JP4534318B2 - Polarizing element - Google Patents

Polarizing element Download PDF

Info

Publication number
JP4534318B2
JP4534318B2 JP2000230746A JP2000230746A JP4534318B2 JP 4534318 B2 JP4534318 B2 JP 4534318B2 JP 2000230746 A JP2000230746 A JP 2000230746A JP 2000230746 A JP2000230746 A JP 2000230746A JP 4534318 B2 JP4534318 B2 JP 4534318B2
Authority
JP
Japan
Prior art keywords
polarization
light
polarized light
polarizing element
hologram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000230746A
Other languages
Japanese (ja)
Other versions
JP2002040254A (en
Inventor
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2000230746A priority Critical patent/JP4534318B2/en
Publication of JP2002040254A publication Critical patent/JP2002040254A/en
Application granted granted Critical
Publication of JP4534318B2 publication Critical patent/JP4534318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ランダム偏光の光から、偏光面を揃えて取り出すことで光の利用効率を高めることができる偏光素子に関するものである。
【0002】
【従来の技術】
ランダムな偏光をもつ光から偏光を取り出し、この偏光を利用する光学装置、例えば、液晶表示素子、偏光顕微鏡、偏光干渉計等において、偏光素子が使用されている。
【0003】
この場合、偏光素子としては、従来より、薄い樹脂フィルム等にヨウ素等の配向膜を形成した偏光フィルムが広く使用されている。
しかしながら、ヨウ素等の配向膜を形成した偏光フィルムを用いて、ランダムな偏光光から偏光を取り出す場合、偏光膜が、自然光のうち偏光膜の配向方向に従った偏光光以外の光を吸収するので、偏光膜に入射した自然光の光強度の半分以上を損失することとなる。
そこで、直線偏光を利用する光学装置においては、所望の光強度で直線偏光を得る為に光源の強度を強めたり、あるいは、高感度のセンサーを設けることが必要とされ、そのために光学装置のコストが高くなったり、サイズを小型化できないという問題が生じていた。また、偏光膜で吸収された光エネルギーが熱エネルギーに変換するために偏光膜が加熱されるので、偏光膜の精度が不安定となり、また耐久性が低下するという問題があった。
【0004】
この問題を解決するために、ホログラム偏光素子を用いたものが提案されている。たとえば、本出願人が先に出願した特開平9ー105813号公報において、図4に示すような偏光素子を提示している。
すなわち、複屈折性材料であるLiNbO3 (ニオブ酸リチウム)結晶(4)にプロトン交換法という拡散によりチタンイオン等で交換したイオン交換部(5)、このイオン交換部上に位相補償用の誘電体格子(6)を形成したホログラム素子(2)に複屈折性シート(3)設けたグレーティング偏光素子(1)である。
このグレーティング偏光素子は、一方向の偏光に対しては回折格子として機能し、それと直交する方向の偏光に対しては回折格子として機能せずに透明媒体として機能するホログラム素子(2)と、複屈折性シート(3)を積層したものである。
【0005】
通常は、イオン交換する複屈折性材料と複屈折性シートとを同一材料にすることで一体化している。このように両者に同一材料を用いることで、積層する工程がなく、また両者間の界面反射を防止することができ、好ましい構成である。
【0006】
このホログラム素子(回折格子素子)(2)側から自然光を入射させた場合、ホログラム素子て回折された偏光光と、回折されることなく透過した偏光光とが、複屈折シート状材料を通過することにより、同一方向の偏光面となるようにしたものである。
【0007】
しかし、このグレーティング偏光素子(1)は、複屈折性シートの厚みによる光路長の差によって偏光面を揃えていたため、入射光の平行度が高い必要があり、さらにグレーティング偏光素子(1)から出射する光の角度が必然的に大きくなっていた。入射光の平行度を高めるためには、光源と入射面の距離を大きくしたり、レンズや曲面の反射鏡が必要となるため、コストが高くなったり、サイズを小型化できないという問題が生じる。
さらに、グレーティング偏光素子(1)から出射する光の角度が大きな角度に限定されるため、出射した光を効率よく利用するためには、出射光を集める大口径のレンズ等が必要となり、直視で利用するLCD等への利用が難しかった。
【0008】
【発明が解決しようとする課題】
本発明は以上のような問題点に着目してなされたもので、入射光の平行度がラフであっても、ランダム偏光の光から、偏光面を揃えて取り出すことで光の利用効率が高くできる偏光素子を提供することを課題としている。
更に、出射光の出射角の制限を少なくすることで直視で利用するLCD等へ利用を可能にすることを課題としている。
【0009】
【課題を解決するための手段】
本発明に於いて上記課題を達成するためになされた請求項1に記載の発明は、光の偏光を制御し、一定の偏光方向の光を生じさせる偏光素子において、偏光面に依存して作用する偏光ホログラムと山形プリズムからなるプリズムレンズの平坦面とを密着して配置し、プリズムレンズの山形の片面にλ/2波長板が配置してなることを特徴とする偏光素子である。
【0010】
また、請求項2に記載の発明は、請求項1記載の偏光素子において、光の入射側に偏光ホログラムを配置し、出射側にλ/2波長板を偏光ホログラム面に対して略45度傾いた山形プリズムの片面に配置することを特徴とする偏光素子である。
【0013】
ランダム偏光の自然光を入射すると、偏光ホログラムによって、特定方向の偏光面の光と、それと直交する方向の偏光面の光とに分離される。特定方向の偏光面の光はそのまま通過し、それと直交する方向の偏光面の偏光光は、位相差板によって偏光面を90度回転させて通過することで、両者、すなわち、そのまま通過した偏光光と、直交する方向の偏光面の偏光光が揃うことで、光の吸収なしで特定の偏光面の光を取り出すことが可能となり、光の利用効率を上げることができる。
【0014】
【発明の実施の形態】
以下、本発明の1実施の形態、偏光面の揃った偏光を取り出す作用を図を参照しながら説明する。
【0015】
図1は、偏光ホログラム(11)とλ/2波長板支持体(12)を密着させて構成した本発明の基本となる偏光素子(10)である。図において偏光状態を説明するのに都合が良いように離して図示しているが、実際には両者は密着されている。
【0016】
今、斜め45度の角度からランダム偏光を有する入射光(20)が、偏光ホロムラム(11)に入射すると 偏光ホログラム(11)で、特定偏光面の光が回折により偏向され−45度の角度で出射、該特定偏光面と直交した偏光面の光は偏向されずそのまま45度の角度で出射する。
【0017】
偏光状態を説明するために、便宜上、紙面方向と平行な偏光をp(parallel)偏光,紙面に垂直な偏光をs(senkrecht)偏光とすると、入射光は偏光ホログラム(11)で回折されず直進するp偏光(21)はそのまま出射する。一方、−45度の角度で回折されたs偏光(22)がλ/2波長板支持体(12)と交差する位置にλ/2波長板(13)を設け、λ/2波長板(13)を通過すると、偏光面が90度回転する。このλ/2波長板(13)を通過させることにより、s偏光(22)はp偏光(23)に変換され、偏光素子(10)から出射される偏光光は、すべてp偏光になって取り出すことが可能である。
【0018】
偏光ホログラム素子(11)は、上記特開平9ー105813号公報に記述した複屈折材料であるLiNbO3 (ニオブ酸リチウム)結晶にプロトン交換法という拡散によりチタンイオン等で交換したイオン交換部、このイオン交換部上に位相補償用の誘電体格子を形成したものが使用できる。
また、複屈折材料として、六方晶系の単軸結晶の電気石、方解石、水晶、斜方結晶のヘパタイト(過沃化硫酸キニーネ)等の用い、この表面に表面レリーフ型の回折格子を積層し、この回折格子の溝部分を、ある一つの偏光方向に対する屈折率が、その偏光方向に対する複屈折材料の屈折率と同じ材料で埋めたもの等を使用することができる。この場合、表面レリーフ型の回折格子は、一般に知られている機械刻線の手法、レーザー光の干渉を利用した手法、フォトリソグラフィーの手法により形成することができる。
また、位相板(波長板)は、凡用されているポリビニルカルバゾール樹脂、ノルボルネン樹脂、雲母、フッ化マグネシウム(MgF2 )等が使用される。
【0019】
図2は、山形プリズムレンズを用いた偏光素子の構成及び偏光状態を説明する断面図である。
偏光ホログラム(回折格子)(31)と山形プリズム(傾斜角度45度、−45度)のプリズムレンズ(32)の平坦面を貼り合わせた構造であり、プリズムレンズ(32)の一方の山形の片面に、λ/2波長板(33)が配置されている。
【0020】
今、斜め45度の角度からランダム偏光を有する入射光(40)を入射すると、偏光ホログラム素子(11)で、特定偏光面の光が回折により偏向され−45度の角度で出射、該特定偏光面と直交した偏光面の光は偏向されずそのまま45度の角度で出射する。
【0021】
図1の説明と同様に、紙面方向と平行な偏光をp偏光,紙面に垂直な偏光をs偏光とする。入射光(40)は、偏光ホログラム(31)では回折されず直進するp偏光(41)プリズムレンズの45度の面から出射する。一方、−45度の角度で出射されたs偏光(42)のみがプリズムレンズの他の山形の一面に設けられたλ/2波長板(33)を通過し、偏光面が90度回転する。このλ/2波長板(33)を通過させることにより、s偏光(42)はp偏光(43)に変換され、偏光素子(30)から出射される偏光光は、すべてp偏光になって取り出すことが可能である。
【0022】
偏光ホログラム(31)及びλ/2波長板(33)は上記の材料であり、上記の図1に無いプリズムレンズ(32)は、複屈折が少ないガラス、ポリ塩化ビニール、ポリメタクリル酸メチル等のアクリル樹脂、非晶性エステル樹脂等のプラスチック材料を用いた山形形状のレンズアレイである。
【0023】
更に、図3は、λ/4波長板、偏光ホログラム及び偏光依存性反射板を用いた偏光素子(50)の構成断面及び偏光状態を説明する図である。
すなわち、偏光ホログラム(回折格子)(51)の入射側面にλ/4波長板(52)、偏光依存性反射板(53)を密着させて設けた偏光素子(50)である。この場合も図1と同様に、偏光状態を説明するのに都合が良いように離して図示しているが、実際には密着されている。
【0024】
斜め45度の角度からランダム偏光を有する入射光(60)を入射すると、λ/4波長板(52)で偏光面をランダム偏光の状態で回転されて偏光ホログラム(51)に入射する。
この偏光ホログラム(51)で上記の図1で説明したことと同様に特定偏光面の光が回折により偏向され−45度の角度で出射、該特定偏光面と直交した偏光面の光は偏向されずそのまま45度の角度で出射する。
【0025】
ここでも、上記の説明と整合させるため、紙面方向と平行な偏光をp偏光,紙面に垂直な偏光をs偏光とする。
偏光ホログラム(51)で回折されず直進するp偏光(61)は、出射側の偏光依存性反射板(53)に到達し反射される。一方、偏光ホログラム(51)で回折されたs偏光(62)は偏光依存性反射板(53)で反射されずそのまま通過し、出射される。
【0026】
ここで偏光依存性反射板(53)は、p偏光は反射し、s偏光はそのまま透過する機能を有するものとする。
【0027】
出射側の偏光依存性反射板(53)で反射されたp偏光(61)は、偏光ホログラム(51)を透過し、λ/4波長板(52)を透過して円偏光になる。円偏光になった光線は、裏面の反射板(54)で反射され、再びλ/4波長板(52)を透過しs偏光となる。s偏光となった光は、再度偏光ホログラム(51)に入射回折し、s偏光(63)となる。s偏光(63)は偏光依存反射板(53)で反射されずそのまま通過し出射される。
【0028】
偏光依存性反射板の例としては、反射型ホログラムやコレステリック液晶等が挙げられる。また、偏光依存性反射板の代わりに、体積反射型ホログラムのような角度依存性の反射板を用いてもよい。
【0029】
上記の説明において、最終的にはs偏光となることについて説明したが、同様な考えで偏光依存性反射板をs偏光を反射させ、p偏光を通過させる機能を持たせればp偏光を取り出すことができる。
【0030】
【発明の効果】
本発明によれば、入射光を同一の偏光面を有する(偏光面が揃った)偏光光として取り出すことで、光の利用効率を格段に高めることができる。
また、光学装置において、光源の強度を高めたり、センサーの感度を高めたりすることが不要となり、装置の製造コストや装置の小型化が可能となる。特に投射型プロジェクターにおいては、投影画像の明るいことが要求さので、本偏光素子は液晶型プロジェクターの表示画面を明るくする手段として有効である。
【図面の簡単な説明】
【図1】本発明の偏光素子の構成及び偏光状態を示す断面図である。
【図2】他の本発明の偏光素子の構成及び偏光状態を示す断面図である。
【図3】他の本発明の偏光素子の構成及び偏光状態を示す断面図である。
【図4】従来の偏光ホログラムを用いた偏光素子の構成断面図である。
【符号の説明】
1…偏光素子 2…偏光ホログラム
3…複屈折シート 4…ニオブ酸リチウム
5…イオン交換部 6…位相補償用誘電体
10…偏光素子 11…偏光ホログラム
12…λ/2波長板支持体 13…λ/2波長板
20…入射光 21…p偏光
22…s偏光 23…p偏光
30…偏光素子 31…偏光ホログラム
32…プリスムレンズ 33…λ/2波長板
40…入射光 41…p偏光
42…s偏光 43…p偏光
50…偏光素子 51…偏光ホログラム
52…λ/4波長板 53…偏光依存性反射板
54…反射板 60…入射光
61…p偏光 62…s偏光
63…s偏光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polarizing element that can improve the light use efficiency by extracting the light with random polarization from the same polarization plane.
[0002]
[Prior art]
Polarizing elements are used in optical devices such as liquid crystal display elements, polarizing microscopes, and polarization interferometers that extract polarized light from light having random polarization and use the polarized light.
[0003]
In this case, a polarizing film in which an alignment film such as iodine is formed on a thin resin film or the like has been widely used as the polarizing element.
However, when taking out polarized light from randomly polarized light using a polarizing film formed with an alignment film such as iodine, the polarizing film absorbs light other than polarized light according to the alignment direction of the polarizing film in natural light. More than half of the light intensity of the natural light incident on the polarizing film is lost.
Therefore, in an optical device using linearly polarized light, it is necessary to increase the intensity of the light source or to provide a highly sensitive sensor in order to obtain linearly polarized light with a desired light intensity. There has been a problem that it has become high and the size cannot be reduced. Further, since the polarizing film is heated to convert the light energy absorbed by the polarizing film into thermal energy, there is a problem that the accuracy of the polarizing film becomes unstable and the durability is lowered.
[0004]
In order to solve this problem, one using a hologram polarization element has been proposed. For example, in Japanese Patent Laid-Open No. 9-105813 filed earlier by the present applicant, a polarizing element as shown in FIG. 4 is presented.
That is, an ion exchange part (5) obtained by exchanging LiNbO 3 (lithium niobate) crystal (4), which is a birefringent material, with titanium ions or the like by diffusion called a proton exchange method, and a phase compensation dielectric on the ion exchange part. A grating polarizing element (1) in which a birefringent sheet (3) is provided on a hologram element (2) on which a body grating (6) is formed.
This grating polarizing element functions as a diffraction grating for polarized light in one direction and a hologram element (2) that functions as a transparent medium without functioning as a diffraction grating for polarized light in a direction orthogonal thereto. A refractive sheet (3) is laminated.
[0005]
Usually, the birefringent material and the birefringent sheet to be ion-exchanged are integrated by being made the same material. Thus, by using the same material for both, there is no step of laminating, and interface reflection between the two can be prevented, which is a preferable configuration.
[0006]
When natural light is incident from the hologram element (diffraction grating element) (2) side, polarized light diffracted by the hologram element and polarized light transmitted without being diffracted pass through the birefringent sheet material. Thus, the polarization planes are in the same direction.
[0007]
However, since the polarization plane of this grating polarizing element (1) has the plane of polarization aligned due to the difference in optical path length depending on the thickness of the birefringent sheet, it is necessary that the incident light has a high parallelism, and it is emitted from the grating polarizing element (1). The angle of light to inevitably increased. In order to increase the parallelism of incident light, the distance between the light source and the incident surface is increased, and a lens and a curved reflecting mirror are required. This causes problems that the cost is increased and the size cannot be reduced.
Furthermore, since the angle of the light emitted from the grating polarizing element (1) is limited to a large angle, in order to efficiently use the emitted light, a large-diameter lens or the like that collects the emitted light is required. It was difficult to use it on LCDs.
[0008]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-mentioned problems. Even when the parallelism of incident light is rough, the light utilization efficiency is high by taking out the polarization plane from the randomly polarized light. It is an object to provide a polarizing element that can be used.
Furthermore, it is an object to enable use for an LCD or the like that is used in direct view by reducing the restriction on the emission angle of the emitted light.
[0009]
[Means for Solving the Problems]
The invention according to claim 1, which was made in order to achieve the above object in the present invention, is a polarization element that controls the polarization of light and generates light of a certain polarization direction, and acts depending on the polarization plane. The polarizing element is characterized in that a polarization hologram to be formed and a flat surface of a prism lens made of an angle prism are disposed in close contact with each other, and a λ / 2 wavelength plate is disposed on one surface of the angle of the prism lens .
[0010]
According to a second aspect of the present invention, in the polarizing element according to the first aspect, the polarization hologram is disposed on the light incident side, and the λ / 2 wavelength plate is inclined at approximately 45 degrees with respect to the polarization hologram surface on the output side. The polarizing element is arranged on one side of a triangular prism .
[0013]
When random polarized natural light is incident, the light is separated into light having a polarization plane in a specific direction and light having a polarization plane orthogonal to the polarization hologram by the polarization hologram. The light with the polarization plane in the specific direction passes through as it is, and the polarization light with the polarization plane in the direction orthogonal to it passes through the polarization plane rotated 90 degrees by the phase difference plate. As a result, the polarized light of the polarization planes in the orthogonal direction are aligned, so that it is possible to take out the light of a specific polarization plane without absorbing light, and the light use efficiency can be increased.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention, the action of extracting polarized light with a uniform polarization plane will be described with reference to the drawings.
[0015]
FIG. 1 shows a polarizing element (10) as a basis of the present invention, which is configured by closely attaching a polarization hologram (11) and a λ / 2 wavelength plate support (12). In the figure, they are shown separated for convenience in explaining the polarization state, but in reality they are in close contact.
[0016]
Now, when the incident light (20) having random polarization from an oblique angle of 45 degrees is incident on the polarization hologram (11), the light of a specific polarization plane is deflected by diffraction in the polarization hologram (11) at an angle of -45 degrees. Outgoing light of a polarization plane orthogonal to the specific polarization plane is emitted as it is at an angle of 45 degrees without being deflected.
[0017]
In order to explain the polarization state, for convenience, when the polarization parallel to the paper plane is p (parallel) polarization and the polarization perpendicular to the paper plane is s (senkrecht) polarization, the incident light is not diffracted by the polarization hologram (11) but travels straight. The p-polarized light (21) is emitted as it is. On the other hand, a λ / 2 wavelength plate (13) is provided at a position where the s-polarized light (22) diffracted at an angle of −45 ° intersects the λ / 2 wavelength plate support (12), and the λ / 2 wavelength plate (13 ), The plane of polarization rotates 90 degrees. By passing through this λ / 2 wavelength plate (13), the s-polarized light (22) is converted to p-polarized light (23), and all the polarized light emitted from the polarizing element (10) is extracted as p-polarized light. It is possible.
[0018]
The polarization hologram element (11) includes an ion exchange portion in which LiNbO 3 (lithium niobate) crystal, which is a birefringent material described in JP-A-9-10581, is exchanged with titanium ions or the like by diffusion called a proton exchange method. What formed the dielectric grating for phase compensation on the ion exchange part can be used.
In addition, hexagonal uniaxial crystal tourmaline, calcite, quartz, orthorhombic hepatite (quinine periodate quinine), etc. are used as birefringent materials, and a surface relief type diffraction grating is laminated on this surface. It is possible to use a material in which the groove portion of the diffraction grating is filled with the same material as the refractive index of the birefringent material with respect to one polarization direction. In this case, the surface relief type diffraction grating can be formed by a generally known method of mechanical engraving, a method using interference of laser light, or a photolithography method.
As the phase plate (wave plate), commonly used polyvinyl carbazole resin, norbornene resin, mica, magnesium fluoride (MgF 2 ), or the like is used.
[0019]
FIG. 2 is a cross-sectional view illustrating the configuration and polarization state of a polarizing element using an angle prism lens.
The flat surface of the polarization hologram (diffraction grating) (31) and the prism lens (32) of the angle prism (tilt angle 45 degrees, -45 degrees) is bonded to one side of the angle lens. In addition, a λ / 2 wavelength plate (33) is disposed.
[0020]
Now, when incident light (40) having random polarization is incident from an oblique angle of 45 degrees, light of a specific polarization plane is deflected by diffraction by the polarization hologram element (11) and emitted at an angle of -45 degrees. The light of the polarization plane perpendicular to the plane is emitted without being deflected at an angle of 45 degrees.
[0021]
As in the description of FIG. 1, the polarized light parallel to the paper surface direction is p-polarized light, and the polarized light perpendicular to the paper surface is s-polarized light. Incident light (40) is emitted from a 45-degree surface of a p-polarized (41) prism lens that travels straight without being diffracted by the polarization hologram (31). On the other hand, only the s-polarized light (42) emitted at an angle of −45 degrees passes through the λ / 2 wavelength plate (33) provided on one surface of the other chevron of the prism lens, and the polarization plane is rotated by 90 degrees. By passing through this λ / 2 wavelength plate (33), the s-polarized light (42) is converted into p-polarized light (43), and all the polarized light emitted from the polarizing element (30) is extracted as p-polarized light. It is possible.
[0022]
The polarization hologram (31) and the λ / 2 wavelength plate (33) are made of the above-mentioned materials, and the prism lens (32) not shown in FIG. 1 is made of glass, polyvinyl chloride, polymethyl methacrylate, or the like having little birefringence. It is a mountain-shaped lens array using a plastic material such as an acrylic resin or an amorphous ester resin.
[0023]
Further, FIG. 3 is a diagram for explaining the configuration cross section and the polarization state of the polarizing element (50) using the λ / 4 wavelength plate, the polarization hologram, and the polarization dependent reflector.
That is, the polarizing element (50) is provided with a λ / 4 wavelength plate (52) and a polarization-dependent reflecting plate (53) in close contact with the incident side surface of the polarization hologram (diffraction grating) (51). In this case as well, as in FIG. 1, it is shown separated for convenience in explaining the polarization state, but in actuality it is in close contact.
[0024]
When incident light (60) having random polarization is incident at an angle of 45 degrees, the polarization plane is rotated in the state of random polarization by the λ / 4 wavelength plate (52) and is incident on the polarization hologram (51).
In this polarization hologram (51), light having a specific polarization plane is deflected by diffraction and emitted at an angle of −45 degrees, and light having a polarization plane orthogonal to the specific polarization plane is deflected in the same manner as described in FIG. Instead, the light is emitted at an angle of 45 degrees.
[0025]
Again, for the sake of consistency with the above description, the polarized light parallel to the paper surface direction is p-polarized light, and the polarized light perpendicular to the paper surface is s-polarized light.
The p-polarized light (61) traveling straight without being diffracted by the polarization hologram (51) reaches the output-side polarization-dependent reflecting plate (53) and is reflected. On the other hand, the s-polarized light (62) diffracted by the polarization hologram (51) passes through and is emitted without being reflected by the polarization-dependent reflector (53).
[0026]
Here, the polarization-dependent reflector (53) has a function of reflecting p-polarized light and transmitting s-polarized light as it is.
[0027]
The p-polarized light (61) reflected by the output-side polarization-dependent reflecting plate (53) passes through the polarization hologram (51), passes through the λ / 4 wavelength plate (52), and becomes circularly polarized light. The light beam that has become circularly polarized light is reflected by the reflecting plate (54) on the back surface, passes through the λ / 4 wavelength plate (52) again, and becomes s-polarized light. The light that has become s-polarized light is incident and diffracted again into the polarization hologram (51) to become s-polarized light (63). The s-polarized light (63) passes through and is emitted as it is without being reflected by the polarization-dependent reflecting plate (53).
[0028]
Examples of the polarization-dependent reflector include a reflection hologram and a cholesteric liquid crystal. Further, instead of the polarization-dependent reflector, an angle-dependent reflector such as a volume reflection hologram may be used.
[0029]
In the above description, it has been explained that the s-polarized light eventually becomes. However, if the polarization-dependent reflecting plate has a function of reflecting the s-polarized light and passing the p-polarized light, the p-polarized light can be extracted. Can do.
[0030]
【The invention's effect】
According to the present invention, it is possible to significantly improve the light utilization efficiency by extracting incident light as polarized light having the same polarization plane (equal polarization planes).
Further, in the optical device, it is not necessary to increase the intensity of the light source or the sensitivity of the sensor, and the manufacturing cost of the device and the size of the device can be reduced. In particular, in a projection type projector, since a bright projected image is required, this polarizing element is effective as a means for brightening a display screen of a liquid crystal type projector.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration and a polarization state of a polarizing element of the present invention.
FIG. 2 is a cross-sectional view showing the configuration and polarization state of another polarizing element of the present invention.
FIG. 3 is a cross-sectional view showing the configuration and polarization state of another polarizing element of the present invention.
FIG. 4 is a sectional view of a configuration of a polarizing element using a conventional polarization hologram.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Polarizing element 2 ... Polarizing hologram 3 ... Birefringent sheet 4 ... Lithium niobate 5 ... Ion exchange part 6 ... Dielectric for phase compensation 10 ... Polarizing element 11 ... Polarizing hologram 12 ... λ / 2 wavelength plate support 13 ... λ / 2 wavelength plate 20 ... incident light 21 ... p polarized light 22 ... s polarized light 23 ... p polarized light 30 ... polarizing element 31 ... polarization hologram 32 ... prismatic lens 33 ... λ / 2 wavelength plate 40 ... incident light 41 ... p polarized light 42 ... s polarized light 43 ... p-polarized light 50 ... polarizing element 51 ... polarization hologram 52 ... λ / 4 wavelength plate 53 ... polarization-dependent reflecting plate 54 ... reflecting plate 60 ... incident light 61 ... p-polarized light 62 ... s-polarized light 63 ... s-polarized light

Claims (2)

光の偏光を制御し、一定の偏光方向の光を生じさせる偏光素子において、偏光面に依存して作用する偏光ホログラムと山形プリズムからなるプリズムレンズの平坦面とを密着して配置し、プリズムレンズの山形の片面にλ/2波長板が配置してなることを特徴とする偏光素子。In a polarizing element that controls the polarization of light and generates light in a certain polarization direction, a polarization hologram that acts depending on the polarization plane and a flat surface of a prism lens made of an angle prism are arranged in close contact with each other. A polarizing element , wherein a λ / 2 wavelength plate is disposed on one side of the chevron . 請求項1記載の偏光素子において、光の入射側に偏光ホログラムを配置し、出射側にλ/2波長板を偏光ホログラム面に対して略45度傾いた山形プリズムの片面に配置することを特徴とする偏光素子。2. The polarizing element according to claim 1, wherein a polarization hologram is disposed on the light incident side, and a λ / 2 wavelength plate is disposed on one side of the angle prism which is inclined at approximately 45 degrees with respect to the polarization hologram surface. A polarizing element.
JP2000230746A 2000-07-31 2000-07-31 Polarizing element Expired - Fee Related JP4534318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230746A JP4534318B2 (en) 2000-07-31 2000-07-31 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230746A JP4534318B2 (en) 2000-07-31 2000-07-31 Polarizing element

Publications (2)

Publication Number Publication Date
JP2002040254A JP2002040254A (en) 2002-02-06
JP4534318B2 true JP4534318B2 (en) 2010-09-01

Family

ID=18723665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230746A Expired - Fee Related JP4534318B2 (en) 2000-07-31 2000-07-31 Polarizing element

Country Status (1)

Country Link
JP (1) JP4534318B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201323B2 (en) * 2007-12-07 2013-06-05 大日本印刷株式会社 Polarization separation / combination element
US8866172B2 (en) * 2009-10-22 2014-10-21 Nec Corporation Light emitting element and image display apparatus using the light emitting element
KR102070634B1 (en) 2016-10-13 2020-01-29 주식회사 엘지화학 Polarization Conversion Device and Optical Isolating Device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234143A (en) * 1994-12-29 1996-09-13 Sharp Corp Illumination system and display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105813A (en) * 1995-10-09 1997-04-22 Toppan Printing Co Ltd Grating polarizer
JPH11271536A (en) * 1997-10-16 1999-10-08 Matsushita Electric Ind Co Ltd Image display device, polarizated-light illumination device, polarized light separating element, diffraction optical element, hologram element, and manufacture of diffraction optical element and hologram element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234143A (en) * 1994-12-29 1996-09-13 Sharp Corp Illumination system and display device

Also Published As

Publication number Publication date
JP2002040254A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
KR100951213B1 (en) Image display unit
KR100684579B1 (en) Transflective liquid crystal display device and manufacturing method thereof
JP6689186B2 (en) Polarization conversion system and manufacturing method thereof
KR100441162B1 (en) Light reflective type polarizer and projector using the same
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
EP0778956B1 (en) Polarizing element
KR100762399B1 (en) Polarized display with wide-angle illumination
JPH0659124A (en) Application on optical polarization separator and display system
US11143812B2 (en) Display panel and display device
EP0474237B1 (en) Prism optical device and polarizer using it
JP3688845B2 (en) Liquid crystal display device
JP4534318B2 (en) Polarizing element
JP2007102246A (en) Projector
JP2007233410A (en) Light reflective polarizer and projector using the same
US7405878B2 (en) Method of transforming a light beam, optical film for performing the method, and display device having the optical film
JP2848137B2 (en) Birefringent diffraction grating polarizer
JP2862903B2 (en) Variable power mirror lens
JP3108344B2 (en) Optical filter module
JP2789941B2 (en) How to use birefringent diffraction grating polarizer
JP2755428B2 (en) Reflective liquid crystal display
JP2000338473A (en) Production of hologram and liquid crystal display device
KR20020002589A (en) Reflective type - fringe field switching lcd
JPH04221934A (en) Liquid crystal element
JPH0473603A (en) Polarizer
JPH03261910A (en) Polarizing element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees