5.0
wt%, Sb: 0.001 to 0.015 wt%, the balance consisting of Fe and unavoidable impurities, the maximum grain size of oxide-based non-metallic inclusions is 8 μm or less, delay of microstructure change due to repeated stress loading Bearing steel with excellent properties and heat treatment productivity.
【請求項2】C: 0.5〜1.5 wt%, Mn:2.0 超〜5.0
wt%,Sb: 0.001〜0.015 wt%を含有し、さらにSi:0.0
5〜0.5 wt%, Cr:0.05〜2.5 wt%,Ni:0.05〜1.0 wt
%, Mo:0.05〜0.5 wt%,Cu:0.05〜1.0 wt%,
B:0.0005〜0.01wt%,Al:0.005 〜0.07wt%, 及び
N:0.0005〜0.012 wt%のうちから選ばれるいずれか1
種または2種以上を含み、残部がFeおよび不可避的不純
物からなり、酸化物系非金属介在物の最大粒径が8μm
以下である、繰り返し応力負荷によるミクロ組織変化の
遅延特性と熱処理生産性とに優れた軸受鋼。
2. C: 0.5 to 1.5 wt%, Mn: over 2.0 to 5.0
wt%, Sb: 0.001 to 0.015 wt%, Si: 0.0
5 to 0.5 wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt
%, Mo: 0.05 to 0.5 wt%, Cu: 0.05 to 1.0 wt%,
Any one selected from B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt%, and N: 0.0005 to 0.012 wt%
Or 2 or more, the balance consisting of Fe and unavoidable impurities, and the maximum particle size of oxide-based non-metallic inclusions is 8 μm
The following bearing steels have excellent microstructure change delay characteristics due to repeated stress loading and heat treatment productivity.
【請求項3】C: 0.5〜1.5 wt%, Mn:2.0 超〜5.0
wt%,Sb:0.001 〜0.015 wt%を含有し、Si:0.5 超〜
2.5 wt%, Cr:2.5 超〜8.0 wt%,Ni:1.0 超〜3.0 w
t%, Mo:0.5 超〜2.0 wt%,N:0.012 超〜0.050 wt
%, V:0.05〜1.0 wt%,Nb:0.05〜1.0 wt%,
W:0.05〜1.0 wt%,Zr:0.02〜0.5 wt%, Ta:0.0
2〜0.5 wt%,Hf:0.02〜0.5 wt%およびCo:0.05〜1.5
wt%のうちから選ばれるいずれか1種または2種以上を
含み、残部がFeおよび不可避的不純物からなり、酸化物
系非金属介在物の最大粒径が8μm 以下である、繰り返
し応力負荷によるミクロ組織変化の遅延特性と熱処理生
産性とに優れた軸受鋼。
3. C: 0.5 to 1.5 wt%, Mn: over 2.0 to 5.0
wt%, Sb: 0.001 to 0.015 wt%, Si: more than 0.5
2.5 wt%, Cr: over 2.5 ~ 8.0 wt%, Ni: over 1.0 ~ 3.0 w
t%, Mo: over 0.5 to 2.0 wt%, N: over 0.012 to 0.050 wt
%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%,
W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.0
2 to 0.5 wt%, Hf: 0.02 to 0.5 wt% and Co: 0.05 to 1.5
A microstructure by repeated stress loading, containing one or more selected from wt%, the balance consisting of Fe and unavoidable impurities, and the maximum particle size of oxide-based nonmetallic inclusions being 8 μm or less. Bearing steel with excellent structure change retardation properties and heat treatment productivity.
【請求項4】C: 0.5〜1.5 wt%, Mn:2.0 超〜5.0
wt%,Sb:0.001 〜0.015 wt%を含有し、さらにSi:0.0
5〜0.5 wt%, Cr:0.05〜2.5 wt%,Ni:0.05〜1.0 wt
%, Mo:0.05〜0.5 wt%,Cu:0.05〜1.0 wt%,
B:0.0005〜0.01wt%,Al:0.005 〜0.07wt%, 及び
N:0.0005〜0.012 wt%のうちから選ばれるいずれか1
種または2種以上を含み、さらにまた、Si:0.5 超〜2.
5 wt%, Cr:2.5 超〜8.0 wt%,Ni:1.0 超〜3.0 wt%,
Mo:0.5 超〜2.0 wt%,N:0.012 超〜0.050 wt%,
V:0.05〜1.0 wt%,Nb:0.05〜1.0 wt%, W:0.0
5〜1.0 wt%,Zr:0.02〜0.5 wt%, Ta:0.02〜0.5
wt%,Hf:0.02〜0.5 wt%およびCo:0.05〜1.5 wt%の
うちから選ばれるいずれか1種または2種以上を含み、
残部がFeおよび不可避的不純物からなり、酸化物系非金
属介在物の最大粒径が8μm 以下である、繰り返し応力
負荷によるミクロ組織変化の遅延特性と熱処理生産性と
に優れた軸受鋼。
4. C: 0.5 to 1.5 wt%, Mn: over 2.0 to 5.0
wt%, Sb: 0.001 to 0.015 wt%, Si: 0.0
5 to 0.5 wt%, Cr: 0.05 to 2.5 wt%, Ni: 0.05 to 1.0 wt
%, Mo: 0.05 to 0.5 wt%, Cu: 0.05 to 1.0 wt%,
Any one selected from B: 0.0005 to 0.01 wt%, Al: 0.005 to 0.07 wt%, and N: 0.0005 to 0.012 wt%
Or more than two kinds, and further, Si: more than 0.5 to 2.
5 wt%, Cr: over 2.5 ~ 8.0 wt%, Ni: over 1.0 ~ 3.0 wt%,
Mo: over 0.5 to 2.0 wt%, N: over 0.012 to 0.050 wt%,
V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt%, W: 0.0
5 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.02 to 0.5
wt%, Hf: 0.02 to 0.5 wt%, Co: 0.05 to 1.5 wt%, and any one or more selected from
A bearing steel having the balance of Fe and unavoidable impurities, and having a maximum grain size of oxide-based non-metallic inclusions of 8 μm or less, which is excellent in delay characteristics of microstructural change due to repeated stress loading and heat treatment productivity.
JP9555193A 1993-03-30 1993-03-30 Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity Pending JPH06287695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9555193A JPH06287695A (en) 1993-03-30 1993-03-30 Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9555193A JPH06287695A (en) 1993-03-30 1993-03-30 Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity

Publications (1)

Publication Number Publication Date
JPH06287695A true JPH06287695A (en) 1994-10-11

Family

ID=14140720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9555193A Pending JPH06287695A (en) 1993-03-30 1993-03-30 Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity

Country Status (1)

Country Link
JP (1) JPH06287695A (en)

Similar Documents

Publication Publication Date Title
JP3383347B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3383348B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379786B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3379785B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3233729B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233726B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3383350B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383346B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3243330B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3379787B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JPH06287695A (en) Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load and heat treating productivity
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06271982A (en) Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JP3233728B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JPH06279932A (en) Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load and heat treatment productivity
JPH06287705A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3383351B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383353B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06287707A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JPH06287709A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3411090B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JPH06287693A (en) Bearing steel excellent in delaying property in change of microstructure caused by repeated stress load