JP3034132B2 - Zirconia solid electrolyte - Google Patents

Zirconia solid electrolyte

Info

Publication number
JP3034132B2
JP3034132B2 JP4259468A JP25946892A JP3034132B2 JP 3034132 B2 JP3034132 B2 JP 3034132B2 JP 4259468 A JP4259468 A JP 4259468A JP 25946892 A JP25946892 A JP 25946892A JP 3034132 B2 JP3034132 B2 JP 3034132B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
zirconia
electric conductivity
ionic radius
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4259468A
Other languages
Japanese (ja)
Other versions
JPH06116026A (en
Inventor
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4259468A priority Critical patent/JP3034132B2/en
Publication of JPH06116026A publication Critical patent/JPH06116026A/en
Application granted granted Critical
Publication of JP3034132B2 publication Critical patent/JP3034132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】本発明は、酸素センサや燃料電池な
どに好適に使用されるジルコニア質の固体電解質に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconia solid electrolyte suitably used for an oxygen sensor, a fuel cell, and the like.

【0002】[0002]

【従来技術】従来から、固体電解質としては、ZrO2
にY2 3 、CaO、MgOなどの安定化剤を適量添加
して、ZrO2 が立方晶相を主体としてなるジルコニア
質固体電解質が使用されている。
2. Description of the Related Art Conventionally, ZrO 2 has been used as a solid electrolyte.
A suitable amount of a stabilizer such as Y 2 O 3 , CaO or MgO is added to the zirconia solid electrolyte in which ZrO 2 is mainly composed of a cubic phase.

【0003】また、上記のような立方晶のジルコニア質
固体電解質には、その過酷な使用条件においても十分に
耐えうるように、安定化剤の量を制御して磁器中に正方
晶相を析出させたり、焼結助剤としてAl2 3 やSi
2 などを添加することも提案されている。
The cubic zirconia solid electrolyte described above has a controlled amount of a stabilizer to precipitate a tetragonal phase in a porcelain so that it can sufficiently withstand severe use conditions. Al 2 O 3 or Si as a sintering aid
It has also been proposed to add O 2 or the like.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、従来
のジルコニア質固体電解質は、それ自体の電気伝導度が
低いという問題があった。固体電解質の電気伝導度が低
いと、酸素センサなどに使用した場合に応答が遅く、ま
た燃料電池セルに使用した場合には、抵抗が大きく、出
力を低下させる原因となっていた。
However, the conventional zirconia-based solid electrolyte has a problem that its own electric conductivity is low. When the electric conductivity of the solid electrolyte is low, the response is slow when used for an oxygen sensor or the like, and when used for a fuel cell, the resistance is large and the output is reduced.

【0005】よって、本発明は、電気伝導度の高いジル
コニア質固体電解質を提供することを目的とするもので
ある。
Therefore, an object of the present invention is to provide a zirconia solid electrolyte having high electric conductivity.

【0006】[0006]

【問題点を解決するための手段】本発明者は、ジルコニ
ア質固体電解質の電気伝導度について、検討を行ったと
ころ、固体電解質中に添加される金属酸化物をその平均
イオン半径が特定の範囲になるように適宜選択すること
により、電気伝導質を従来よりも高めることができるこ
とを知見したものである。
The present inventors have studied the electrical conductivity of the zirconia-based solid electrolyte and found that the metal oxide added to the solid electrolyte has an average ionic radius within a specific range. It has been found that the electric conductivity can be increased as compared with the conventional one by appropriately selecting such that.

【0007】即ち、本発明のジルコニア固体電解質は、
添加物として、Yb2 3 、Sm23 、Sc2 3
群から選ばれる少なくとも1種を選択し、これらの添加
物をMO1.5 (M:金属元素)換算で14〜30モル%
添加するとともに、前記添加物の平均イオン半径が0.
75〜0.86Åとなるように上記添加物を添加するも
ので、且つ実質的に立方晶ジルコニアの単一相からなる
ことを特徴とするものである。
That is, the zirconia solid electrolyte of the present invention comprises:
As the additive, at least one selected from the group consisting of Yb 2 O 3 , Sm 2 O 3 and Sc 2 O 3 is selected, and these additives are added in an amount of 14 to 30 mol% in terms of MO 1.5 (M: metal element).
With the addition, the average ionic radius of the additive is 0.1.
The above additive is added so as to be 75 to 0.86 °, and is substantially composed of a single phase of cubic zirconia.

【0008】以下、本発明を詳述する。本発明のジルコ
ニア固体電解質は、ジルコニアを主体として、これにジ
ルコニアを立方晶に安定化させる作用をなす金属酸化物
が添加されている。このような金属酸化物としては、Y
2 3 、Sm2 3 、Sc2 3 の群から選ばれる少
なくとも1種を選択される。このような添加物は、ジル
コニアを立方晶に安定化させるために総量でMO
1.5 (M:金属元素)として14〜30モル%、特に1
6〜24モル%の割合で添加される。この添加量を上記
の範囲に限定したのは、14モル%よりも少ないと、結
晶中に正方晶あるいは単斜晶の結晶が析出するとともに
電気伝導率が低下し、30モル%よりも多い場合も電気
伝導率が低下するためである。
Hereinafter, the present invention will be described in detail. The zirconia solid electrolyte of the present invention contains zirconia as a main component, to which a metal oxide that functions to stabilize zirconia to a cubic crystal is added. As such a metal oxide, Y
b 2 O 3, is selected the Sm 2 O 3, at least one selected from the group consisting of Sc 2 O 3. Such additives are used in a total amount of MO to stabilize zirconia to cubic.
1.5 (M: metal element) 14 to 30 mol%, especially 1
It is added at a rate of 6 to 24 mol%. The reason why the addition amount is limited to the above range is that, when the amount is less than 14 mol%, tetragonal or monoclinic crystals are precipitated in the crystal and the electric conductivity is reduced. This is also because the electric conductivity decreases.

【0009】本発明によれば、上記に列記した金属酸化
物からこれらの平均イオン半径が0.75〜0.86
Å、特に0.78〜0.84Åとなるように選択するこ
とが重要である。なお、平均イオン半径は、下記数1で
表される。
According to the present invention, the metal oxides listed above have an average ionic radius of 0.75 to 0.86
It is important to select {, especially 0.78 to 0.84}. The average ion radius is represented by the following equation (1).

【0010】[0010]

【数1】 (Equation 1)

【0011】平均イオン半径を上記の範囲に限定したの
は、上記範囲を逸脱するといずれも電気伝導度が低下す
るためである。ここで、イオン半径は、いずれも6配位
の数値を用いたものであり、Ybは0.86Å、Smは
0.96Å、Scは0.73Åとして平均イオン半径を
算出するものとする。
The reason for limiting the average ionic radius to the above range is that any deviation from the above range results in a decrease in electric conductivity. Here, the ionic radius uses a numerical value of six coordinations, and the average ionic radius is calculated assuming that Yb is 0.86 °, Sm is 0.96 °, and Sc is 0.73 °.

【0012】また、本発明によれば、固体電解質を構成
するジルコニア結晶は、実質的に立方晶ZrO2 のみか
ら構成され、単斜晶ジルコニアおよび正方晶ジルコニア
を含まないのであり、X線回折測定において立方晶ジル
コニアの(111)面のピーク強度に対して、正方晶ジ
ルコニアの(111)面のピーク強度および単斜晶ジル
コニアの(−111)面のピーク強度がそれぞれ5%以
下である。また、立方晶ジルコニアは平均粒径が0.5
〜5μmの大きさで存在する。
Further, according to the present invention, the zirconia crystal constituting the solid electrolyte is substantially composed of only cubic ZrO 2 and does not contain monoclinic zirconia and tetragonal zirconia. In the above, the peak intensity of the (111) plane of tetragonal zirconia and the peak intensity of the (−111) plane of monoclinic zirconia are each 5% or less of the peak intensity of the (111) plane of cubic zirconia. Further, cubic zirconia has an average particle size of 0.5.
It exists in a size of 5 μm.

【0013】次に、本発明のジルコニア質固体電解質を
作製する方法について説明すると、まず、原料として平
均粒径が0.5〜1.0μmのジルコニア粉末と、前述
した各種の金属酸化物粉末を準備して、前述した平均イ
オン半径が所定の範囲となるように金属酸化物の組合せ
で選択し、MO1.5 換算で14〜30モル%となる量で
添加して十分に混合後、所望の成形手段、例えば、金型
プレス,冷間静水圧プレス,押出し成形、ドクターブレ
ード法等により任意の形状に成形後、焼成する。焼成
は、1500〜1600℃の大気などの酸化性雰囲気に
て行われる。
Next, a method for producing the zirconia-based solid electrolyte of the present invention will be described. First, zirconia powder having an average particle size of 0.5 to 1.0 μm and various metal oxide powders described above are used as raw materials. Prepare and select a combination of metal oxides so that the above-mentioned average ionic radius is within a predetermined range, add in an amount of 14 to 30 mol% in terms of MO 1.5 , mix well, and form a desired mold. After forming into an arbitrary shape by means such as a mold press, a cold isostatic press, an extrusion molding, a doctor blade method, and the like, firing is performed. The firing is performed in an oxidizing atmosphere such as an air at 1500 to 1600 ° C.

【0014】また、固体電解質は、上記以外にZrO2
と添加物からなるターゲットより、これらの蒸気を発生
させて、所望の基体表面に蒸着させるか、またはCVD
法によりZr含有ガスと添加物を構成する金属元素含有
ガスを所定の割合で混合して酸素含有雰囲気中で所定の
温度に加熱された基体表面に気相合成により析出させて
得ることもできる。
The solid electrolyte is ZrO 2 other than the above.
These vapors are generated from a target composed of a metal and an additive, and are vapor-deposited on a desired substrate surface or CVD.
It can also be obtained by mixing a Zr-containing gas and a metal element-containing gas constituting an additive at a predetermined ratio by a method and depositing the mixture on a substrate surface heated to a predetermined temperature in an oxygen-containing atmosphere by vapor phase synthesis.

【0015】[0015]

【作用】本発明によれば、ZrO2 に添加される金属酸
化物の平均イオン半径と1000℃における固体電解質
の電気伝導度との関係を図1に示した。図1から明らか
なように、平均イオン半径と電気伝導度との間には相関
な認められ、電気伝導度は平均イオン半径が約0.81
Åにてピークを有し、イオン半径がこれより小さいまた
は大きいと急激に電気伝導度が低下する傾向にあること
がわかる。
According to the present invention, the relationship between the average ionic radius of the metal oxide added to ZrO 2 and the electric conductivity of the solid electrolyte at 1000 ° C. is shown in FIG. As is clear from FIG. 1, there is a correlation between the average ionic radius and the electric conductivity.
It can be seen that there is a peak at Å, and that if the ionic radius is smaller or larger than this, the electrical conductivity tends to sharply decrease.

【0016】本発明によれば、平均イオン半径を0.7
5〜0.86Åに制御することにより1000℃におけ
る電気伝導度5×10-3S/cm以上が達成されるもの
である。
According to the present invention, the average ion radius is 0.7
By controlling the temperature to 5 to 0.86 °, an electric conductivity of 5 × 10 −3 S / cm or more at 1000 ° C. is achieved.

【0017】[0017]

【実施例】平均粒径が1μmのZrO2 原料粉末と、平
均粒径が0.5〜2μmのYb23 、Y2 3 、Sc
2 3 、Sm2 3 、Er2 3 の各粉末を準備した。
これらの添加物を表1および表2に示す割合にて混合し
てZrO2 粉末とボールミルにより十分に混合した。こ
れをプレス成形し、1600℃の大気中で10時間焼成
した。得られた磁器は相対密度95%以上の高緻密体で
あった。
EXAMPLE ZrO 2 raw material powder having an average particle size of 1 μm and Yb 2 O 3 , Y 2 O 3 , Sc having an average particle size of 0.5 to 2 μm
Powders of 2 O 3 , Sm 2 O 3 , and Er 2 O 3 were prepared.
These additives were mixed at the ratios shown in Tables 1 and 2 and thoroughly mixed with ZrO 2 powder by a ball mill. This was press-formed and fired in the air at 1600 ° C. for 10 hours. The obtained porcelain was a highly dense body having a relative density of 95% or more.

【0018】[0018]

【実施例】得られた磁器をX線回折測定を行い、結晶相
の同定と、電気伝導度の測定を行った。その結果、表
1、表2の試料中、試料No.1、2、3、7、8につい
てはいずれも立方晶ZrO2 の単一相からなりその他の
結晶相はなかったのに対して、試料No.4、5、6は、
立方晶ZrO2 以外に正方晶ZrO2 や単斜晶ZrO2
などの存在が認められた。なお、種々の金属酸化物との
組み合わせに基づき前述した数1により算出し、平均イ
オン半径と電気伝導度(logσ)との関係を図1に示
した。
EXAMPLES The obtained porcelain was subjected to X-ray diffraction measurement to identify a crystal phase and measure electric conductivity. As a result, in the samples of Tables 1 and 2, Samples Nos. 1, 2, 3, 7, and 8 all consisted of a single phase of cubic ZrO 2 and had no other crystal phases. Sample Nos. 4, 5, and 6
In addition to cubic ZrO 2 , tetragonal ZrO 2 and monoclinic ZrO 2
The existence of such was recognized. The relationship between the average ionic radius and the electric conductivity (log σ) was calculated based on the above-described formula 1 based on the combination with various metal oxides, and shown in FIG.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】表1、表2および図1から明らかなよう
に、添加物の添加量それぞれにおいて、平均イオン半径
が約0.81Åにて極大値を示した。なお、添加量が3
0モル%を越えると、急激に電気伝導率が低下し、14
モル%より小さい場合にも同様に電気伝導率が低下し
た。
As is clear from Tables 1 and 2, and FIG. 1, each of the additive amounts showed a maximum value when the average ionic radius was about 0.81 °. When the addition amount is 3
If it exceeds 0 mol%, the electrical conductivity will decrease sharply,
When the amount is smaller than mol%, the electric conductivity similarly decreased.

【0022】本発明により添加量を14〜30モル%、
平均イオン半径を0.75〜0.86Åに制御すること
により1000℃における電気伝導率が5×10-3S/
cm以上が達成された。
According to the present invention, the addition amount is 14 to 30 mol%,
By controlling the average ionic radius to 0.75 to 0.86 °, the electric conductivity at 1000 ° C. is 5 × 10 −3 S /
cm or more has been achieved.

【0023】[0023]

【発明の効果】以上詳述した通り、本発明のZrO2
体電解質は、特定の金属酸化物より平均イオン半径が特
定の範囲となるように選択することにより、電気伝導率
を高めることができる。これにより、酸素センサに適用
した場合には、応答性を高めることができ、燃料電池に
適用した場合には、電解質の抵抗を下げることができる
ために出力を高めることができる。
As described in detail above, the ZrO 2 solid electrolyte of the present invention can increase the electric conductivity by selecting the specific metal oxide so that the average ionic radius is within a specific range. . Thereby, when applied to an oxygen sensor, responsiveness can be improved, and when applied to a fuel cell, the output can be increased because the resistance of the electrolyte can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平均イオン半径と電気伝導率(logσ)との
関係を示した図である。
FIG. 1 is a diagram showing a relationship between an average ionic radius and electric conductivity (log σ).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ZrO2 を主成分として、Yb2 3 、S
2 3 、Sc2 3の群から選ばれる少なくとも1種
をMO1.5 (M:金属元素)換算で14〜30モル%添
加するとともに、前記添加物の平均イオン半径が0.7
5〜0.86Åであり、且つ実質的に立方晶ジルコニア
の単一相からなることを特徴とするジルコニア固体電解
質。
1. ZrO 2 as a main component, Yb 2 O 3 , S
At least one selected from the group consisting of m 2 O 3 and Sc 2 O 3 is added in an amount of 14 to 30 mol% in terms of MO 1.5 (M: metal element), and the average ionic radius of the additive is 0.7
A zirconia solid electrolyte having a thickness of 5 to 0.86 ° and substantially consisting of a single phase of cubic zirconia.
JP4259468A 1992-09-29 1992-09-29 Zirconia solid electrolyte Expired - Fee Related JP3034132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4259468A JP3034132B2 (en) 1992-09-29 1992-09-29 Zirconia solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4259468A JP3034132B2 (en) 1992-09-29 1992-09-29 Zirconia solid electrolyte

Publications (2)

Publication Number Publication Date
JPH06116026A JPH06116026A (en) 1994-04-26
JP3034132B2 true JP3034132B2 (en) 2000-04-17

Family

ID=17334499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4259468A Expired - Fee Related JP3034132B2 (en) 1992-09-29 1992-09-29 Zirconia solid electrolyte

Country Status (1)

Country Link
JP (1) JP3034132B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9096198A (en) * 1997-09-24 1999-04-12 Nippon Shokubai Co., Ltd. Zirconia sinter for solid electrolite and process for producing the same
JP2000340240A (en) * 1999-05-31 2000-12-08 Toho Gas Co Ltd High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same
JP2005259556A (en) * 2004-03-12 2005-09-22 Nissan Motor Co Ltd Solid electrolyte and its manufacturing method
JP2007008775A (en) * 2005-06-30 2007-01-18 National Institute Of Advanced Industrial & Technology Porous zirconia thick film and method of manufacturing the same
CN100347130C (en) * 2006-03-03 2007-11-07 中国科学院上海硅酸盐研究所 Ytterbium oxide and yttrium oxide co-stabilized zirconia ceramic material and its prepn process
JP5311913B2 (en) * 2008-07-28 2013-10-09 東邦瓦斯株式会社 Method for producing high ion conductive solid electrolyte material
JP5194051B2 (en) * 2010-05-14 2013-05-08 日本特殊陶業株式会社 Gas sensor element and gas sensor
KR101867161B1 (en) * 2016-06-28 2018-06-14 주식회사케이세라셀 Scandia stabilized zirconia electrolyte for solid oxide fuel cells with improved reducing atmosphere stability

Also Published As

Publication number Publication date
JPH06116026A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
US5264402A (en) Non-reducible dielectric ceramic composition
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
JP3034132B2 (en) Zirconia solid electrolyte
JPH08208333A (en) Conductive material for oxygen ion and its production
JP3450903B2 (en) Non-reducing dielectric porcelain composition
JP3260988B2 (en) Method for producing solid electrolyte
JP3368602B2 (en) Non-reducing dielectric porcelain composition
JP3121982B2 (en) Conductive ceramics
Longtu et al. Low temperature sintering of PZT ceramics
JP2001002464A (en) High-voltage-withstanding aluminous sintered compact and its production
JP3121993B2 (en) Method for producing conductive ceramics
EP0128956A4 (en) Low firing ceramic dielectric for temperature compensating capacitors.
JPH0258232B2 (en)
JP3323923B2 (en) Zirconia polycrystalline thin film and method for producing the same
JP2005126269A (en) Oxide ion conductor and its manufacturing method
JPH05844A (en) Heat resistant conductive sintered body
JPH0629140B2 (en) Piezoelectric element material and manufacturing method thereof
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JP3385630B2 (en) Non-reducing dielectric porcelain composition
JP3091100B2 (en) Method for producing conductive ceramics
JPH07215759A (en) Zirconia porcelain and its production
KR950010002B1 (en) Method for preparing piezo electric ceramics
JP2762280B2 (en) Sintered body
JPS6222949B2 (en)
JP3012021B2 (en) Phosphoric acid-based sintered body and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees