JPH0627320A - Double refractive diffraction grating type polarizer - Google Patents

Double refractive diffraction grating type polarizer

Info

Publication number
JPH0627320A
JPH0627320A JP18326892A JP18326892A JPH0627320A JP H0627320 A JPH0627320 A JP H0627320A JP 18326892 A JP18326892 A JP 18326892A JP 18326892 A JP18326892 A JP 18326892A JP H0627320 A JPH0627320 A JP H0627320A
Authority
JP
Japan
Prior art keywords
diffraction grating
wavelength
incident light
exchange region
extinction ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18326892A
Other languages
Japanese (ja)
Other versions
JP2848137B2 (en
Inventor
Ryuichi Katayama
龍一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4183268A priority Critical patent/JP2848137B2/en
Publication of JPH0627320A publication Critical patent/JPH0627320A/en
Application granted granted Critical
Publication of JP2848137B2 publication Critical patent/JP2848137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain an extinction ratio sufficient for practicable use over a wide wavelength range of incident light. CONSTITUTION:The diffraction gratings of proton exchange regions 18 and phase compensation films 19 are formed on a surface 16 of a lithium niobate substrate 15. The diffraction gratings of proton exchange regions 20 and phase compensation films 21 are formed on the surface 17. The phase difference between the line parts and base parts of the diffraction gratings of the surface 16 is 0 with an ordinary light component and pi with an extraordinary light component in the case of a wavelength lambda1 of incident light. The phase difference between the line parts and base parts of the diffraction gratings of the surface 17 is 0 with the ordinary light component and pi with the extraordinary light component in the case of a wavelength lambda2 (lambda1<lambda2) of the incident light. The high extinction ratio is obtd. by the diffraction gratings formed on the surface 16 if the wavelength of the incident light is smaller than lambda1. The high extinction ratio is obtd. by the diffraction gratings formed on the surface 17 if the wavelength of the incident light is larger than lambda2. The necessary extinction ratio is assured by adequately determining the values of the ' lambda1, lambda2 even if the wavelength of the incident light exists between the lambda1 and the lambda2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信装置や光情報処理
装置に用いる複屈折回折格子型偏光子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringent diffraction grating type polarizer used in an optical communication device or an optical information processing device.

【0002】[0002]

【従来の技術】偏光子は入射光のうちの特定の偏光成分
のみを取り出す素子であり、光通信用光源モジュールや
光ディスクヘッド、投写型ディスプレイ等の光学系中に
用いられている。偏光子の種類としては、グラントムソ
ンプリズム等の複屈折性の結晶における偏光による屈折
率の違いを利用するものや、ガラスの表面に誘電体多層
膜をコーティングし、この誘電体多層膜における偏光に
よる透過率、反射率の違いを利用するものが多く使われ
ている。これらに対し、近年、小型で低価格であること
を特徴とした、特開昭63−314502公報に示すよ
うな複屈折回折格子型偏光子が提案されている。
2. Description of the Related Art A polarizer is an element for extracting only a specific polarization component of incident light, and is used in an optical system such as a light source module for optical communication, an optical disk head, and a projection display. As the type of polarizer, one that utilizes the difference in the refractive index due to polarization in birefringent crystals such as Glan-Thompson prisms, or a dielectric multilayer film is coated on the surface of glass The one that uses the difference between the transmittance and the reflectance is often used. On the other hand, in recent years, a birefringent diffraction grating type polarizer as disclosed in Japanese Patent Laid-Open No. 63-314502 has been proposed, which is characterized by its small size and low price.

【0003】図3に従来の複屈折回折格子型偏光子の構
成を示す。複屈折性を有するニオブ酸リチウム基板1上
に、プロトン交換領域2および位相補償膜3から成る二
層の回折格子が形成されている。位相補償膜3として
は、例えばNb2 3 が用いられる。また、回折格子の
ライン部とスペース部の幅は等しい。ここで次のように
記号を定めると、式(1)〜(3)が成り立つ。
FIG. 3 shows the structure of a conventional birefringent diffraction grating type polarizer. A bilayer diffraction grating including a proton exchange region 2 and a phase compensation film 3 is formed on a lithium niobate substrate 1 having birefringence. As the phase compensation film 3, Nb 2 O 3 is used, for example. In addition, the line portion and the space portion of the diffraction grating have the same width. Here, if the symbols are defined as follows, equations (1) to (3) are established.

【0004】η0 :0次光の回折効率(透過率) η1 :±1次光の回折効率の和 λ :入射光の波長 Tp :プロトン交換領域の深さ Td :位相補償膜の厚さ Δn:プロトン交換領域と非交換領域の屈折率差 nd :位相補償膜の屈折率 η0 =cos2 γ …(1) η1 =2(2/π)2 sin2 γ …(2) γ=(π/λ)[Tp Δn+Td (nd −1)] …(3) 図4にこの複屈折回折格子型偏光子における入射光の位
相変化を示す。(a)は光学軸に垂直な偏光成分(常光
成分)に対応しており、プロトン交換領域における位相
変化量4と位相補償膜における位相変化量5の符号は逆
である。(b)は光学軸に平行な偏光成分(異常光成
分)に対応しており、プロトン交換領域における位相変
化量6と位相補償膜における位相変化量7の符号は同じ
である。図に示すように、Tp およびTd を適当に定め
ることにより、回折格子のライン部とスペース部の位相
差2γを、常光成分に対しては0、異常光成分に対して
はπにすることができる。従って式(1),(2)よ
り、常光成分はη0 =1,η1=0となるため回折され
ずに全て透過し、異常光成分はη0 =0,η1 =0.8
1となるため透過せずに全て回折される。
Η 0 : Diffraction efficiency (transmittance) of 0th order light η 1 : Sum of diffraction efficiency of ± 1st order light λ: Wavelength of incident light T p : Depth of proton exchange region T d : Phase compensation film the thickness [Delta] n: refractive index difference of the proton exchange region and the non-exchange region n d: refractive index η 0 = cos 2 γ ... ( 1) of the phase compensation film η 1 = 2 (2 / π ) 2 sin 2 γ ... (2 ) Γ = (π / λ) [T p Δn + T d (n d -1)] (3) FIG. 4 shows the phase change of incident light in this birefringent diffraction grating type polarizer. (A) corresponds to the polarization component (ordinary component) perpendicular to the optical axis, and the sign of the phase change amount 4 in the proton exchange region and the sign of the phase change amount 5 in the phase compensation film are opposite. (B) corresponds to the polarization component (extraordinary light component) parallel to the optical axis, and the signs of the phase change amount 6 in the proton exchange region and the phase change amount 7 in the phase compensation film are the same. As shown in the figure, by appropriately setting T p and T d , the phase difference 2γ between the line portion and the space portion of the diffraction grating is set to 0 for the ordinary light component and π for the extraordinary light component. be able to. Therefore, according to the equations (1) and (2), the ordinary light component is η 0 = 1 and η 1 = 0, so that all are transmitted without being diffracted, and the extraordinary light component is η 0 = 0, η 1 = 0.8
Since it is 1, all light is diffracted without being transmitted.

【0005】[0005]

【発明が解決しようとする課題】図3に示す従来の複屈
折回折格子型偏光子において、入射光の波長が偏光子の
設計波長からずれると、それに伴って入射光の位相変化
も図4に示す状態からずれる。ここで偏光子の設計波長
をλ0 とし、Δnおよびnd の波長依存性は小さいので
無視して考える。常光成分に対しては、図4(a)に示
すプロトン交換領域における位相変化量4と位相補償膜
における位相変化量5のいずれが相殺されるため、常に
γ=0となる。一方、異常光成分に対しては、図4
(b)に示すプロトン交換領域における位相変化量6と
位相補償膜における位相変化量7のずれが加算されるた
め、γ=(πλ0 /2λ)となる。
In the conventional birefringent diffraction grating type polarizer shown in FIG. 3, when the wavelength of the incident light deviates from the design wavelength of the polarizer, the phase change of the incident light also changes as shown in FIG. It deviates from the state shown. Here, the design wavelength of the polarizer is set to λ 0 , and since the wavelength dependence of Δn and n d is small, it is ignored. For the ordinary light component, either of the phase change amount 4 in the proton exchange region and the phase change amount 5 in the phase compensation film shown in FIG. On the other hand, for the extraordinary light component,
Since the deviation between the phase change amount 6 in the proton exchange region and the phase change amount 7 in the phase compensation film shown in (b) is added, γ = (πλ 0 / 2λ).

【0006】偏光子の重要な性能として、常光成分の透
過率と異常光成分の透過率の比で与えられる消光比が挙
げられる。消光比をε1 とすると、式(4)が成り立
つ。
An important performance of the polarizer is the extinction ratio given by the ratio of the transmittance of the ordinary light component and the transmittance of the extraordinary light component. If the extinction ratio is ε 1 , then equation (4) holds.

【0007】 ε1 =−10log[cos2 (πλ0 /2λ)] …(4) 図5にλ0 =520nmとしたときの、この複屈折回折
格子型偏光子における入射光の波長λと消光比ε1 の関
係を計算した結果を示す。入射光の波長が設計波長から
ずれるに従って消光比は低下し、可視光領域の下限波長
である390nmおよび上限波長である780nmにお
いては、約6dBの消光比しか得られないことがわか
る。
Ε 1 = −10 log [cos 2 (πλ 0 / 2λ)] (4) When λ 0 = 520 nm in FIG. 5, the wavelength λ and the extinction of incident light in this birefringent diffraction grating polarizer are set. The result of calculating the relationship of the ratio ε 1 is shown. It can be seen that the extinction ratio decreases as the wavelength of the incident light deviates from the design wavelength, and only an extinction ratio of about 6 dB can be obtained at the lower limit wavelength of 390 nm and the upper limit wavelength of 780 nm in the visible light region.

【0008】このような消光比の低下を抑制するため
に、回折格子を二重化する方法が提案されている。図6
に二重化した複屈折回折格子型偏光子の構成を示す。ニ
オブ酸リチウム基板8の第一の面9上に、プロトン交換
領域11および位相補償膜12から成る二層の回折格子
が形成されている。さらに、ニオブ酸リチウム基板8の
第二の面10上に、プロトン交換領域13および位相補
償膜14から成る二層の回折格子が形成されている。プ
ロトン交換領域11と13の深さは共にT0 であり、位
相補償膜12と14の厚さは共にTd である。また、2
度回折された光が透過光に重ならないように、二つの回
折格子の溝の方向は互いに直交している。この二重化し
た偏光子の消光比をε2 とすると、式(5)が成り立
つ。
In order to suppress such a decrease in the extinction ratio, a method has been proposed in which the diffraction grating is duplicated. Figure 6
The structure of the birefringent diffraction grating type polarizer doubled is shown in FIG. On the first surface 9 of the lithium niobate substrate 8, a two-layer diffraction grating composed of the proton exchange region 11 and the phase compensation film 12 is formed. Furthermore, on the second surface 10 of the lithium niobate substrate 8, a two-layer diffraction grating including the proton exchange region 13 and the phase compensation film 14 is formed. The depths of the proton exchange regions 11 and 13 are both T 0 , and the thicknesses of the phase compensation films 12 and 14 are both T d . Also, 2
The directions of the grooves of the two diffraction gratings are orthogonal to each other so that the diffracted light does not overlap the transmitted light. If the extinction ratio of this doubled polarizer is ε 2 , then equation (5) holds.

【0009】 ε2 =−20log[cos2 (πλ0 /2λ)] …(5) 図7にλ0 =520nmとしたときの、この複屈折回折
格子型偏光子における入射光の波長λと消光比ε2 の関
係を計算した結果を示す。入射光の波長ずれに伴う消光
比の低下量は抑制されており、可視光領域の下限波長で
ある390nmおよび上限波長である780nmにおい
ては、約12dBの消光比が得られているが、まだ十分
とは言えない。
Ε 2 = −20 log [cos 2 (πλ 0 / 2λ)] (5) When λ 0 = 520 nm in FIG. 7, the wavelength λ and the extinction of incident light in this birefringent diffraction grating polarizer are set. The result of calculating the relationship of the ratio ε 2 is shown. The amount of decrease in the extinction ratio due to the wavelength shift of the incident light is suppressed, and an extinction ratio of about 12 dB is obtained at the lower limit wavelength of 390 nm and the upper limit wavelength of 780 nm in the visible light region, but it is still sufficient. It can not be said.

【0010】本発明の目的は、入射光の広い波長範囲に
わたって十分な消光比が得られる複屈折回折格子型偏光
子を提供することにある。
An object of the present invention is to provide a birefringent diffraction grating type polarizer which can obtain a sufficient extinction ratio over a wide wavelength range of incident light.

【0011】[0011]

【課題を解決するための手段】本発明の複屈折回折格子
型偏光子は、複屈折性を有する結晶基板の第一の面に、
周期的なイオン交換領域およびこのイオン交換領域上に
設けられた誘電体膜からなる回折格子が形成され、かつ
前記第一の面と対向する第二の面に、前記周期的なイオ
ン交換領域およびこのイオン交換領域上に設けられた誘
電体膜からなる回折格子が、前記第一の面に形成された
回折格子と溝の方向が直交して形成される複屈折回折格
子型偏光子において、前記第一の面に形成された回折格
子では、第一の波長の入射光のうちイオン交換領域およ
び誘電体膜を通過する部分と通過しない部分の位相差が
常光成分に対しては0、異常光成分に対してはπとなる
ようなイオン交換領域の深さと誘電体膜の厚さを有し、
かつ前記第二の面に形成された回折格子では、前記第一
の波長と異なる第二の波長の入射光のうちイオン交換領
域および誘電体膜を通過する部分と通過しない部分の位
相差が常光成分に対しては0、異常光成分に対してはπ
となるイオン交換領域の深さと誘電体膜の厚さとを有す
ることを特徴とする。
A birefringent diffraction grating type polarizer of the present invention comprises: a first surface of a crystal substrate having birefringence;
A diffraction grating composed of a periodic ion exchange region and a dielectric film provided on the ion exchange region is formed, and the periodic ion exchange region and the second face opposite to the first face are formed. In the birefringence diffraction grating type polarizer in which the diffraction grating formed of the dielectric film provided on the ion exchange region is formed such that the direction of the groove is orthogonal to the diffraction grating formed on the first surface, In the diffraction grating formed on the first surface, the phase difference between the portion of the incident light of the first wavelength that passes through the ion exchange region and the dielectric film and the portion that does not pass through is 0 for the ordinary light component, and the extraordinary light. For the component, it has a depth of the ion exchange region and a thickness of the dielectric film such that it becomes π,
And, in the diffraction grating formed on the second surface, the phase difference between the portion that passes through the ion exchange region and the dielectric film and the portion that does not pass through is the ordinary light of the incident light of the second wavelength different from the first wavelength. 0 for the component and π for the extraordinary light component
And a thickness of the dielectric film.

【0012】[0012]

【作用】本発明の複屈折回折格子型偏光子においては、
結晶基板の第一の面に形成された回折格子の第二の面に
形成された回折格子で設計波長が異なっている。それぞ
れの回折格子に対する設計波長をλ1 ,λ2 とし、λ1
<λ0 <λ2 であるとする。入射光の波長がλ1 より小
さい場合、主に第一の面に形成された回折格子の寄与に
より、従来例より高い消光比が得られる。一方、入射光
の波長がλ2 より大きい場合、主に第二の面に形成され
た回折格子の寄与により、従来例より高い消光比が得ら
れる。また、入射光の波長がλ1 とλ2 の間にある場
合、消光比が従来例に比べて低下する領域が存在する
が、λ1 ,λ2 の値を適当に定めることにより、必要な
消光比を確保することが可能である。その結果、従来例
より広い波長範囲にわたって、実用上十分な高い消光比
を得ることができる。
In the birefringent diffraction grating type polarizer of the present invention,
Design wavelengths are different in the diffraction grating formed on the second surface of the diffraction grating formed on the first surface of the crystal substrate. The design wavelength for each of the diffraction grating lambda 1, and lambda 2, lambda 1
It is assumed that <λ 02 . When the wavelength of the incident light is smaller than λ 1 , the extinction ratio higher than that of the conventional example can be obtained mainly due to the contribution of the diffraction grating formed on the first surface. On the other hand, when the wavelength of the incident light is larger than λ 2 , the extinction ratio higher than that of the conventional example can be obtained mainly due to the contribution of the diffraction grating formed on the second surface. Further, when the wavelength of the incident light is between λ 1 and λ 2 , there is a region where the extinction ratio is lower than that of the conventional example, but it is necessary to set the values of λ 1 and λ 2 appropriately. It is possible to secure an extinction ratio. As a result, a practically sufficient high extinction ratio can be obtained over a wider wavelength range than the conventional example.

【0013】[0013]

【実施例】以下に図面を参照して本発明の実施例につい
て説明する。図1は本発明の複屈折回折格子型偏光子の
一実施例を示す斜視図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the birefringent diffraction grating type polarizer of the present invention.

【0014】ニオブ酸リチウム基板15の第一の面16
上に、プロトン交換領域18および位相補償膜19から
成る二層の回折格子が形成されている。さらに、ニオブ
酸リチウム基板15の第二の面17上に、プロトン交換
領域20および位相補償膜21から成る二層の回折格子
が形成されている。
First surface 16 of lithium niobate substrate 15
A two-layer diffraction grating composed of the proton exchange region 18 and the phase compensation film 19 is formed on the top. Further, on the second surface 17 of the lithium niobate substrate 15, a two-layer diffraction grating including the proton exchange region 20 and the phase compensation film 21 is formed.

【0015】プロトン交換領域18および20の深さは
それぞれTp1,Tp2であり、位相補償膜19および21
の厚さはそれぞれTd1,Td2である。また、2度回折さ
れた光が透過光に重ならないように、二つの回折格子の
溝の方向は互いに直交している。Tp1とTd1の値は、入
射光の波長がλ1 の場合に、回折格子のライン部とスペ
ース部の位相差が常光成分に対しては0、異常光成分に
対してはπになるように定められている。また、Tp2
d2の値は、入射光の波長がλ2 の場合に、回折格子の
ライン部とスペース部の位相差が常光成分に対しては
0、異常光成分に対してはπになるように定められてい
る。この偏光子の消光比をεとすると、式(6)が成り
立つ。
The depths of the proton exchange regions 18 and 20 are T p1 and T p2 , respectively, and the phase compensation films 19 and 21.
Have thicknesses of T d1 and T d2 , respectively. The directions of the grooves of the two diffraction gratings are orthogonal to each other so that the light diffracted twice does not overlap the transmitted light. The values of T p1 and T d1 are 0 for the ordinary light component and π for the extraordinary light component when the incident light wavelength is λ 1 and the phase difference between the line portion and the space portion of the diffraction grating is 0. Has been defined. The values of T p2 and T d2 are such that the phase difference between the line portion and the space portion of the diffraction grating is 0 for the ordinary light component and π for the extraordinary light component when the wavelength of the incident light is λ 2. Is set to be. If the extinction ratio of this polarizer is ε, then equation (6) holds.

【0016】 ε=−10log[cos2 (πλ1 /2λ)] −10log[cos2 (πλ2 /2λ)] …(6) 図2にλ1 =420nm,λ2 =690nmとしたとき
の、この複屈折回折格子型偏光子における入射光の波長
λと消光比εの関係を計算した結果を示す。可視光領域
を完全に含む380nmから810nmまでの広い波長
範囲にわたって16dB以上の高い消光比が得られてお
り、必要な消光比を確保することのできる波長範囲が従
来例に比べて拡大していることがわかる。
Ε = −10 log [cos 2 (πλ 1 / 2λ)] −10log [cos 2 (πλ 2 / 2λ)] (6) When λ 1 = 420 nm and λ 2 = 690 nm in FIG. 2, The results of calculating the relationship between the wavelength λ of incident light and the extinction ratio ε in this birefringent diffraction grating type polarizer are shown. A high extinction ratio of 16 dB or more has been obtained over a wide wavelength range from 380 nm to 810 nm that completely includes the visible light region, and the wavelength range in which the necessary extinction ratio can be secured is expanded compared to the conventional example. I understand.

【0017】[0017]

【発明の効果】以上に述べたように本発明によれば、入
射光の広い波長範囲にわたって実用上十分な高い消光比
を実現することが可能な複屈折回折型偏光子を得ること
ができる。
As described above, according to the present invention, it is possible to obtain a birefringent diffractive polarizer capable of realizing a practically sufficient high extinction ratio over a wide wavelength range of incident light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複屈折回折格子型偏光子の一実施例を
示す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a birefringent diffraction grating type polarizer of the present invention.

【図2】本実施例における入射光の波長の消光比の関係
を示す相関図である。
FIG. 2 is a correlation diagram showing the relationship of the extinction ratio of the wavelength of incident light in this example.

【図3】従来の複屈折回折格子型偏光子の一例を示す側
面図である。
FIG. 3 is a side view showing an example of a conventional birefringent diffraction grating type polarizer.

【図4】従来例における入射光の位相変化を示す図であ
る。
FIG. 4 is a diagram showing a phase change of incident light in a conventional example.

【図5】従来例における入射光の波長と消光比の関係を
示す相関図である。
FIG. 5 is a correlation diagram showing the relationship between the wavelength of incident light and the extinction ratio in the conventional example.

【図6】従来例の二重化した複屈折回折格子型偏光子を
示す斜視図である。
FIG. 6 is a perspective view showing a doubled birefringent diffraction grating type polarizer of a conventional example.

【図7】従来例の二重化した複屈折回折格子型偏光子に
おける入射光の波長と消光比の関係を示す相関図であ
る。
FIG. 7 is a correlation diagram showing the relationship between the wavelength of incident light and the extinction ratio in the doubled birefringent diffraction grating type polarizer of the conventional example.

【符号の説明】[Explanation of symbols]

1 ニオブ酸リチウム基板 2 プロトン交換領域 3 位相補償膜 4 プロトン交換領域における位相変化量 5 位相補償膜における位相変化量 6 プロトン交換領域における位相変化量 7 位相補償膜における位相変化量 8 ニオブ酸リチウム基板 9 第一の面 10 第二の面 11 プロトン交換領域 12 位相補償膜 13 プロトン交換領域 14 位相補償膜 15 ニオブ酸リチウム基板 16 第一の面 17 第二の面 18 プロトン交換領域 19 位相補償膜 20 プロトン交換領域 21 位相補償膜 1 Lithium niobate substrate 2 Proton exchange region 3 Phase compensation film 4 Phase change amount in proton exchange region 5 Phase change amount in phase compensation film 6 Phase change amount in proton exchange region 7 Phase change amount in phase compensation film 8 Lithium niobate substrate 9 First surface 10 Second surface 11 Proton exchange region 12 Phase compensation film 13 Proton exchange region 14 Phase compensation film 15 Lithium niobate substrate 16 First surface 17 Second surface 18 Proton exchange region 19 Phase compensation film 20 Proton exchange region 21 Phase compensation film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複屈折性を有する結晶基板の第一の面
に、周期的なイオン交換領域およびこのイオン交換領域
上に設けられた誘電体膜からなる回折格子が形成され、
かつ前記第一の面と対向する第二の面に、前記周期的な
イオン交換領域およびこのイオン交換領域上に設けられ
た誘電体膜からなる回折格子が、前記第一の面に形成さ
れた回折格子と溝の方向が直交して形成される複屈折回
折格子型偏光子において、前記第一の面に形成された回
折格子では、第一の波長の入射光のうちイオン交換領域
および誘電体膜を通過する部分と通過しない部分の位相
差が常光成分に対しては0、異常光成分に対してはπと
なるようなイオン交換領域の深さと誘電体膜の厚さを有
し、かつ前記第二の面に形成された回折格子では、前記
第一の波長と異なる第二の波長の入射光のうちイオン交
換領域および誘電体膜を通過する部分と通過しない部分
の位相差が常光成分に対しては0、異常光成分に対して
はπとなるイオン交換領域の深さと誘電体膜の厚さとを
有することを特徴とする複屈折回折格子型偏光子。
1. A diffraction grating composed of a periodic ion exchange region and a dielectric film provided on the ion exchange region is formed on a first surface of a crystal substrate having birefringence,
Further, on the second surface facing the first surface, a diffraction grating composed of the periodic ion exchange region and a dielectric film provided on the ion exchange region is formed on the first face. In a birefringent diffraction grating type polarizer in which the directions of the diffraction grating and the groove are orthogonal to each other, in the diffraction grating formed on the first surface, in the incident light of the first wavelength, the ion exchange region and the dielectric The depth of the ion exchange region and the thickness of the dielectric film are such that the phase difference between the part that passes through the film and the part that does not pass becomes 0 for the ordinary light component and π for the extraordinary light component, and In the diffraction grating formed on the second surface, the phase difference between the portion of the incident light of the second wavelength different from the first wavelength that passes through the ion exchange region and the dielectric film and the portion that does not pass is the ordinary light component. Is 0 for, and π is for the extraordinary light component. A birefringent diffraction grating type polarizer having a depth of an exchange region and a thickness of a dielectric film.
JP4183268A 1992-07-10 1992-07-10 Birefringent diffraction grating polarizer Expired - Fee Related JP2848137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4183268A JP2848137B2 (en) 1992-07-10 1992-07-10 Birefringent diffraction grating polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4183268A JP2848137B2 (en) 1992-07-10 1992-07-10 Birefringent diffraction grating polarizer

Publications (2)

Publication Number Publication Date
JPH0627320A true JPH0627320A (en) 1994-02-04
JP2848137B2 JP2848137B2 (en) 1999-01-20

Family

ID=16132694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4183268A Expired - Fee Related JP2848137B2 (en) 1992-07-10 1992-07-10 Birefringent diffraction grating polarizer

Country Status (1)

Country Link
JP (1) JP2848137B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420275A1 (en) * 2001-08-24 2004-05-19 Asahi Glass Company, Limited Multi-layer diffraction type polarizer and liquid crystal element
WO2006059690A1 (en) * 2004-12-02 2006-06-08 Asahi Glass Company, Limited Projection-type display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420275A1 (en) * 2001-08-24 2004-05-19 Asahi Glass Company, Limited Multi-layer diffraction type polarizer and liquid crystal element
EP1420275A4 (en) * 2001-08-24 2005-11-16 Asahi Glass Co Ltd Multi-layer diffraction type polarizer and liquid crystal element
US7079202B2 (en) 2001-08-24 2006-07-18 Asahi Glass Company, Limited Multi-layer diffraction type polarizer and liquid crystal element
US7764354B2 (en) 2001-08-24 2010-07-27 Asahi Glass Company, Limited Multi-layer diffraction type polarizer and liquid crystal element
WO2006059690A1 (en) * 2004-12-02 2006-06-08 Asahi Glass Company, Limited Projection-type display device
JPWO2006059690A1 (en) * 2004-12-02 2008-06-05 旭硝子株式会社 Projection display
JP2009294679A (en) * 2004-12-02 2009-12-17 Asahi Glass Co Ltd Projection-type display device
JP4670813B2 (en) * 2004-12-02 2011-04-13 旭硝子株式会社 Projection display

Also Published As

Publication number Publication date
JP2848137B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
US7764354B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
EP0612068B1 (en) Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
US5029988A (en) Birefringence diffraction grating type polarizer
EP0349144B1 (en) Birefringence diffraction grating type polarizer
US6356325B1 (en) LCD with compensators in the inclined direction
JP4792679B2 (en) Isolator and variable voltage attenuator
US6384974B1 (en) Polarization beam splitter
EP0474237B1 (en) Prism optical device and polarizer using it
JP2848137B2 (en) Birefringent diffraction grating polarizer
JP3228773B2 (en) Optical isolator
JPH06194523A (en) Hologram element and its production
JPH1010307A (en) Production of optical diffraction gating and optical head device formed by using the same
JPH04121703A (en) Phase difference element
JP2718112B2 (en) Birefringent diffraction grating polarizer and method of manufacturing the same
JP2789941B2 (en) How to use birefringent diffraction grating polarizer
JP2658818B2 (en) Birefringent diffraction grating polarizer and optical head device
JP4534318B2 (en) Polarizing element
JP3299383B2 (en) Polarizing beam splitter and optical head device using the same
JP3431253B2 (en) Hologram recording method
JPH06130224A (en) Polarizing beam splitter
JPH06222383A (en) Liquid crystal spatial optical modulation element
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JPH04263205A (en) Double refractive diffraction grating type polarizer and optical isolator
KR100683137B1 (en) Reflective type fringe field switching mode lcd
JPH0652349B2 (en) Light modulator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981006

LAPS Cancellation because of no payment of annual fees