JPH06287060A - Electrically conductive ceramic composite heat-resistant material composition - Google Patents

Electrically conductive ceramic composite heat-resistant material composition

Info

Publication number
JPH06287060A
JPH06287060A JP4117705A JP11770592A JPH06287060A JP H06287060 A JPH06287060 A JP H06287060A JP 4117705 A JP4117705 A JP 4117705A JP 11770592 A JP11770592 A JP 11770592A JP H06287060 A JPH06287060 A JP H06287060A
Authority
JP
Japan
Prior art keywords
zirconia
resistant material
material composition
ceramic composite
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4117705A
Other languages
Japanese (ja)
Other versions
JP2541726B2 (en
Inventor
Haruo Arashi
治 夫 嵐
Hajime Asami
見 肇 浅
Masahiro Moriwaki
脇 正 弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP4117705A priority Critical patent/JP2541726B2/en
Publication of JPH06287060A publication Critical patent/JPH06287060A/en
Application granted granted Critical
Publication of JP2541726B2 publication Critical patent/JP2541726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide an electrically conductive ceramic composite heat-resistant material composition prevented from deterioration in its sintering, high in electrical conductivity at lower and medium temperatures as well as at elevated temperatures. CONSTITUTION:The composition consisting of lanthanum mangatite composed of (A) La1-xCaxMnO3 (0.05<=x<=0.5) or La1-xSrxMnO3 (0.05<=x<=0.5) and (B) zirconia at the weight ratio of (8:2) to (2:8).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規なセラミック複合導
電性耐熱材料組成物、特に固体電解質型燃料電池の空気
極材料として、電気炉の通電抵抗発熱体材料として、ま
たはセンサーその他の材料として応用することができる
セラミック複合導電性耐熱材料組成物に関する。又本発
明はこの組成物がえられた前記空気極及び発熱体に関す
る。
FIELD OF THE INVENTION The present invention is applied to a novel ceramic composite electrically conductive heat-resistant material composition, particularly as an air electrode material of a solid oxide fuel cell, as an electric resistance heating element material of an electric furnace, or as a sensor or other material. The present invention relates to a ceramic composite conductive refractory material composition that can be made. The present invention also relates to the air electrode and the heating element obtained with this composition.

【0002】[0002]

【従来技術と解決しようとする課題】近年固体電解質型
燃料電池は発電効率が高い、低公害であるなどの特徴を
有した極めて有望な発電装置として注目を浴びている。
一般に燃料電池には操業する温度範囲に従って常温型、
中温型、高温型があるが1000℃以上の温度で操業す
るたとえばジルコニア固体電解質を用いる高温型燃料電
池では高温の強い酸化性雰囲気下の使用に耐える空気極
材料が各種使用され或は提案されている。
2. Description of the Related Art In recent years, solid oxide fuel cells have been attracting attention as an extremely promising power generator having features such as high power generation efficiency and low pollution.
Generally, a fuel cell has a normal temperature type according to the operating temperature range,
There are medium temperature type and high temperature type, but for example, in the high temperature type fuel cell using a zirconia solid electrolyte which operates at a temperature of 1000 ° C. or higher, various cathode materials which can be used in a strong oxidizing atmosphere at high temperature have been used or proposed. There is.

【0003】例えば特開平2−293384号公報では
ランタンマンガタイトLa1-x Srx MnO3 (ただ
し、0<x≦0.5)からなる導電性多孔質セラミック
ス電極管の製造方法が提案され、更にこのランタンマン
ガタイトにランタンクロマイトを混合して改良した(L
a(1−x)Srx )1−α(Mn(1−y)Cry
3 (ただし0<x+2y<0.3,x<0.3,y<
0.12,0<α<0.09)系のセラミックスランタ
ンマンガネート空気極材料、及び(La(1−x)Sr
x )(Mn(1−y)Cry )O3 (ただし0<x+2
y<0.25,x<0.25,y<0.12)系のセラ
ミックスランタンマンガネート空気極材料が、夫々特開
平3−17959、3−17958号公報に提案されて
いる。
For example, Japanese Patent Application Laid-Open No. 2-293384 proposes a method for producing a conductive porous ceramics electrode tube made of lanthanum manganite La 1-x Sr x MnO 3 (where 0 <x ≦ 0.5). Furthermore, this lantern manganite was mixed with lanthanum chromite to improve (L
a (1-x) Sr x ) 1-α (Mn (1-y) Cr y)
O 3 (where 0 <x + 2y <0.3, x <0.3, y <
0.12,0 <α <0.09) -based ceramic lanthanum manganate air electrode material, and (La (1-x) Sr
x) (Mn (1-y ) Cr y) O 3 ( provided that 0 <x + 2
Ceramic lanthanum manganate air electrode materials of y <0.25, x <0.25, y <0.12) system have been proposed in JP-A-3-17959 and 3-17958, respectively.

【0004】又電気炉特に大型電気炉或は高温電気炉の
抵抗発熱体としてたとえば特公昭51−8221号公報
にはランタンクロマイトのLaイオンをCaイオン又は
Srイオンで一部置換された固溶体組成を有するランタ
ンクロマイト系発熱体が提案されている。ジルコニア電
解質を改良したものとしてジルコニア‐イットリア型固
体電解質の製造方法が特開昭57−92576号公報に
提案されている。
Further, as a resistance heating element of an electric furnace, particularly a large electric furnace or a high temperature electric furnace, for example, Japanese Patent Publication No. 51822/1975 discloses a solid solution composition in which La ions of lanthanum chromite are partially replaced by Ca ions or Sr ions. A lanthanum chromite-based heating element has been proposed. A method for producing a zirconia-yttria type solid electrolyte is proposed in JP-A-57-92576 as an improved zirconia electrolyte.

【0005】しかしこれらのセラミックス系の電極材料
或は発熱体は夫々難点がありその解決が望まれている。
例えばSr,Ca等の添加材を含むランタンマンガタイ
トの場合、焼結が進みやすく1000℃以上の高温では
緻密化が進み、その結果導電性の変動が生じ易い。又焼
成時の収縮が大きく電極の製造が困難であり、又導電性
が大きすぎて発熱体として用いるときには細くする即ち
抵抗を上げる必要があり、このときも成形、焼成時の変
形大きく製造に困難を来していた。
However, these ceramic-based electrode materials or heating elements have their respective drawbacks, and their solution is desired.
For example, in the case of lanthanum manganite containing an additive such as Sr or Ca, sintering is likely to proceed, and densification proceeds at a high temperature of 1000 ° C. or higher, and as a result, the conductivity is likely to change. In addition, the shrinkage during firing is large and it is difficult to manufacture the electrode, and it is necessary to make it thin, that is, increase the resistance when it is used as a heating element due to its too large conductivity. Also at this time, the deformation during molding and firing is large and it is difficult to manufacture. Was coming.

【0006】またこのランタンマンガタイトにクロムを
添加して難焼結性を与えて改良した改良品の場合は10
00℃程度では影響が少ないが1500℃近くになると
クロムの蒸発が顕著となり、発熱体としては使用に困難
がある。ランタンクロマイト系発熱体の場合は種々改良
がなされているが、上述と同様クロムの蒸発の欠点があ
り、発熱体をアルミナ保護管でカバーするなどの対策が
必要である。一方ジルコニアの場合は、常温〜低温域で
は導電性が殆ど無く、少くとも800〜1000℃の予
熱が必要であり、常温からの通電ができない。
Further, in the case of an improved product obtained by adding chromium to this lanthanum manganite to make it difficult to sinter, it is 10
At about 00 ° C., the effect is small, but at about 1500 ° C., the evaporation of chromium becomes remarkable, which makes it difficult to use as a heating element. Although various improvements have been made in the case of the lanthanum chromite heating element, there is a drawback of evaporation of chromium as described above, and it is necessary to take measures such as covering the heating element with an alumina protective tube. On the other hand, in the case of zirconia, it has almost no conductivity in the normal temperature to low temperature range, requires preheating at least 800 to 1000 ° C., and cannot be energized from normal temperature.

【0007】上記のようにランタンマンガタイトは耐熱
性、導電性にすぐれているが焼結が進行して使えず、一
方ジルコニアは耐熱性にとみ、高温での導電性は良好だ
が低温、中温での導電性が乏しく常温からの通電ができ
ないという一長、一短がある。
As described above, lanthanum manganite has excellent heat resistance and conductivity, but cannot be used due to the progress of sintering. On the other hand, zirconia has excellent heat resistance and has good conductivity at high temperatures, but at low and medium temperatures. However, there are advantages and disadvantages that the conductivity is poor and current cannot be applied from room temperature.

【0008】かくて本発明は焼結時の進行を防止し、高
温のみならず低温、中温でも導電性に富む耐熱性の材料
を提供することを目的とするものであり、本発明者らは
種々研究、実験を重ねた結果、はからずもランタンマン
ガタイトとジルコニアを一定割合で混合し、複合させる
ことによって、ランタンマンガタイトとジルコニア夫々
の欠点が解決されて、焼結の進行が防止され、低・中温
での非導電性も解消され、更には焼結収縮も低減しうる
ことが見出されたのである。
[0008] Thus, the present invention aims to provide a heat-resistant material which prevents the progress of sintering and has excellent conductivity at low temperature as well as at low and medium temperatures. As a result of various studies and experiments, it was inevitable that lanthanum manganite and zirconia were mixed at a fixed ratio and mixed to solve the drawbacks of lanthanum manganite and zirconia, preventing the progress of sintering, and reducing the It was found that the non-conductivity at medium temperature can be eliminated and the sintering shrinkage can be reduced.

【0009】[0009]

【課題を解決するための手段】かくて本発明は、ランタ
ンマンガタイト La1-x Cax MnO3 但し0.05≦x≦0.5
或は La1-x Srx MnO3 但し0.05≦x≦0.5 と、ジルコニアZrO2 とからなり、ランタンマンガタ
イトとジルコニアの重量比が8:2〜2:8である、ラ
ンタンマンガタイト‐ジルコニア系セラミック導電性耐
熱材料組成物を提供するものである。
Thus, the present invention provides a lanthanum manganite La 1-x Ca x MnO 3 with 0.05≤x≤0.5.
Alternatively, La 1-x Sr x MnO 3 where 0.05 ≦ x ≦ 0.5 and zirconia ZrO 2 and the weight ratio of lanthanum manganite and zirconia is 8: 2 to 2: 8. A tight-zirconia-based ceramic conductive heat-resistant material composition is provided.

【0010】以下本発明について詳しく説明する。The present invention will be described in detail below.

【0011】まず、ランタンマンガタイトについて説明
すれば、ランタンマンガタイトとしてはCa又はSrを
ドープして電子伝導性を向上させた次の式のものが用い
られる。
First, lanthanum manganite will be described. As lanthanum manganite, the following formula in which Ca or Sr is doped to improve electron conductivity is used.

【0012】La1-x Cax MnO3 但し0.05≦
x≦0.5 又は La1-x Srx MnO3 但し0.05≦x≦0.5 以下簡略的にランタンマンガタイトLaMnO3 と表わ
すときはCa又はSrをドープしてえられた上記の式の
化合物を指すものとする。上記式においてxが0.05
を超えると導電性が発現し、0.05未満では導電性が
不良となる。又xが0.5未満ではジルコニアと膨脹係
数が近似となり好適である。
La 1-x Ca x MnO 3 where 0.05 ≦
x ≦ 0.5 or La 1-x Sr x MnO 3 where 0.05 ≦ x ≦ 0.5 or less, when expressed simply as lanthanum manganite LaMnO 3 , the above formula obtained by doping with Ca or Sr The compound of In the above formula, x is 0.05
If it exceeds, conductivity is exhibited, and if it is less than 0.05, conductivity becomes poor. When x is less than 0.5, the expansion coefficient is close to that of zirconia, which is preferable.

【0013】このランタンマンガタイトを製造する場
合、まず、ドープする元素を、その割合(上記式のx)
に従って原料を混合する。
In the case of producing this lanthanum manganite, first, the ratio of the elements to be doped (x in the above formula)
Mix the ingredients according to.

【0014】たとえばCaをx=0.2の割合でドープ
する場合はLa2 3 、MnO2 及びCa(OH)2
重量比56:37:6.4の割合で混合する。またSr
をx=0.1の割合でドープする場合は、La2 3
MnO2 及びSrCO3 を59:35:6の重量比で混
合する。
For example, when Ca is doped at a ratio of x = 0.2, La 2 O 3 , MnO 2 and Ca (OH) 2 are mixed at a weight ratio of 56: 37: 6.4. Also Sr
Is doped at a ratio of x = 0.1, La 2 O 3 ,
MnO 2 and SrCO 3 are mixed in a weight ratio of 59: 35: 6.

【0015】各原料を混合後、さやに入れ混合粉末のま
ま酸化雰囲気の電気炉で1300〜1600℃に2時間
仮焼する。1300℃未満で仮焼すると、La2 3
消化が起き時間経過とともにLa(OH)3 が生成し、
LaMnO3 組成原料が崩壊する。又1600℃を超え
る温度で仮焼すると、混合粉体が固結し、仮焼後の解砕
が困難となる。
After mixing the respective raw materials, the raw materials are put into a sheath and, as the mixed powder, calcined in an electric furnace in an oxidizing atmosphere at 1300 to 1600 ° C. for 2 hours. When calcined at less than 1300 ° C, La 2 O 3 is digested and La (OH) 3 is produced over time,
The LaMnO 3 composition raw material collapses. Further, if the powder is calcined at a temperature higher than 1600 ° C., the mixed powder is solidified, and it becomes difficult to disintegrate after the calcining.

【0016】仮焼後は仮焼した上記混合粉末を解砕し所
定粒度に粉砕する。その粒度は目的、用途に応じて調整
する。
After the calcination, the calcinated mixed powder is crushed and crushed to a predetermined particle size. The particle size is adjusted according to the purpose and application.

【0017】次いでジルコニア(ZrO2 )について云
えば、ここでは粉末状或は繊維状のジルコニアが用いら
れる。
Next, referring to zirconia (ZrO 2 ), powdery or fibrous zirconia is used here.

【0018】この発明において用いられるジルコニア粉
末は、化学式ZrO2 で表される酸化ジルコニウムから
実質的になるものであり、その他、目的に応じて炭酸ジ
ルコニウム、水酸化ジルコニウムなどのジルコニウム化
合物やそれらにイットリア(Y2 3 )、ライム(Ca
O)、マグネシア(MgO)などの安定化剤を添加して
安定化されたものであり、これらの少なくとも1種から
なる。この粉末は、例えば、噴霧乾燥による微細粉体の
製造法により得ることができる。添加効果を有効にする
にはジルコニア粉末の粒度をLaMnO3 の粒度の5倍
以上にすることがより効果的である。
The zirconia powder used in the present invention consists essentially of zirconium oxide represented by the chemical formula ZrO 2 , and other zirconium compounds such as zirconium carbonate and zirconium hydroxide and yttria may be used depending on the purpose. (Y 2 O 3 ), lime (Ca
O), magnesia (MgO), and the like, which are stabilized by adding a stabilizer such as at least one of them. This powder can be obtained by, for example, a method for producing a fine powder by spray drying. In order to make the addition effect effective, it is more effective to make the particle size of the zirconia powder 5 times or more the particle size of LaMnO 3 .

【0019】又この発明において使用できるジルコニア
繊維として、例えば、純ジルコニアファイバー、マグネ
シア添加ジルコニアファイバー、ライム添加ジルコニア
ファイバー、イットリア添加ジルコニアファイバー、お
よびこれらの混合物などがある。
The zirconia fibers that can be used in the present invention include, for example, pure zirconia fibers, magnesia-added zirconia fibers, lime-added zirconia fibers, yttria-added zirconia fibers, and mixtures thereof.

【0020】このようにしてえられたランタンマンガタ
イトとジルコニアを8:2乃至2:8の比率で配合して
本発明の耐熱材料組成物をつくる。ランタンマンガタイ
トが8を超えると、ジルコニア量が少なく焼結進行防止
効果や多孔性が得られず、一方ジルコニアが8を超える
と常温から低温域での導電性が発現せず又焼結し難くな
る。
The thus obtained lanthanum manganite and zirconia are mixed in a ratio of 8: 2 to 2: 8 to prepare the heat resistant material composition of the present invention. When the lanthanum manganite exceeds 8, the amount of zirconia is small and the effect of preventing the progress of sintering and the porosity cannot be obtained. On the other hand, when the zirconia exceeds 8, the conductivity from the normal temperature to the low temperature region is not exhibited and the sintering is difficult. Become.

【0021】このようにしてえられた耐熱材料組成物は
夫々目的に応じて加工される。たとえば抵抗発熱体とし
て用いる場合は、上記組成物にバインダーを添加し、一
軸プレス、ラバープレス、押出し成型等により円筒形、
棒状等に成形し、100℃で12時間乾燥した後130
0〜1600℃の酸化雰囲気で焼結される。
The heat-resistant material composition thus obtained is processed according to the purpose. For example, when used as a resistance heating element, a binder is added to the above composition, and a uniaxial press, a rubber press, a cylindrical shape by extrusion molding,
130 after molding into a rod shape and drying at 100 ° C for 12 hours
It is sintered in an oxidative atmosphere of 0 to 1600 ° C.

【0022】また固体電解質型空気極として用いる場合
は、上記組成物にバインダーを用いてペースト状にし、
ジルコニア電解質板の一方の面に塗布した後1300〜
1600℃の酸化雰囲気で焼き付けてつくられる。
When used as a solid electrolyte type air electrode, a binder is added to the above composition to form a paste,
After applying to one side of the zirconia electrolyte plate,
It is made by baking in an oxidizing atmosphere at 1600 ° C.

【0023】ここで用いることのできるバインダーとし
ては、例えば、ポリエチレンオキシド、ポリビニルアル
コール、ポリアクリル酸などの合成高分子、メチルセル
ロース、カルボキシエチルセルロース、ヒドロキシメチ
ルセルロース、ヒドロキシエチルセルロース、リン酸セ
ルロースなどのセルロース誘導体、デンプンおよびデン
プン誘導体、ペクチン、アルギン酸ナトリウム、寒天な
どの動植物性粘質物、並びにジルコニアゾルおよび/ま
たはジルコニウム塩水溶液などがある。
Examples of the binder that can be used here include synthetic polymers such as polyethylene oxide, polyvinyl alcohol and polyacrylic acid, cellulose derivatives such as methyl cellulose, carboxyethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose and cellulose phosphate, and starch. And starch derivatives, pectin, sodium alginate, animal and plant mucilages such as agar, and zirconia sol and / or zirconium salt aqueous solutions.

【0024】この外に成形体用原料に上記成分以外に目
的に応じて種々の添加物を若干量含めることができる。
そのような添加物として、例えば、多孔化剤、界面活性
剤、分散剤、凝集剤などがある。
In addition to the above components, the raw material for moldings may contain a small amount of various additives according to the purpose.
Examples of such additives include a porosifying agent, a surfactant, a dispersant, and an aggregating agent.

【0025】このようにしてえられたランタンマンガタ
イト‐ジルコニア系セラミック複合導電性耐熱材料組成
物によるときは焼成時収縮はみられず亀裂、変形もみと
められない。
When the lanthanum manganite-zirconia-based ceramic composite conductive heat-resistant material composition thus obtained is used, no shrinkage is observed during firing, and neither crack nor deformation is observed.

【0026】またこれよりえられた電極は低温、中温で
も導電性を有し、常温からの通電も可能となり、従って
組成物は高温型燃料電池の空気極材料として、また電気
炉の抵抗発熱体の材料として良好に用いることができ誠
に有効である。
The electrode thus obtained has conductivity even at low and medium temperatures and can be energized from room temperature. Therefore, the composition is used as an air electrode material of a high temperature fuel cell and a resistance heating element of an electric furnace. It can be used satisfactorily as a material and is very effective.

【0027】以下に実施例と比較例をあげて本発明を更
に説明する。
The present invention will be further described below with reference to Examples and Comparative Examples.

【0028】[0028]

【実施例】【Example】

実施例1 La1-x Cax MnO3 x=0.2となるようLa2
3 ,MnO2 ,Ca(OH)2 を56:37:6.4
重量比で混合する。この混合物を1500℃,2hr電
気炉で仮焼し、LaMnO3 を合成する。仮焼後1〜1
0μmとなるようボールミルで解砕(粉砕)する。
Example 1 La 2 so that La 1-x Ca x MnO 3 x = 0.2.
O 3 , MnO 2 and Ca (OH) 2 were added at 56: 37: 6.4.
Mix by weight. This mixture is calcined in an electric furnace at 1500 ° C. for 2 hours to synthesize LaMnO 3 . After calcination 1-1
It is crushed (crushed) by a ball mill so that the particle size becomes 0 μm.

【0029】このようにしてえられたLaMnO3 とY
2 3 8%添加ジルコニア粉末とを5:5重量比で混
合し、この混合粉100重量部に対して有機バインダー
としてのメチルセルロース5及び水40を添加し、万能
ミキサーで混練する。押出し成形により棒状発熱体及び
円筒状空気極を成形し、100℃で12時間乾燥し、次
いで1500℃で2時間電気炉で焼成する。
LaMnO 3 and Y thus obtained
2 O 3 8% added zirconia powder is mixed at a ratio of 5: 5 by weight, 100 parts by weight of this mixed powder is added with methyl cellulose 5 as an organic binder and 40 of water, and the mixture is kneaded with a universal mixer. A rod-shaped heating element and a cylindrical air electrode are formed by extrusion, dried at 100 ° C. for 12 hours, and then fired at 1500 ° C. for 2 hours in an electric furnace.

【0030】得られた焼成品の焼成収縮は、乾燥後の素
地に対し1%膨脹するのみであり、亀裂、変形は観察さ
れなかった。これを発熱体として使用した場合は、15
00℃及び1600℃用として、500時間使用するも
電気抵抗、密度の変化が無かった。
The firing shrinkage of the obtained fired product expanded only 1% with respect to the dried substrate, and no cracks or deformations were observed. If this is used as a heating element, 15
There was no change in electric resistance and density even after 500 hours of use at 00 ° C and 1600 ° C.

【0031】円筒状空気極として使用した場合、500
時間後にも多孔性の変化がみられなかった。 比較例1 Y2 3 8%添加ジルコニア粉末を用いない以外同様
にして実施例1をくりかえして、ランタンマンガタイト
だけからなる焼成品を作成した。えられた焼成品の焼成
収縮は9%に達し、又微小な亀裂が発生し、曲りも認め
られた。発熱体として1500℃で100時間使用した
後は密度が20%も上昇し、また電気抵抗が20%減少
するなど、密度の変化、電気抵抗の変化が大であった。
又円筒状の空気極として用いたところ、多孔性の変化が
大きく燃料電池の出力低下が激しく使用は不可能であっ
た。
When used as a cylindrical air electrode, 500
No change in porosity was observed after time. Comparative Example 1 Example 1 was repeated in the same manner except that the zirconia powder containing 8% Y 2 O 3 was not used to prepare a fired product consisting of lanthanum manganite alone. The firing shrinkage of the obtained fired product reached 9%, minute cracks were generated, and bending was also observed. After being used as a heating element at 1500 ° C. for 100 hours, the density increased by 20% and the electric resistance decreased by 20%, and the density and electric resistance changed greatly.
Further, when it was used as a cylindrical air electrode, the change in porosity was large and the output of the fuel cell was severely reduced, making it impossible to use.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】La1-x Cax MnO3 0.05≦x≦
0.5 或いは La1-x Srx MnO3 0.05≦x≦0.5 と、ジルコニアとの重量比が8:2〜2:8であるラン
タンマンガタイト、ジルコニア系セラミック複合導電性
耐熱材料組成物。
1. La 1-x Ca x MnO 3 0.05 ≦ x ≦
0.5 or La 1-x Sr x MnO 3 0.05 ≦ x ≦ 0.5 and the weight ratio of zirconia to lanthanum manganite, zirconia-based ceramic composite conductive heat-resistant material Composition.
【請求項2】前記ジルコニアがY2 3 、CaO、Mg
Oの何れかで安定化された請求項1記載のセラミック複
合導電性耐熱材料組成物。
2. The zirconia is Y 2 O 3 , CaO, Mg.
The ceramic composite conductive heat-resistant material composition according to claim 1, which is stabilized with any of O.
【請求項3】円筒、棒状等に成形、焼成され、通電抵抗
発熱体として使用できる請求項1又は2記載のセラミッ
ク複合導電性耐熱材料組成物。
3. The ceramic composite conductive heat-resistant material composition according to claim 1, which is molded and fired into a cylinder, a rod or the like and can be used as an electric resistance resistance heating element.
【請求項4】固体電解質型燃料電池の空気極材料として
使用できる請求項1、2、3のいずれか記載のセラミッ
ク複合導電性耐熱材料組成物。
4. The ceramic composite electrically conductive heat-resistant material composition according to claim 1, which can be used as an air electrode material for a solid oxide fuel cell.
JP4117705A 1992-05-11 1992-05-11 Ceramic composite conductive heat resistant material composition Expired - Fee Related JP2541726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117705A JP2541726B2 (en) 1992-05-11 1992-05-11 Ceramic composite conductive heat resistant material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117705A JP2541726B2 (en) 1992-05-11 1992-05-11 Ceramic composite conductive heat resistant material composition

Publications (2)

Publication Number Publication Date
JPH06287060A true JPH06287060A (en) 1994-10-11
JP2541726B2 JP2541726B2 (en) 1996-10-09

Family

ID=14718274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117705A Expired - Fee Related JP2541726B2 (en) 1992-05-11 1992-05-11 Ceramic composite conductive heat resistant material composition

Country Status (1)

Country Link
JP (1) JP2541726B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097434A1 (en) * 2006-02-23 2007-08-30 National Institute Of Advanced Industrial Science And Technology Porous support for electrochemical reaction cell high-density integration, and electrochemical reaction cell stack and electrochemical reaction system comprising the porous support for electrochemical reaction cell high-density integration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216258A (en) * 1985-03-15 1986-09-25 ウエスチングハウス エレクトリック コ−ポレ−ション Support tube for electrochemical battery
JPH0359953A (en) * 1989-07-27 1991-03-14 Tonen Corp Solid electrolyte-type fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216258A (en) * 1985-03-15 1986-09-25 ウエスチングハウス エレクトリック コ−ポレ−ション Support tube for electrochemical battery
JPH0359953A (en) * 1989-07-27 1991-03-14 Tonen Corp Solid electrolyte-type fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097434A1 (en) * 2006-02-23 2007-08-30 National Institute Of Advanced Industrial Science And Technology Porous support for electrochemical reaction cell high-density integration, and electrochemical reaction cell stack and electrochemical reaction system comprising the porous support for electrochemical reaction cell high-density integration
JP2007227113A (en) * 2006-02-23 2007-09-06 National Institute Of Advanced Industrial & Technology Porous support for high-density integration of electrochemical reaction cell, and electrochemical reaction cell stack and electrochemical reaction system constituted of the same
US9178243B2 (en) 2006-02-23 2015-11-03 National Institute Of Advanced Industrial Science And Technology Porous support for electrochemical reaction cell high-density integration, and electrochemical reaction cell stack and electrochemical reaction system comprising the porous support for electrochemical reaction cell high-density integration

Also Published As

Publication number Publication date
JP2541726B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
JPH05190180A (en) Air electrode body of solid electrolyte type fuel cell, manufacture of air electrode body and solid electrolyte type fuel cell
JP5311913B2 (en) Method for producing high ion conductive solid electrolyte material
KR101892909B1 (en) A method for manufacturing protonic ceramic fuel cells
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
JP3260988B2 (en) Method for producing solid electrolyte
JP3034132B2 (en) Zirconia solid electrolyte
JPH07126061A (en) Magnesia-based sintered material and production thereof
JPH06287060A (en) Electrically conductive ceramic composite heat-resistant material composition
JP2003123789A (en) Solid electrolyte material, its manufacturing method, and solid electrolyte fuel cell using the same
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
JP3254456B2 (en) Method for manufacturing solid oxide fuel cell
JP2631243B2 (en) Heat-resistant conductive ceramics and manufacturing method thereof
JP3598956B2 (en) Gallate composite oxide solid electrolyte material and method for producing the same
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
JP4039618B2 (en) Solid oxide fuel cell
JP3077054B2 (en) Heat-resistant conductive ceramics
JP2001072465A (en) Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same
JP3359412B2 (en) Solid oxide fuel cell
JP2612545B2 (en) Heat-resistant conductive ceramics
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP3740304B2 (en) Conductive ceramics
JPH09315869A (en) Production of lanthanum manganite paste capable of extruding, lanthanum manganite extruded body and porous lanthanum manganite sintered body
JP3121991B2 (en) Conductive ceramics
JP2006351224A (en) Nickel powder for electrode of solid oxide fuel cell and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees