JPH06130224A - Polarizing beam splitter - Google Patents

Polarizing beam splitter

Info

Publication number
JPH06130224A
JPH06130224A JP27742092A JP27742092A JPH06130224A JP H06130224 A JPH06130224 A JP H06130224A JP 27742092 A JP27742092 A JP 27742092A JP 27742092 A JP27742092 A JP 27742092A JP H06130224 A JPH06130224 A JP H06130224A
Authority
JP
Japan
Prior art keywords
refractive index
optical multilayer
multilayer film
light
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27742092A
Other languages
Japanese (ja)
Inventor
Toshimasa Hamada
敏正 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP27742092A priority Critical patent/JPH06130224A/en
Publication of JPH06130224A publication Critical patent/JPH06130224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain the light weight and miniaturization of the whole optical system by arranging optical multilayer film protruded on a transparent substrate and a material having, specific refractive index between the optical multilayer films, and comprising the optical multilayer film by applying specific film repeatedly. CONSTITUTION:Assuming an equivalent refractive index for first polarized light as M1 and that for second polarized light as N2 when an incident direction is decided, a diffraction grating in which the optical multilayer film 2 is stacked partially and the material 3 with refractive index N2 is arranged in an area where no optical multilayer film 2 is stacked is generated. When light is made incident on such diffraction grating, it functions as the diffraction grating of refractive index change type of refractive index N1 and refractive index N2 for the first polarized light, and light is emitted as diffracted light 5. As for the second polarized light, a function as the diffraction grating is not provided since the refractive index of the optical multilayer film 2 coincides with that of the arranged material 3, and light is transmitted as it is as non-diffracted light 6. Therefore, it is possible to comprise a polarizing beam splitter of plate shape by forming such diffraction grating on a thin substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏光ビームスプリッタ
に関する。さらに詳しくは、光磁気ディスク等の光学式
情報読み取り装置、光学式情報書き込み装置に使用され
る偏光ビームスプリッタに関する。
FIELD OF THE INVENTION The present invention relates to a polarizing beam splitter. More specifically, the present invention relates to a polarization beam splitter used in an optical information reading device such as a magneto-optical disk and an optical information writing device.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】従来の偏
光子として(i)ニコルプリズムのように結晶の複屈折
を利用した複屈折型偏光子、(ii)ポーラロイドのように
高分子の光2色性を利用した2色性偏光子、(iii) 偏光
角の性質を利用し、S偏光(入射面に垂直な振動面をも
つ偏光成分)の反射光を使う反射型偏光子と積層型偏光
子と呼ばれる透過型偏光子がある。薄膜を利用した薄膜
偏光子はプリズム型と平板型に分けられ、上記(iii) の
ように偏光角を利用したもの、斜入射の場合のS偏光と
P偏光(入射面に平行な振動面をもつ偏光成分)の不透
過帯の違いを利用したものがある。このような偏光子は
他の偏光子に比べ安価であり、反射光と透過光共に優れ
た偏光度が得られ、主にビームスプリッタとして使用さ
れている。
As a conventional polarizer, (i) a birefringent polarizer utilizing crystal birefringence like a Nicol prism, and (ii) a polymer like a polaroid. Dichroic polarizer utilizing dichroism of light, (iii) Layered with reflective polarizer that uses reflected light of S-polarized light (polarized light component having a vibration plane perpendicular to the incident plane) by utilizing the property of polarization angle There is a transmission type polarizer called a type polarizer. Thin film polarizers that use thin films are classified into prism type and flat plate type. Those that use the polarization angle as described in (iii) above, S-polarized light and P-polarized light in the case of oblique incidence (vibration plane parallel to the incident plane There is one that utilizes the difference in the opaque band of the polarized component. Such a polarizer is cheaper than other polarizers, can obtain an excellent polarization degree in both reflected light and transmitted light, and is mainly used as a beam splitter.

【0003】図5に従来使用されている偏光ビームスプ
リッタの一例を示す。この偏光ビームスプリッタはマク
ナイル型と呼ばれるタイプで、異なった2つの屈折率の
層を積層した薄膜層14を、プリズム15で挟み込んだ
構造になっている。この構造をもちいて偏光分離するた
めには、以下の式(1)を満たす必要がある。 sin2θG=nH 2nL 2/nG 2(nH 2 +nL 2) (1) (ここで、θGは入射角、n H は2つの層のうち高いほ
うの屈折率、nL は2つの層のうのうち低いほうの屈折
率及びnGはプリズム材料の屈折率を示す。)このような
マクナイル型偏光ビームスプリッタにおいて、例えば、
θG=45°、nH=2.1、nL=1.38とすると、上
記式(1)よりnG=1.63が得られ、この屈折率を持
つ材料でプリズムを形成する必要がある。
FIG. 5 shows an example of a conventional polarization beam splitter. This polarization beam splitter is of a type called McNile type, and has a structure in which a prism 15 sandwiches a thin film layer 14 in which two layers having different refractive indexes are laminated. In order to separate the polarized light using this structure, it is necessary to satisfy the following formula (1). sin 2 θ G = n H 2 n L 2 / n G 2 (n H 2 + n L 2 ) (1) (where θ G is the angle of incidence, n H is the higher refractive index of the two layers, n L is the lower index of refraction of the two layers and n G is the index of refraction of the prism material.) In such a McNile polarization beam splitter,
When θ G = 45 °, n H = 2.1, and n L = 1.38, n G = 1.63 is obtained from the above formula (1), and it is necessary to form a prism with a material having this refractive index. There is.

【0004】上記のような、偏光ビームスプリッタで
は、使用する材料の屈折率に制限があり、プリズムを使
うことからも低価格化は非常に困難である。また、光学
系の小型化、軽量化を図る場合にも、プリズムのサイズ
と重量のために制限を受けてしまう。
In the polarization beam splitter as described above, the refractive index of the material used is limited, and it is very difficult to reduce the cost even by using a prism. Further, when the size and weight of the optical system are reduced, the size and weight of the prism impose restrictions.

【0005】[0005]

【課題を解決するための手段及び作用】かくして本発明
によれば、透明基板上に突設された光学多層膜と該光学
多層膜間に屈折率nをもつ材料が配設されてなり、前記
光学多層膜が対称な膜の繰り返しで構成され、かつ屈折
率nが、第1の偏光に対する等価屈折率あるいは第2の
偏光に対する等価屈折率と等しい材料からなることを特
徴とする偏光ビームスプリッタが提供される。
Thus, according to the present invention, an optical multilayer film projecting on a transparent substrate and a material having a refractive index n are disposed between the optical multilayer films. A polarization beam splitter is characterized in that the optical multilayer film is formed by repeating symmetrical films, and the refractive index n is made of a material having an equivalent refractive index for the first polarized light or an equivalent refractive index for the second polarized light. Provided.

【0006】図1に本発明の偏光ビームスプリッタの例
を示す。このような対称な膜の繰り返しで構成される光
学多層膜2は、光の波長、入射角及び偏光方向を固定す
ると、等価的に一つの屈折率の層に置き換えることがで
きる。このことは言い換えると、入射光4が斜めから入
射される場合、偏光方向によって屈折率が異なることを
意味する。
FIG. 1 shows an example of the polarization beam splitter of the present invention. The optical multilayer film 2 configured by repeating such symmetrical films can be equivalently replaced with a layer having one refractive index when the wavelength of light, the incident angle, and the polarization direction are fixed. In other words, this means that when the incident light 4 is obliquely incident, the refractive index differs depending on the polarization direction.

【0007】入射方向を決めたとき、第1の偏光に対す
る等価屈折率をN1、第2の偏光に対する等価屈折率を
N2とする。光学多層膜2を部分的に積層し、光学多層
膜2を積層していない領域に屈折率N2の材料3を配設
した回折格子を作製する。この回折格子に光が入射する
と、第1の偏光に対しては屈折率N1とN2の屈折率変
化型の回折格子として働き、回折光5として射出され、
第2の偏光に関しては、光学多層膜2の屈折率と配設材
料3の屈折率とが一致するため、回折格子としての働き
はせず、非回折光6としてそのまま透過する。従って、
この回折格子を薄い基板上に形成すれば、図1のような
平板型の偏光ビームスプリッタを構成することが可能に
なる。
When the incident direction is determined, the equivalent refractive index for the first polarized light is N1 and the equivalent refractive index for the second polarized light is N2. An optical multilayer film 2 is partially laminated, and a diffraction grating in which a material 3 having a refractive index N2 is arranged in a region where the optical multilayer film 2 is not laminated is produced. When light is incident on this diffraction grating, it acts as a diffraction grating of the refractive index change type having refractive indexes N1 and N2 for the first polarized light, and is emitted as diffracted light 5.
Regarding the second polarized light, since the refractive index of the optical multilayer film 2 and the refractive index of the disposing material 3 are the same, the second polarized light does not function as a diffraction grating and is transmitted as the non-diffracted light 6 as it is. Therefore,
By forming this diffraction grating on a thin substrate, it becomes possible to form a flat plate type polarization beam splitter as shown in FIG.

【0008】本発明に使用できる透明基板としては、ガ
ラス、プラスチック等通常用いられる基板が使用でき
る。光学多層膜の構成としては、回折効率が最大となる
ように光学多層膜を構成することが好ましく、S偏光に
対する等価屈折率をNs、P偏光に対する等価屈折率を
Npとすると、その膜厚が d=λcosθ/|Ns−Np| となるように膜厚dを設定することが好ましい。
As the transparent substrate that can be used in the present invention, a commonly used substrate such as glass or plastic can be used. As the configuration of the optical multilayer film, it is preferable to configure the optical multilayer film so that the diffraction efficiency is maximized. If the equivalent refractive index for S-polarized light is Ns and the equivalent refractive index for P-polarized light is Np, the film thickness is It is preferable to set the film thickness d so that d = λcosθ / | Ns−Np |.

【0009】さらに光学多層膜の構成は、1層目と3層
目の層厚と屈折率がそれぞれ等しい3層膜を基本構造と
し、この基本構造をさらに積層することが好ましい。こ
のような層を構成する材料としては、屈折率1.4〜
2.5の材料が好ましく、例えばSiO2 ,TiO2
ZnS,MgF2 等が挙げられる。光学多層膜の積層方
法としては、電子ビーム蒸着法、スパッタ法等によって
積層された膜をリアクティブイオンエッチング、イオン
ミリング等のドライエッチング法により微細な回折格子
パターンを形成する方法が使用できる。
Further, it is preferable that the optical multilayer film has a basic structure of a three-layer film in which the first layer and the third layer have the same layer thickness and the same refractive index, and the basic structure is further laminated. As a material for forming such a layer, a refractive index of 1.4 to
2.5 materials are preferred, eg SiO 2 , TiO 2 ,
Examples include ZnS and MgF 2 . As a method of laminating the optical multilayer film, a method of forming a fine diffraction grating pattern by a dry etching method such as reactive ion etching or ion milling of a film laminated by an electron beam evaporation method, a sputtering method or the like can be used.

【0010】さらに、突設された上記光学多層膜間に配
設される、屈折率nを持つ材料としては、エポキシ系樹
脂等があげられる。この材料は突設された光学多層膜間
のみに配設されてもよく、図2に示すように光学多層膜
全体を覆うように形成することもできる。光学多層膜を
覆うように形成する場合、その膜厚は100μm以上が
好ましい。
Further, as a material having a refractive index n, which is disposed between the above-mentioned protruding optical multilayer films, an epoxy resin or the like can be cited. This material may be provided only between the protruding optical multilayer films, or may be formed so as to cover the entire optical multilayer film as shown in FIG. When it is formed so as to cover the optical multilayer film, its film thickness is preferably 100 μm or more.

【0011】ここで対称な3層膜を基本構造とする光学
多層膜を用いた場合の、偏光の原理を説明する。図3の
ような屈折率nR の層と、屈折率nQ の層からなる3層
膜に、波長λの光が角度θで入射したときを考える(対
称構造なので、1層目と3層目の屈折率は等しい。)。
このような対称な構造をもつ光学多層膜は、光の波長、
入射角及び偏光方向を固定すると、等価的に一つの屈折
率の層に置き換えることができる。等価屈折率は以下に
示す(2)式、(3)式から計算できる。
Here, the principle of polarization in the case of using an optical multilayer film having a symmetrical three-layer film as a basic structure will be described. Consider a case where light of wavelength λ is incident on a three-layer film including a layer having a refractive index n R and a layer having a refractive index n Q as shown in FIG. 3 at an angle θ (the first and third layers have a symmetric structure). The refractive indices of the eyes are equal.)
The optical multilayer film having such a symmetrical structure has a wavelength of light,
By fixing the incident angle and the polarization direction, it is possible to equivalently replace the layer with one refractive index. The equivalent refractive index can be calculated from the equations (2) and (3) shown below.

【0012】[0012]

【数1】 従って、入射方向を決めたとき、一つの偏光に対する等
価屈折率N1と他方の偏光に対する等価屈折率N2とは
異なった値をとることになる。光学多層膜を部分的に突
設し、光学多層膜を突設していない領域に屈折率N2の
材料を配設したレリーフ型回折格子を作製する。このよ
うな回折格子に光を入射すると、上記でも説明したよう
に、一方の偏光に対しては屈折率N1とN2の屈折率変
化型の回折格子として働くが、他方の偏光に対しては、
光学多層膜の屈折率と充填材料の屈折率が一致するため
回折格子としての働きはせず、光はそのまま透過する。
従って、3層型の光学多層膜を用いた場合でも平板型の
ビームスプリッタを構成することができる。
[Equation 1] Therefore, when the incident direction is determined, the equivalent refractive index N1 for one polarized light and the equivalent refractive index N2 for the other polarized light have different values. An optical multilayer film is partially projected, and a relief type diffraction grating in which a material having a refractive index N2 is arranged in a region where the optical multilayer film is not projected is manufactured. When light is incident on such a diffraction grating, as described above, it acts as a refractive index change type diffraction grating with a refractive index of N1 and N2 for one polarized light, but for the other polarized light,
Since the refractive index of the optical multilayer film and the refractive index of the filling material are the same, they do not function as a diffraction grating and light is transmitted as it is.
Therefore, even when the three-layer type optical multilayer film is used, a flat plate type beam splitter can be configured.

【0013】[0013]

【実施例】以下に本発明の偏光ビームスプリッタの具体
例を示すが、これに限定されるものではない。図4に示
すように、ガラス基板1上に、電子ビーム蒸着法によっ
て1層目に膜厚λ/4のSiO2 7(屈折率1.4
6)、2層目に膜厚λ/2のTiO2 8(屈折率2.
3)及び3層目に膜厚λ/4のSiO2 9(屈折率1.
46)を積層し、個々の光学多層膜の間隔が10μmと
なるように、リアクティブイオンエッチング法によって
光学多層膜2を形成した。この光学多層膜のS偏光に対
する等価屈折率をNs、P偏光に対する等価屈折率をN
pは、入射角を30°とすると、それぞれNs=1.5
2、Np=1.74となる。
EXAMPLES Specific examples of the polarization beam splitter of the present invention are shown below, but the invention is not limited thereto. As shown in FIG. 4, a first layer of SiO 2 7 (having a refractive index of 1.4) was formed on the glass substrate 1 by electron beam evaporation.
6) TiO 2 8 having a film thickness of λ / 2 (refractive index 2.
3) and the third layer has a thickness of λ / 4 of SiO 2 9 (refractive index 1.
46) were laminated, and the optical multilayer film 2 was formed by the reactive ion etching method so that the distance between the individual optical multilayer films was 10 μm. The equivalent refractive index for S-polarized light of this optical multilayer film is Ns, and the equivalent refractive index for P-polarized light is N
p is Ns = 1.5 when the incident angle is 30 °.
2, Np = 1.74.

【0014】次に、上記光学多層膜間に屈折率nの材料
3を形成する。この材料3の屈折率nは、Nsあるいは
Npのいずれかに等しい材料を選ぶ必要があり、本実施
例の場合屈折率n=1.52のエポキシ系樹脂を光学多
層膜2間に配設した。さらに本実施例において、回折効
率が最大となるのは、膜厚dが d=λcosθ/|Ns−Np| となるときであるので、上記の数値を用いて計算する
と、約4λとなる。従って、上記光学多層膜の3層構成
を4個積層した構造が、回折効率が大きくなり最も好ま
しい。また3層構造を積層しても等価的な屈折率は同じ
なので、3層構造の条件がそのまま当てはまる。
Next, a material 3 having a refractive index n is formed between the optical multilayer films. It is necessary to select a material whose refractive index n of this material 3 is equal to either Ns or Np. In the case of this embodiment, an epoxy resin having a refractive index n = 1.52 is arranged between the optical multilayer films 2. . Further, in the present embodiment, the maximum diffraction efficiency occurs when the film thickness d becomes d = λcosθ / | Ns−Np |, and therefore, when calculated using the above numerical values, it becomes approximately 4λ. Therefore, a structure in which four three-layer structures of the above optical multilayer film are laminated is most preferable because the diffraction efficiency is increased. Further, even if the three-layer structure is laminated, the equivalent refractive index is the same, so the condition of the three-layer structure is directly applied.

【0015】[0015]

【発明の効果】本発明の方法によれば、一方の偏光に対
しては屈折率変化型の回折格子として働くが、他方の偏
光に対しては、光学多層膜の屈折率と充填材料の屈折率
が一致するため回折格子としての働きはせず、光はその
まま透過する。従って、平板型偏光ビームスプリッタと
しての機能を持ち、さらに、プリズムを用いず平板上に
形成できるので、薄型で軽量化を図ることができ、光学
系全体の軽量化、小型化が可能になる。
According to the method of the present invention, it acts as a refractive index changing type diffraction grating for one polarized light, but for the other polarized light, the refractive index of the optical multilayer film and the refractive index of the filling material. Since the rates are the same, they do not function as a diffraction grating and light is transmitted as it is. Therefore, since it has a function as a flat plate type polarization beam splitter and can be formed on a flat plate without using a prism, it can be made thin and lightweight, and the entire optical system can be made lightweight and compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の偏光ビームスプリッタの概略断面図で
ある。
FIG. 1 is a schematic sectional view of a polarizing beam splitter of the present invention.

【図2】本発明の偏光ビームスプリッタの概略断面図で
ある。
FIG. 2 is a schematic sectional view of a polarization beam splitter of the present invention.

【図3】3層構造からなる光学多層膜の拡大断面図であ
る。
FIG. 3 is an enlarged cross-sectional view of an optical multilayer film having a three-layer structure.

【図4】実施例に示した本発明の偏光ビームスプリッタ
の概略断面図である。
FIG. 4 is a schematic sectional view of a polarizing beam splitter of the present invention shown in an embodiment.

【図5】従来の偏光ビームスプリッタの概略断面図であ
る。
FIG. 5 is a schematic sectional view of a conventional polarization beam splitter.

【符号の説明】[Explanation of symbols]

1 透明基板 2 光学多層膜 3 屈折率nの材料 4 入射光 5 回折光 6 非回折光 7 SiO2 膜 8 TiO2 膜 9 SiO2 膜 14 薄膜層 15 プリズム1 Transparent Substrate 2 Optical Multilayer Film 3 Material with Refractive Index n 4 Incident Light 5 Diffracted Light 6 Nondiffracted Light 7 SiO 2 Film 8 TiO 2 Film 9 SiO 2 Film 14 Thin Film Layer 15 Prism

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に突設された光学多層膜と該
光学多層膜間に屈折率nをもつ材料が配設されてなり、
前記光学多層膜が対称な膜の繰り返しで構成され、かつ
屈折率nが、第1の偏光に対する等価屈折率あるいは第
2の偏光に対する等価屈折率と等しい材料からなること
を特徴とする偏光ビームスプリッタ。
1. An optical multilayer film projectingly provided on a transparent substrate, and a material having a refractive index n is disposed between the optical multilayer films,
The polarization beam splitter, wherein the optical multilayer film is formed by repeating symmetrical films, and the refractive index n is made of a material having an equivalent refractive index for the first polarized light or an equivalent refractive index for the second polarized light. .
【請求項2】 光学多層膜が少なくとも3層の積層層か
らなり、該積層層のうち1層目と3層目の屈折率と層厚
がそれぞれ等しい請求項1記載の偏光ビームスプリッ
タ。
2. The polarizing beam splitter according to claim 1, wherein the optical multilayer film is composed of at least three laminated layers, and the refractive index and the layer thickness of the first layer and the third layer of the laminated layers are equal to each other.
【請求項3】 光学多層膜全体が屈折率nをもつ材料で
被着されてなる請求項1又は2記載の偏光ビームスプリ
ッタ。
3. The polarization beam splitter according to claim 1, wherein the entire optical multilayer film is coated with a material having a refractive index n.
JP27742092A 1992-10-15 1992-10-15 Polarizing beam splitter Pending JPH06130224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27742092A JPH06130224A (en) 1992-10-15 1992-10-15 Polarizing beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27742092A JPH06130224A (en) 1992-10-15 1992-10-15 Polarizing beam splitter

Publications (1)

Publication Number Publication Date
JPH06130224A true JPH06130224A (en) 1994-05-13

Family

ID=17583308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27742092A Pending JPH06130224A (en) 1992-10-15 1992-10-15 Polarizing beam splitter

Country Status (1)

Country Link
JP (1) JPH06130224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739952A (en) * 1994-04-14 1998-04-14 Kabushiki Kaisha Sankyo Seiki Seisakusho Polarizing beam splitter and optical head assembly
JP2008107838A (en) * 2007-11-16 2008-05-08 Asahi Glass Co Ltd Optical head device
JP2012018413A (en) * 2011-09-02 2012-01-26 Asahi Glass Co Ltd Diffractive element and optical head device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739952A (en) * 1994-04-14 1998-04-14 Kabushiki Kaisha Sankyo Seiki Seisakusho Polarizing beam splitter and optical head assembly
JP2008107838A (en) * 2007-11-16 2008-05-08 Asahi Glass Co Ltd Optical head device
JP2012018413A (en) * 2011-09-02 2012-01-26 Asahi Glass Co Ltd Diffractive element and optical head device

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
JP4688394B2 (en) Embedded wire grid polarizer for the visible spectrum
US4991937A (en) Birefringence diffraction grating type polarizer
US5061050A (en) Polarizer
EP1510838A1 (en) Polarization beam splitter, optical system and image displaying apparatus using the same
US7012747B2 (en) Polarizing beam splitter and polarizer using the same
US7564504B2 (en) Phase plate and an optical data recording/reproducing device
JPH08503315A (en) Polarization beam splitter and magneto-optical reproducing apparatus using this beam splitter
KR920010621B1 (en) Optical base material and optical product using the same and method of manufacturing the optical base material
JP2537595B2 (en) Polarizer
US20120257277A1 (en) Optical element and optical apparatus
JP2790669B2 (en) Polarizer
JPH11211916A (en) Polarized beam splitter
JPH06130224A (en) Polarizing beam splitter
JPH0139561B2 (en)
JP4157634B2 (en) Optical isolator
US8369015B2 (en) Optical element and optical apparatus
JP3299382B2 (en) Polarizing beam splitter and optical head device using the same
JP4427877B2 (en) Aperture limiting element and optical head device
JPS6315562B2 (en)
JP2658818B2 (en) Birefringent diffraction grating polarizer and optical head device
JPS6250896B2 (en)
JP2725324B2 (en) Optical head for optical recording media
JPH08313730A (en) Polarized light separating element
JP3551925B2 (en) Polarization separation element and optical head