JPH0627014A - Method and apparatus for monitoring contamination of water - Google Patents
Method and apparatus for monitoring contamination of waterInfo
- Publication number
- JPH0627014A JPH0627014A JP20311492A JP20311492A JPH0627014A JP H0627014 A JPH0627014 A JP H0627014A JP 20311492 A JP20311492 A JP 20311492A JP 20311492 A JP20311492 A JP 20311492A JP H0627014 A JPH0627014 A JP H0627014A
- Authority
- JP
- Japan
- Prior art keywords
- water
- image
- information
- plankton
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 127
- 238000012544 monitoring process Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 36
- 238000011109 contamination Methods 0.000 title abstract 3
- 238000012545 processing Methods 0.000 claims abstract description 45
- 238000003384 imaging method Methods 0.000 claims abstract description 16
- 238000005259 measurement Methods 0.000 claims description 17
- 230000005856 abnormality Effects 0.000 claims description 15
- 238000003911 water pollution Methods 0.000 claims description 15
- 238000004088 simulation Methods 0.000 claims description 14
- 238000012806 monitoring device Methods 0.000 claims description 9
- 235000015097 nutrients Nutrition 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 8
- 239000005416 organic matter Substances 0.000 claims description 7
- 239000013535 sea water Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000012141 concentrate Substances 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 5
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 claims description 3
- 238000012876 topography Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 29
- 239000000126 substance Substances 0.000 abstract description 19
- 244000005700 microbiome Species 0.000 abstract description 9
- 238000007667 floating Methods 0.000 abstract description 2
- 230000015654 memory Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000012851 eutrophication Methods 0.000 description 4
- 241000192700 Cyanobacteria Species 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 241000192701 Microcystis Species 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012465 retentate Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000192710 Microcystis aeruginosa Species 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000000729 hypotrophic effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Treatment Of Biological Wastes In General (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、湖沼水、海水、河川
水、ダム水などの水圏の汚染を監視する水質汚染監視装
置及びその方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water pollution monitoring device and method for monitoring water pollution such as lake water, sea water, river water and dam water.
【0002】[0002]
【従来の技術】湖沼や内湾などの閉鎖性水域に窒素、り
ん等の栄養塩類が流入すると、これらは水域に蓄積さ
れ、藻類やその他の水性生物が増殖し、富栄養化に至
る。富栄養化は、都市下水や食品工場排水などが流れ込
むとそれだけ早く進行する。湖沼、内湾などの閉鎖性水
域の状態は、水温、容存酸素濃度、PH、透明度、CO
D等の水質分析値やプランクトンをはじめとする生物の
生態等で表すことができ、特に、水域に生息するプラン
クトン等の微生物は水質の変化を最も正確に反映する。
たとえば、湖ではプランクトンの量は富栄養化の一つの
指標であり、植物性プランクトンの容積が3〜5cm/
m3になるかどうかが貧栄養湖と富栄養湖とのおよその
境目とされている。従って、汚染監視対象となる水域で
は、微生物の種類やその出現量を定量的に計測し、水圏
監視に反映させる必要がある。閉鎖性水域の監視方法と
しては、水域内に設置した水質、気象計測器やプランク
トンの顕微鏡観察が実施されている。プランクトンの出
現種やその量の計測は、顕微鏡観察に依存しており、赤
潮などプランクトンの異常繁殖の監視対策は後手になら
ざるをえない。顕微鏡観察の場合、一般には定期的に船
上からサンプリングした特定個所の水を持ち帰り、顕微
鏡で目視観察しており、人手と労力を要する。また、種
類を見分ける専門家が必要なため、常時監視が困難であ
る。一方、微生物の常時監視のため、水中カメラと画像
処理装置を組み合わせた装置(特願平02−18263
0)で微生物を定量化する方式が考案されている。2. Description of the Related Art When nutrient salts such as nitrogen and phosphorus flow into a closed water area such as a lake or an inner bay, they are accumulated in the water area and algae and other aquatic organisms multiply, leading to eutrophication. Eutrophication will proceed faster if urban sewage or food factory wastewater flows in. The conditions of closed water areas such as lakes and bays are water temperature, oxygen concentration, pH, transparency, CO
It can be represented by a water quality analysis value such as D or the ecology of organisms such as plankton, and in particular, microorganisms such as plankton inhabiting the water body most accurately reflect the change in water quality.
For example, in lakes, the amount of plankton is one indicator of eutrophication, and the volume of phytoplankton is 3-5 cm /
Whether or not it reaches m 3 is an approximate boundary between a hypotrophic lake and a eutrophic lake. Therefore, it is necessary to quantitatively measure the types of microorganisms and their appearance amounts in the water areas subject to pollution monitoring, and to reflect them in the water area monitoring. As a method of monitoring closed water areas, water quality, meteorological instruments, and plankton microscopic observations have been carried out. The measurement of the plankton's appearance species and its amount depends on the microscopic observation, and the measures for monitoring the abnormal breeding of plankton such as the red tide are inevitable. In the case of microscopic observation, generally, water is sampled from a ship on a regular basis and brought back at a specific location for visual observation with a microscope, which requires manpower and labor. In addition, it is difficult to constantly monitor because it requires an expert to identify the type. On the other hand, for continuous monitoring of microorganisms, a device combining an underwater camera and an image processing device (Japanese Patent Application No. 02-18263).
A method for quantifying microorganisms in 0) has been devised.
【0003】[0003]
【発明が解決しようとする課題】通常、湖沼や河川のプ
ランクトン数は高々数万個/mlと希薄である。プラン
クトンを形状から分類可能な倍率(対物レンズ4倍以
上)で撮影すると、撮影画面内にプランクトンの存在す
る確率は非常に小さい。水中カメラと画像処理装置を組
み合わせた装置(特願平02−182630)は、微生
物を出来るだけ自然な状態で撮影する方法で、微生物濃
度が高い液体中で使用可能である。即ち、培養槽や富栄
養価化が既に進行した水域など微生物濃度が高い状態で
は有効であるが、貧又は中栄養湖など現状汚染がさほど
進んでおらず、微生物濃度が希薄な水域の常時監視には
適さない。また、従来の装置では、湖沼や河川の現状汚
染を監視できるが、現状汚染が将来どのように変動する
かを予知し、この予知変動に対する浄化対策を推定する
ことに配慮がなされていない。本発明の目的は、微生物
濃度が希薄な水域内の微生物状態をオンライン計測し、
汚染状況を連続監視し、水質汚染状況を的確に把握する
と共に、水質汚染の変動を予知し、浄化対策を推定する
に好適な水質汚染監視装置及びその方法を提供すること
にある。[Problems to be Solved by the Invention] Usually, the number of plankton in lakes and rivers is as low as tens of thousands / ml at most. When the plankton is photographed at a magnification (objective lens 4 times or more) that can be classified according to the shape, the probability that plankton exists in the photographing screen is very small. An apparatus combining an underwater camera and an image processing apparatus (Japanese Patent Application No. 02-182630) is a method of photographing microorganisms in a state as natural as possible and can be used in a liquid having a high concentration of microorganisms. That is, it is effective in a state where the microorganism concentration is high such as a culture tank or a water area where eutrophication has already progressed, but the current pollution such as poor or mesotrophic lake has not progressed so much, and the water area where the microorganism concentration is low is constantly monitored. Not suitable for. Moreover, although the conventional device can monitor the current pollution of lakes and rivers, no consideration is given to predicting how the current pollution will fluctuate in the future and estimating the purification measures against this prediction fluctuation. The purpose of the present invention is to measure online the microbial state in a water area where the microbial concentration is low,
It is an object of the present invention to provide a water pollution monitoring apparatus and method suitable for continuously monitoring the pollution status, accurately grasping the water pollution status, predicting fluctuations in water pollution, and estimating purification measures.
【0004】[0004]
【課題を解決するための手段】上記目的は、湖沼水、海
水、河川水、ダム水等の水質を自動的にサンプルする手
段と、サンプル中の浮遊物質を濃縮する手段と、濃縮液
中の濁質を撮像する手段と、撮像画像を画像処理し、濁
質を抽出する手段と、該抽出濁質の特徴を計算する手段
と、該特徴から浮遊物質を複数の形状に分類する手段を
具備し、浮遊物質の形状分類毎に出現量を計測すること
によって、達成される。また、湖沼水、海水、河川水、
ダム水等の対象水域を複数の監視ブロックに分割し、監
視ブロック毎の流速、水温、水域への流入・流出情報に
基づいて水域全体の対流を計算し、この対流計算値か
ら、水質情報が監視ブロック間で拡散する状態をモデル
化し、次いで、現在を初期値として一定時間後の水質情
報とプランクトン発生量を計算し、これらの計算値を基
に栄養塩指標、有機物指標、プランクトン指標を計算
し、一定時間後の水域全体の状態をシミュレ−ション計
算し、水質変動を予知することによって、達成される。[Means for Solving the Problems] The above objects are to automatically sample the water quality of lake water, sea water, river water, dam water, etc., to condense suspended substances in the sample, It is provided with means for capturing turbidity, means for image-processing the captured image to extract turbidity, means for calculating the characteristics of the extracted turbidity, and means for classifying suspended matter into a plurality of shapes based on the characteristics. Then, it is achieved by measuring the appearance amount for each shape classification of suspended solids. In addition, lake water, seawater, river water,
The target water area such as dam water is divided into multiple monitoring blocks, and the convection of the entire water area is calculated based on the flow velocity, water temperature, and inflow / outflow information to / from each monitoring block. Modeling the state of diffusion between monitoring blocks, then calculating the water quality information and plankton generation amount after a certain time with the current as the initial value, and calculating the nutrient index, organic matter index, plankton index based on these calculated values However, it is achieved by simulating the condition of the whole water area after a certain time and predicting the water quality fluctuation.
【0005】[0005]
【作用】湖沼や河川中のプランクトン数は、通常、高々
数万(細胞数/ml)と希薄である。そのため、サンプリ
ング手段、濃縮手段及び移送手段により、希薄な懸濁浮
遊物質を濃縮し、画像認識の効率を高める。また、拡大
手段と照明手段及び撮像手段により構成される撮像装置
は、移送流動する液中の浮遊物質を完全に保持し、静止
画面を得る。この撮像装置において、プランクトン抽出
手段は、形状認識画像を基に、画像間の座標や形状の特
徴量などを考慮してプランクトンの種類や個数、浮遊物
質の面積や粒径を計測し、さらに形状毎に分類してプラ
ンクトンの分布やその質量を計測する。これらの画像計
測情報と水質情報を連続計測し、情報の時系列変化、気
象情報及び水域の地形情報から水質の汚染状態とその範
囲、原因を判定し、表示する。さらに、シミュレーショ
ン手段により汚染状況を推定し、汚染水域の浄化対策を
推定する。このように、連続計測情報から水質汚染地域
の同定、及び、事前にその予測を行なうことができると
共に汚染水域の浄化対策を講ずることが可能になる。[Function] The number of plankton in lakes and rivers is usually as low as tens of thousands (cell number / ml). Therefore, the sampling means, the concentrating means, and the transferring means concentrate the diluted suspended suspended matter, and enhance the efficiency of image recognition. Further, the image pickup device including the magnifying means, the illuminating means, and the image pickup means completely holds the suspended matter in the liquid that is transferred and flows, and obtains a still screen. In this imaging device, the plankton extraction means measures the type and number of plankton, the area and particle size of suspended solids in consideration of the coordinates between the images and the feature amount of the shape based on the shape recognition image, and further calculates the shape. The distribution and mass of the plankton are measured by classifying them. The image measurement information and the water quality information are continuously measured, and the water pollution state, its range, and the cause are determined and displayed from the time series change of the information, the weather information, and the geographical information of the water area. Furthermore, the state of pollution is estimated by means of simulation, and the purification measures for the contaminated water area are estimated. In this way, it is possible to identify the water-polluted area from the continuous measurement information and to predict it in advance, and to take measures to purify the polluted water area.
【0006】[0006]
【実施例】以下、本発明の実施例を図面により説明す
る、図1は、本発明の一実施例であり、水質監視装置の
全体構成のブロック図を示す。本実施例の水質監視装置
は、サンプリング装置2、濃縮装置3、撮像装置4、画
像処理装置5、水質計測装置6、気象情報計測装置7、
計算機8、表示装置9から構成する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an embodiment of the present invention and shows a block diagram of the overall structure of a water quality monitoring device. The water quality monitoring device of this embodiment includes a sampling device 2, a concentrating device 3, an imaging device 4, an image processing device 5, a water quality measuring device 6, a weather information measuring device 7,
It is composed of a computer 8 and a display device 9.
【0007】次に、これら装置の詳細を説明する。サン
プリング装置2は、湖沼等の閉鎖水域1の貯溜水をサン
プリングする。水域1内の懸濁浮遊物質、特に植物プラ
ンクトンは、位置、時間、季節により時々刻々変化する
ため、この変化に対処したサンプリングを実施する必要
がある。図2において、貯溜水をサンプリングするに
は、位置調節装置202により導通管203を上下方向
に操作し、導入口204の水深位置を変化させ、サンプ
リングポンプ201がサンプル液を導入口204から吸
引、取水して、濃縮装置3に送る。ここで、水深位置操
作は、時間帯、季節等を考慮して自動的あるいは遠隔地
より調節する。導入口204を水面付近にすると、アオ
コ、赤潮の原因とされる浮上性の植物性プランクトンの
サンプリングが可能になる。サンプリング装置2からの
サンプル液は濃縮装置3に導かれ、懸濁浮遊物質が濃縮
される。湖沼やダムの水域1は、雨天時には数千ppm
の濁質となる場合もあるが、通常は数十ppm以下と清
澄である。また、植物プランクトンは、大量発生でも数
万(細胞数/ml)であり、平均数百(細胞数/ml)
とされている。これを対物レンズ4倍の顕微鏡によって
観察しても、1画面(観察容積約0.2mm3)に1細
胞あるか否かであり、効率的な監視とは云えない。そこ
で、効率的な監視を行うにはサンプル液を濃縮すること
が必要となる。図3に、濃縮装置3の一例を示す。サン
プル液は、導管302により散水され、網状の分離膜3
03において懸濁物質が濃縮分離され、濃縮槽304に
貯溜する。サンプル液量と濃縮液量の比で濃縮倍率が決
まる。懸濁物質が分離された濾過液は排水される。ま
た、濃縮液は濃縮槽304から引抜き管306を介して
ポンプ305により採取する。なお、懸濁物質を濃縮分
離する方式として、遠心力を利用して分離する遠心濾過
方式、密度差や重量差を利用した遠心分離方式あるいは
遠心沈降方式を採用してもよい。濃縮装置3からの濃縮
液は撮像装置4に導かれる。図4に、撮像装置4の一例
を示す。撮像装置4は、濃縮液の導入管409に対して
第1筐体401と第2筐体402から構成される。各々
の筐体が対向する導入管409の一部に透明ガラス製の
接液窓405と406を配置する。接液窓405、40
6はその一方を平型に、他方を凹形にし、両者が接した
ときに形成される空間部をサンプル室とし、濃縮液の一
部を保持する。第1筐体401にはサンプル室に焦点を
合わせた拡大光学レンズ404とITV(テレビカメ
ラ)403を内蔵し、一方、第2筐体402には集光レ
ンズを有する照明装置402と、接液窓406の位置を
調節する駆動装置408を設置する。このような構成に
おいて、駆動装置408は後述の画像処理装置5からの
指令あるいは外部からのタイマ−により制御され、接液
窓406を上下動操作する。図4は、サンプル室開放時
に接液窓406を下降させた状態であり、サンプル室の
液は濃縮液の流れにより入れ替えらる。そして接液窓4
06を再び上昇させることにより、新たな濃縮液がサン
プル室に保持される。すなわち、サンプル室は接液窓4
06上昇動作時に形成される。サンプル室内の濃縮液
は、透過光方式で照明され、拡大光学レンズ404を介
してITV403が受光し、電気信号に変換される。こ
の時、サンプル室内の保持液は、導入管409内を流通
する濃縮液の影響を受けずに静止状態にある。これらの
操作は連続的に行われ、自動的に画面が更新される。な
お、接液窓406を下降させた状態で、導入管409内
にワイパ−(図示せず)を設置し、両接液窓面の洗浄
と、サンプル室保持液の強制的入れ替えを実行すること
もできる。撮像装置4において電気信号(映像信号)に
変換された画像は、画像処理装置5に入力され、懸濁浮
遊物質と植物プランクトンの形状を画像処理抽出する。
また、画像処理装置5からの情報に基づいて画像の取り
込み指令を行い、撮像装置4の動作制御を実施する。Next, the details of these devices will be described. The sampling device 2 samples the stored water in the closed water area 1 such as a lake. Suspended suspended solids in the water area 1, especially phytoplankton, change from moment to moment depending on the position, time, and season, so it is necessary to carry out sampling to cope with this change. In FIG. 2, in order to sample the stored water, the position adjusting device 202 operates the conduit tube 203 in the vertical direction to change the water depth position of the inlet port 204, and the sampling pump 201 sucks the sample liquid from the inlet port 204. Water is taken and sent to the concentrator 3. Here, the water depth position operation is adjusted automatically or from a remote place in consideration of the time zone, the season, and the like. By setting the inlet port 204 near the water surface, it becomes possible to sample floating phytoplankton, which is a cause of water-bloom and red tide. The sample liquid from the sampling device 2 is guided to the concentrating device 3 to concentrate suspended suspended substances. Water area 1 of lakes and dams is several thousand ppm when it rains
However, it is usually clear at several tens of ppm or less. In addition, phytoplankton is tens of thousands (cells / ml) even in large numbers, and averages hundreds (cells / ml).
It is said that. Even if this is observed by a microscope with an objective lens of 4 times, it is determined whether or not there is one cell in one screen (observation volume of about 0.2 mm 3 ), which cannot be said to be efficient monitoring. Therefore, it is necessary to concentrate the sample liquid for efficient monitoring. FIG. 3 shows an example of the concentrating device 3. The sample liquid is sprinkled by the conduit 302, and the reticulated separation membrane 3
In 03, the suspended substance is concentrated and separated and stored in the concentration tank 304. The concentration ratio is determined by the ratio of the sample liquid amount and the concentrated liquid amount. The filtrate from which the suspended solids have been separated is drained. Further, the concentrated liquid is collected by the pump 305 from the concentration tank 304 via the extraction pipe 306. As a method for concentrating and separating the suspended substance, a centrifugal filtration method in which centrifugal force is used for separation, a centrifugal separation method or a centrifugal sedimentation method in which a difference in density or a difference in weight is used, may be adopted. The concentrated liquid from the concentrating device 3 is guided to the imaging device 4. FIG. 4 shows an example of the imaging device 4. The imaging device 4 is composed of a first housing 401 and a second housing 402 with respect to a concentrated liquid introducing tube 409. Liquid contact windows 405 and 406 made of transparent glass are arranged in a part of the introduction tube 409 facing each case. Wetted windows 405, 40
One of them has a flat shape and the other has a concave shape, and the space formed when the two are in contact with each other serves as a sample chamber and holds a part of the concentrated liquid. The first housing 401 contains a magnifying optical lens 404 and an ITV (TV camera) 403 focused on the sample chamber, while the second housing 402 has an illuminating device 402 having a condenser lens, and a liquid contact surface. A driving device 408 for adjusting the position of the window 406 is installed. In such a configuration, the driving device 408 is controlled by a command from the image processing device 5 described later or a timer from the outside, and vertically moves the liquid contact window 406. FIG. 4 shows a state in which the liquid contact window 406 is lowered when the sample chamber is opened, and the liquid in the sample chamber is replaced by the flow of the concentrated liquid. And the liquid contact window 4
By raising 06 again, a new concentrate is retained in the sample chamber. That is, the sample chamber has a liquid contact window 4
It is formed during the 06 ascending operation. The concentrated liquid in the sample chamber is illuminated by the transmitted light method, and is received by the ITV 403 via the magnifying optical lens 404 and converted into an electric signal. At this time, the retentate in the sample chamber is in a stationary state without being affected by the concentrated liquid flowing through the introduction tube 409. These operations are continuously performed and the screen is automatically updated. In addition, with the liquid contact window 406 being lowered, a wiper (not shown) is installed in the introduction tube 409 to perform cleaning of both liquid contact window surfaces and forced replacement of the sample chamber retentate. You can also The image converted into an electric signal (video signal) by the imaging device 4 is input to the image processing device 5 and image-processed and extracted the shapes of suspended suspended matter and phytoplankton.
In addition, an image capture command is issued based on the information from the image processing device 5, and the operation control of the imaging device 4 is performed.
【0008】図5に、画像処理装置5の一実施例を示
す。画像処理装置5は、CPU(中央処理装置)50
1、主メモリ502、記憶装置503、通信インタフェ
ース504、システムバス505、画像処理部506か
ら構成する。CPU501は、主メモリ502に格納さ
れているプログラムを実行し、画像処理装置5全体を制
御する。記憶装置503には、画像処理装置5を制御す
るプログラムと画像処理結果が格納される。プログラム
は、画像処理装置のイニシャルスタート時にCPU50
1のマイクロプログラムによって主メモリ502に転送
される。通信インタフェース504は他計算機、計測装
置とのデータ送受信機能を持ち、CPU501から通信
インタフェース504を介して、計算機8への画像計測
情報の送信及び撮像装置4の駆動装置408への制御信
号の送信を実施する。画像処理部506は、画像メモリ
507、画像処理プロセッサ508、映像インタフェー
ス509からなる。画像メモリ508には、縦方向25
6画素、横方向256画素で輝度階調が256(8ビッ
ト)の濃淡画像メモリと、縦方向256画素、横方向2
56画素で輝度階調が2(1ビット)の2値メモリがそ
れぞれ複数個配されている。画像処理プロセッサ508
は、画像メモリ508の濃淡画像並びに2値画像に対し
て、濃淡画像処理演算、2値化処理、形状特徴量抽出な
どを高速に実施する複数のLSIから構成されている。
映像インタフェース509は、複数の入力と出力を有
し、入力にはA/D変換器、出力にはD/A変換器を配
しており、アナログの映像信号をデジタル信号に変換す
る。画像処理装置5内部ではデジタル信号を用いて処理
する。撮像装置4からの映像信号は、映像インタフェー
ス509においてデジタル信号に変換され、1つの濃淡
画像として画像メモリ507にリアルタイムで格納さ
れ、画像処理プロセッサ508は画像メモリ507に格
納される該濃淡画像に対して各種画像処理を実行する。
なお、画像処理のタイミングはCPU501が制御す
る。映像インタフェース509に接続したモニタテレビ
510では、画像メモリ507に格納されている画像や
撮像装置4の映像信号を表示する。画像処理プロセッサ
508は駆動装置408を駆動させて接液窓409を下
降、上昇動作させる。この下降、上昇動作によりサンプ
ル室の濃縮液が交換されて、新たな画像が撮像装置4に
取り込まれる。FIG. 5 shows an embodiment of the image processing apparatus 5. The image processing device 5 includes a CPU (central processing unit) 50.
1, a main memory 502, a storage device 503, a communication interface 504, a system bus 505, and an image processing unit 506. The CPU 501 executes a program stored in the main memory 502 and controls the image processing apparatus 5 as a whole. The storage device 503 stores a program for controlling the image processing device 5 and an image processing result. The program is executed by the CPU 50 at the initial start of the image processing apparatus.
One microprogram is transferred to the main memory 502. The communication interface 504 has a data transmission / reception function with other computers and measurement devices, and transmits image measurement information from the CPU 501 to the computer 8 and control signals to the drive device 408 of the imaging device 4 via the communication interface 504. carry out. The image processing unit 506 includes an image memory 507, an image processing processor 508, and a video interface 509. The image memory 508 has a vertical direction of 25.
A grayscale image memory having 6 pixels, 256 pixels in the horizontal direction and a luminance gradation of 256 (8 bits), 256 pixels in the vertical direction, and 2 in the horizontal direction.
A plurality of binary memories each having 56 pixels and a brightness gradation of 2 (1 bit) are arranged. Image processor 508
Is composed of a plurality of LSIs that perform high-speed grayscale image processing calculation, binarization processing, shape feature amount extraction, and the like on the grayscale image and the binary image in the image memory 508.
The video interface 509 has a plurality of inputs and outputs, has an A / D converter at the input and a D / A converter at the output, and converts an analog video signal into a digital signal. Inside the image processing device 5, processing is performed using digital signals. The video signal from the image pickup device 4 is converted into a digital signal in the video interface 509 and is stored in the image memory 507 in real time as one grayscale image, and the image processor 508 outputs the grayscale image stored in the image memory 507 to the grayscale image. And executes various image processing.
The timing of image processing is controlled by the CPU 501. The monitor television 510 connected to the video interface 509 displays the image stored in the image memory 507 and the video signal of the imaging device 4. The image processor 508 drives the driving device 408 to move the liquid contact window 409 downward and upward. By this descending and ascending operation, the concentrated liquid in the sample chamber is exchanged, and a new image is captured by the imaging device 4.
【0009】ここに、画像処理装置5の処理手順の詳細
を図6、図7、図8を用いて説明する。本発明者らの観
察によれば、透過照明方式の撮像装置4の拡大画像で
は、植物プランクトンは一部光が透過して輝度が高いも
のの、液相部よりは暗い。また、ゴミ状の物質はプラン
クトンより輝度が低い。図6の濃淡画像(a)は、濃縮液
の植物プランクトン画像の一例である。濃淡画像は、同
図(a)に示すように、明るい液相部Zの領域と、液相部
より暗い植物性プランクトンA、B、Cと、ゴミ状の物
質Dを含んでいる。このように濃淡画像は、輝度(明る
さ)に応じた濃淡情報を持っており、該濃淡画像を2値
化処理して、植物性プランクトンのみを分離抽出する。
すなわち、特定の輝度レベルh1を基準にして、輝度レ
ベルh1より低輝度の領域を1、h1より高輝度の領域を
0にする2値化処理を実行する。この0、1の2値情報
に変換された2値画像を図6(b)に示す。まず、液相
部輝度と懸濁物質(プランクトンとゴミ状の物質)の輝
度間に2値化の輝度レベルh1を設定し、懸濁物質を1
に、液相部を0にした懸濁物質の2値画像を得る。次
に、ゴミ状物質部輝度とプランクトンの輝度間に2値化
の輝度レベルh2を設定し、ゴミ状物質を1に、他を0
にしたゴミ状物質の2値画像を作成し、前記懸濁物質の
2値画像と差分することで図6(b)の2値画像を得
る。図7に、この2値化処理の手順を示す。まず、内部
のシステム時刻を読み出し、予め設定した起動時刻ある
いは起動周期と一致した場合画像処理を実行する(54
0)。画像処理プロセッサ508は、映像インタフェー
ス509を介して得られたプランクトン映像を画像メモ
リ507内の濃淡画像メモリに格納後、濃淡画像処理演
算、2値化処理を施し、2値メモリに格納する(54
1)。2値化処理の詳細については、図8において説明
する。さらに、この2値メモリに対し、ラべリング処理
を実行し、画像全体の物体総個数、全面積を計算し(5
42)、続いて、粒径分布、平均粒径等(543)を計
算する。次に、プランクトン個々について、面積、周囲
長、形状係数、2次モーメント、端点数、交点数、穴の
数などの形状特徴量を計算し、主メモリ502に格納す
る(544)。CPU501は、これら各種画像処理計
測値を通信インタフェース504を介して計算機8へ送
信する(545)。さらに図8に、2値化処理の詳細な
手順を示す。撮像装置4のプランクトン映像信号は、濃
淡画像メモリG1に格納(550)後、輝度情報を輝度
−画素のヒストグラムとして抽出する(551)。輝度
−画素ヒストグラムは、横軸に輝度(0〜255)、縦
軸に画素数をとると画素数の曲線として表現できる。こ
の曲線から、例えば、曲線の最大値からある固定定数を
減算する方式を用いて植物性プランクトンのみを分離抽
出する特定の輝度レベルh1を計算し(552)、輝度
レベルh1を基準にして、輝度レベルh1より低輝度の領
域を1、h1より高輝度の領域を0にする2値化処理を
実行、2値メモリB1に格納する(553)。2値抽出
されたプランクトンのみの輝度情報を計算するため、濃
淡画像メモリG1と2値メモリB1とAND演算を実行
(マスク処理)し、背景液相部の輝度を0にした画像を
濃淡画像メモリG2に格納する(554)。濃淡画像メ
モリG2に対し、先のステップ551、552と同様の
方法で、輝度−画素ヒストグラム抽出し(555)、ゴ
ミ状物質部とプランクトンを分離する2値化の輝度レベ
ルh2の計算(556)を行い、輝度レベルh2による2
値化を実行し、2値メモリB2に格納する(557)。
なお、上記2値化処理手順において、濃淡画像(a)を
直接処理したが、各画像の背景画像(液相部のみの画
像)を予め撮像し、その画像と差分処理した画像を対象
に画像処理を実行しても良い。この前処理を実行するこ
とにより、画像全体の輝度ムラ、すなわち、照明光によ
る明るさの影響をなくし、良好な抽出画像を得ることが
できる。また、2値化処理のための輝度レベルの設定は
固定値並びに各画像の輝度分布(ヒストグラム)を考慮
して変化させる自動2値化法を用いることができる。Details of the processing procedure of the image processing apparatus 5 will be described with reference to FIGS. 6, 7, and 8. According to the observation by the present inventors, in the enlarged image of the transillumination type imaging device 4, the phytoplankton has a high brightness due to partial light transmission, but is darker than the liquid phase part. In addition, dust-like substances have lower brightness than plankton. The grayscale image (a) in FIG. 6 is an example of a phytoplankton image of the concentrated liquid. As shown in (a) of the same figure, the grayscale image includes a region of a bright liquid phase portion Z, phytoplankton A, B and C darker than the liquid phase portion, and a dust-like substance D. As described above, the grayscale image has grayscale information according to the brightness (brightness), and the grayscale image is binarized to separate and extract only phytoplankton.
That is, a binarization process is performed in which a region having a lower luminance than the luminance level h 1 is set to 1 and a region having a higher luminance than h 1 is set to 0 on the basis of the specific luminance level h 1 . The binary image converted into the binary information of 0 and 1 is shown in FIG. First, a binarized brightness level h 1 is set between the brightness of the liquid phase portion and the brightness of the suspended substance (plankton and dust-like substance), and the suspended substance is set to 1
Then, a binary image of the suspended substance with the liquid phase portion set to 0 is obtained. Next, a binarized luminance level h 2 is set between the dust-like substance portion luminance and the plankton luminance, and the dust-like substance is set to 1 and the others are set to 0.
A binary image of the dust-like substance is created and is subtracted from the binary image of the suspended substance to obtain the binary image of FIG. 6B. FIG. 7 shows the procedure of this binarization processing. First, the internal system time is read out, and image processing is executed if the preset start time or start cycle matches (54).
0). The image processor 508 stores the plankton image obtained through the image interface 509 in the gray image memory in the image memory 507, then performs the gray image processing operation, binarization process, and stores it in the binary memory (54
1). Details of the binarization processing will be described with reference to FIG. Furthermore, the labeling process is executed for this binary memory, and the total number of objects and the total area of the entire image are calculated (5
42), followed by calculating the particle size distribution, average particle size, etc. (543). Next, for each plankton, the shape feature amount such as the area, the perimeter, the shape coefficient, the second moment, the number of end points, the number of intersections, and the number of holes is calculated and stored in the main memory 502 (544). The CPU 501 transmits these various image processing measurement values to the computer 8 via the communication interface 504 (545). Further, FIG. 8 shows a detailed procedure of the binarization process. The plankton video signal of the image pickup device 4 is stored in the grayscale image memory G1 (550), and the luminance information is extracted as a luminance-pixel histogram (551). The brightness-pixel histogram can be expressed as a curve of the number of pixels, with the horizontal axis representing the luminance (0 to 255) and the vertical axis representing the number of pixels. From this curve, for example, a specific brightness level h 1 for separating and extracting only phytoplankton is calculated using a method of subtracting a fixed constant from the maximum value of the curve (552), and the brightness level h 1 is used as a reference. , A region having a luminance lower than the luminance level h 1 is set to 1 and a region having a luminance higher than h 1 is set to 0, and stored in the binary memory B1 (553). In order to calculate the luminance information of only the binary extracted plankton, AND image is executed with the grayscale image memory G1 and the binary memory B1 (mask processing), and the image in which the luminance of the background liquid phase part is set to 0 is a grayscale image memory. It is stored in G2 (554). With respect to the grayscale image memory G2, the brightness-pixel histogram is extracted by the same method as the above steps 551 and 552 (555), and the binarized brightness level h 2 for separating the dust-like substance portion and the plankton is calculated (556). ) Is performed, and 2 according to the brightness level h 2.
The binarization is performed and stored in the binary memory B2 (557).
In the binarization processing procedure, the grayscale image (a) was directly processed, but the background image of each image (the image of only the liquid phase portion) is captured in advance, and the image is subjected to the difference processing with the image. You may perform a process. By executing this pre-processing, it is possible to eliminate the uneven brightness of the entire image, that is, the influence of the brightness due to the illumination light, and obtain a good extracted image. Further, the setting of the brightness level for the binarization process can use a fixed value and an automatic binarization method in which the brightness distribution (histogram) of each image is changed.
【0010】計算機6は、画像処理装置5からの画像情
報と、気象情報計測装置7からの気象情報と、水質計測
装置6からの水質情報を連続的に受信し、水域の汚染状
態を監視する。ここで、水質情報とは、水温、濁度、p
H、DO(容存酸素濃度)、電気伝導度、化学的酸素要
求量COD、流速、水位などであり、気象情報とは、気
温、風向、風力、日射量、雨量などである。画像処理装
置5、気象情報計測装置7、水質計測装置6は、監視対
象水域の地理的条件を考慮し、監視に最適な位置に設置
する。水域を複数の監視ブロックに分割し、各ブロック
の代表地点に各計測装置を配置することが望ましい。こ
こで、図9に、計算機6の構成例を示す。CPU(中央
処理装置)805は、プログラム記憶装置803に格納
されている各種プログラムを主メモリ806に転送して
実行する。実行タイミングは、映像インタフェース80
8に接続した表示装置9からの起動指令信号、タイマ
ー、入出力インタフェース807からの情報などによ
る。計測値データーベース801には入出力インタフェ
ース807を介して受信した画像情報、水質情報、気象
情報及びシミュレーション結果が格納され、地形データ
ーベース802には水域の形状、流入水量、流入箇所、
流出水量、流出箇所等のデータが格納される。プログラ
ム記憶装置803には、異常診断プログラム、水質シミ
ュレーションプログラム、データ送受信プログラム、表
示装置操作プログラム等が格納されている。知識ベース
809には、過去の現象に基づくルール群など知識工
学、ファジー、ニューラルネットに必要な情報が格納さ
れる。異常診断プログラムは、各種計測情報並びに知識
ベ−ス809の格納ル−ルに基づいて水域の汚染状況と
その要因及び浄化対策を診断する。まず、プランクトン
総体積、個数などを用いて植物プランクトン増減傾向を
把握し、植物プランクトンが影響要因であれば、その種
類を同定し、知識ベ−ス809のル−ルから増殖要因を
診断する。種類の同定は、形状の特徴から求める。例え
ば、アオコや赤潮の原因となるミクロキスチスやウロゲ
レナは円形状係数や粒径、さらに細胞と中空(穴)部の
面積比等の計測情報を用いて同定する。また、糸状や矩
形状のプランクトンは長軸・短軸長比、面積と周囲長
比、端点や交点数等から同定する。さらに、星形状や連
環状のプランクトンは端点や交点数、細胞と中空(穴)
部の面積比、穴数、細胞と中空(穴)部の面積比、面積
と周囲長比等から判定する。これらの判定には、クリス
プル−ルやファジ−ル−ルによる知識工学的手法、並び
に、各種計測情報を入力層に、計測情報に対応する特徴
値を教師デ−タとするニュ−ラルネットワ−ク手法を用
いることもできる。各種ル−ルや特徴値及びそれに対応
するプランクトン名等は知識ベ−ス809に格納し、必
要に応じて呼出して推論を実行する。このように、水域
の汚染状態をプランクトンの出現量やその出現種を連続
計測して監視する。The computer 6 continuously receives the image information from the image processing device 5, the meteorological information from the meteorological information measuring device 7, and the water quality information from the water quality measuring device 6, and monitors the pollution state of the water area. . Here, water quality information includes water temperature, turbidity, p
H, DO (dissolved oxygen concentration), electrical conductivity, chemical oxygen demand COD, flow velocity, water level, etc., and weather information includes temperature, wind direction, wind power, solar radiation, rainfall, etc. The image processing device 5, the meteorological information measuring device 7, and the water quality measuring device 6 are installed at optimum positions for monitoring in consideration of the geographical condition of the monitored water area. It is desirable to divide the water area into multiple monitoring blocks and place each measuring device at the representative point of each block. Here, FIG. 9 shows a configuration example of the computer 6. A CPU (Central Processing Unit) 805 transfers various programs stored in the program storage device 803 to the main memory 806 and executes them. The execution timing is the video interface 80.
It depends on a start command signal from the display device 9 connected to the display device 8, a timer, information from the input / output interface 807, and the like. The measurement value database 801 stores image information, water quality information, meteorological information and simulation results received via the input / output interface 807, and the terrain database 802 stores the shape of the water area, the inflow water amount, the inflow location,
Data such as the amount of runoff water and the location of runoff is stored. The program storage device 803 stores an abnormality diagnosis program, a water quality simulation program, a data transmission / reception program, a display device operation program, and the like. The knowledge base 809 stores information necessary for knowledge engineering, fuzzy, and neural network such as rules based on past phenomena. The abnormality diagnosis program diagnoses the pollution status of the water area, its factors, and purification measures based on various measurement information and the stored rules of the knowledge base 809. First, the phytoplankton increase / decrease tendency is grasped by using the total volume and number of plankton, and if the phytoplankton is an influencing factor, its type is identified, and the growth factor is diagnosed from the rule of the knowledge base 809. The type identification is obtained from the shape feature. For example, microcystis and urogelena, which are responsible for blue-green algae and red tide, are identified using measurement information such as the circular shape factor and particle size, and the area ratio of cells to hollow (hole) portions. The filamentous or rectangular plankton is identified by the major axis / minor axis length ratio, the area / peripheral length ratio, the number of end points and the number of intersections, and the like. In addition, star-shaped and ring-shaped plankton have end points, the number of intersections, cells and hollows (holes).
It is judged from the area ratio of the parts, the number of holes, the area ratio of the cells and the hollow (hole) parts, the area ratio of the perimeter, and the like. For these judgments, a knowledge engineering method using crispy or fuzzy rules, and a neural network using various measurement information as an input layer and feature values corresponding to the measurement information as teacher data. Techniques can also be used. Various rules, feature values, and plankton names corresponding to them are stored in the knowledge base 809, which is called as needed to execute inference. In this way, the pollution status of water bodies is monitored by continuously measuring the amount of plankton and its species.
【0011】図10に、この異常診断プログラムの処理
の一例を示す。CPU805は、計算機8の起動と同時
に異常診断プログラムを主メモリ806にロードし、実
行する。まず、異常診断プログラムは、システム時刻を
読みだし、予め登録した時刻または周期と比較し、起動
時刻と判定した場合、ステップ851に移行する(85
0)。続いて、水域の監視ブロック毎に、栄養塩指標I
k、有機物指標Ic、プランクトンIp指標を計算する
(851)。計算手順は後述する図11、図12におい
て説明する。次に、水質情報、画像情報及び該3つの指
標を初期値として、今後1カ月の水質情報、画像情報及
び該3つの指標をシミュレーションする(852)。シ
ミュレーションの手順は後述する図13において説明す
る。現状値またはシミュレーション値が基準範囲を超え
た場合、水質情報や出現プランクトンの種類及び量が年
間変動と一致しないときに異常発生と判定し(85
3)、異常発生場所、異常要因となる流入水をシミュレ
ーション結果もしくは過去の経験則から推定する(85
4)。異常要因に対する対策は、知識ベースに格納して
おき、発生場所、発生要因、季節、気象などから推論す
る(855)。図11に、栄養塩指標Ik、有機物指標
Icの計算方法の一例を示す。水質情報からDO、濁度
Tu、リンP、窒素TN、化学的酸素要求量COD、p
Hを読み出し(861)、栄養塩指標Ik、有機物指標
Icをそれぞれ(1)式、(2)式により計算する(8
62)。 Ik=w1×P+w2×TN (1) Ic=w3×DO+w4×COD+w5×pH (2) ただし、w1,w2,3w4,w5は重み係数。 降雨、台風などの要因では、水質の変動が予想されるの
で、降雨量、水域への流入量、濁度Tuを変数に持つ係
数w6,w7を用いて(3)、(4)式により補正する
(863)。 Ik = w6× Ik (3) Ic = w7× Ic (4) 以上のように計算した指標は、主メモリ806と計測値
データベース801に格納する(864)。図12に、
プランクトン指標Ipの計算手順の一例を示す。まず、
画像情報を基にプランクトンの分類を形状の特徴から数
個(N)に分類した(870)後、分類毎にプランクト
ンの体積PV(i)、個数PN(i)を計算(871)
する。糸状や矩形状のプランクトンは、長軸・短軸長
比、面積と周囲長比、端点や交点数等から同定できる。
さらに、星形状や連環状のプランクトンは、端点や交点
数、細胞と中空(穴)部の面積比、穴数、細胞と中空
(穴)部の面積比、面積と周囲長比等から判定できる。
次に、アオコや赤潮の原因となる特定種のプランクトン
の存在有無は形状特徴から判定する(872)。例え
ば、アオコや赤潮の原因となるミクロキスチスやウロゲ
レナは円形状係数や粒径、さらに細胞と中空(穴)部の
面積比等の情報を用いて同定する。存在を確認した場
合、異常指標のプランクトン発生を主メモリ806及び
計測値データベースに格納する(874)。プランクト
ン発生量VVとプランクトン指標Ipを(5)、(6)
式により計算し、主メモリ806及び計測値データベー
ス801に格納する(874、876)。 ただし、w8(i):体積計算時のプランクトン分類i
の重み係数 C :係数FIG. 10 shows an example of processing of this abnormality diagnosis program. The CPU 805 loads the abnormality diagnosis program into the main memory 806 and executes it at the same time when the computer 8 is started. First, the abnormality diagnosis program reads the system time, compares it with the time or cycle registered in advance, and when it determines that it is the start time, moves to step 851 (85
0). Next, the nutrient index I
k, the organic matter index Ic, and the plankton Ip index are calculated (851). The calculation procedure will be described later with reference to FIGS. 11 and 12. Next, the water quality information, the image information, and the three indexes for the next month are simulated with the water quality information, the image information, and the three indexes as initial values (852). The simulation procedure will be described later with reference to FIG. If the current value or simulation value exceeds the reference range, it is determined that an abnormality has occurred when the water quality information and the type and amount of emerging plankton do not match the annual fluctuation (85
3), the place where the abnormality occurs, the inflow water that causes the abnormality are estimated from the simulation result or the past empirical rule (85
4). Measures against abnormal factors are stored in the knowledge base and inferred from the occurrence place, occurrence factor, season, weather, etc. (855). FIG. 11 shows an example of a method of calculating the nutrient index Ik and the organic matter index Ic. From water quality information DO, turbidity Tu, phosphorus P, nitrogen TN, chemical oxygen demand COD, p
H is read (861), and the nutrient index Ik and the organic matter index Ic are calculated by the equations (1) and (2), respectively (8)
62). Ik = w 1 × P + w 2 × TN (1) Ic = w 3 × DO + w 4 × COD + w 5 × pH (2) where w 1 , w 2 , 3 w 4 , and w 5 are weighting factors. Rainfall, the factors such as typhoons, the fluctuation of the water quality is expected rainfall, using the coefficient w 6, w 7 with inflow to water bodies, the turbidity Tu variable (3), (4) (863). Ik = w 6 × Ik (3 ) Ic = w 7 × Ic (4) above calculated index as stores the main memory 806 to the measurement value database 801 (864). In FIG.
An example of a procedure for calculating the Plankton index Ip will be shown. First,
After classifying the plankton into several (N) based on the shape information based on the image information (870), the plankton volume PV (i) and the number PN (i) of each plankton are calculated (871).
To do. The filamentous or rectangular plankton can be identified from the major axis / minor axis length ratio, the area / peripheral length ratio, the number of end points and the number of intersections, and the like.
Furthermore, a star-shaped or continuous plankton can be determined from the number of end points and intersections, the area ratio of cells to hollow (hole) parts, the number of holes, the area ratio of cells to hollow (hole) parts, and the area to perimeter ratio. .
Next, the presence / absence of a plankton of a specific species that causes the blue-green algae and red tide is determined from the shape feature (872). For example, microcystis and urogelena, which are responsible for blue-green algae and red tide, are identified using information such as the circular shape factor and particle size, and the area ratio of cells to hollow (hole) portions. When the existence is confirmed, the plankton occurrence of the abnormality index is stored in the main memory 806 and the measurement value database (874). Plankton generation amount VV and plankton index Ip are (5), (6)
It is calculated by the formula and stored in the main memory 806 and the measurement value database 801 (874, 876). However, w 8 (i): Plankton classification i when calculating volume
Weighting coefficient C: coefficient
【0012】図13に、シミュレ−ション手順の詳細を
示す。まず、水域への流入・流出情報、監視ブロック毎
の水質情報、気象情報、地形データベース802から水
域の地形情報を読み出し(880)、監視ブロック毎
の、流速、水温、水域への流入・流出情報に基づき水域
全体の対流を計算する(881)。この対流計算値と水
温から、水質情報が監視ブロック間で拡散する状態をモ
デル化する。次に、現在の水質情報を初期値として一定
時間後のDO、濁度Tu、リンP、窒素TN、化学的酸
素要求量COD、pHを計算し、続いて、画像情報と栄
養塩、水温、DO、CODを初期値とし、プランクトン
繁殖モデルを用いてプランクトン発生量を計算する(8
82)。これらの計算値を基に栄養塩指標Ik、有機物
指標Ic、プランクトン指標Ipを計算する(88
3)。ステップ882、883を監視ブロック数分繰返
す(884)と一定時間後の水域全体の状態が計算でき
る。さらに、時間を更新し、1カ月間程度の計算を繰り
返し(885)、結果を主メモリ806及び計測値デー
タベース801に格納する(886)。このように、水
質シミュレ−ションプログラムは、当日の画像情報、水
質情報、気象情報及び水域に流入する河川等の流入量、
水質並びに水圏固有の地形、大きさなどの地理情報を基
にシミュレ−ション計算を行い、汚染発生の原因となる
場所の推定や翌日の水域内対流、拡散、反応などの水質
変動を解析する。すなわち、翌日の水質変動を予知する
ことにより、その対策を早期に行うことができる。診
断、シミュレーションにより異常を検知した場合、空気
又は酸素吹き込みによる曝気操作、撹拌操作、紫外線照
射などの浄化手段を起動する。浄化手段は、水域内複数
箇所に固定設置する方式と汚染箇所に移動する方式があ
る。表示装置9は、計算機8内の情報を表示し、計測デ
ータ、汚染状態、シミュレーション結果などを水域の水
平方向と垂直方向について表示する。また、マウス、ラ
イトペン、キーボードなどの信号を計算機8に送信す
る。FIG. 13 shows the details of the simulation procedure. First, the inflow / outflow information to the water area, the water quality information for each monitoring block, the weather information, the topographic information of the water area is read from the topographic database 802 (880), and the flow velocity, the water temperature, the inflow / outflow information to the water area for each monitoring block are read. The convection of the whole water area is calculated based on (881). From this convection calculation value and water temperature, the state in which water quality information diffuses between monitoring blocks is modeled. Next, DO, turbidity Tu, phosphorus P, nitrogen TN, chemical oxygen demand COD, and pH after a certain time are calculated using the current water quality information as an initial value, and subsequently, image information and nutrient salts, water temperature, Using DO and COD as initial values, calculate plankton generation using a plankton breeding model (8
82). Based on these calculated values, the nutrient index Ik, the organic matter index Ic, and the plankton index Ip are calculated (88).
3). By repeating steps 882 and 883 for the number of monitoring blocks (884), the state of the entire water area after a fixed time can be calculated. Further, the time is updated, the calculation for about one month is repeated (885), and the result is stored in the main memory 806 and the measurement value database 801 (886). In this way, the water quality simulation program consists of image information, water quality information, meteorological information of the day and the inflow amount of rivers etc.
A simulation calculation is performed based on water quality and geographical information such as topography and size peculiar to the hydrosphere, and the location of the cause of pollution is estimated and the water quality fluctuations such as convection, diffusion, and reaction in the water area on the next day are analyzed. That is, by predicting the water quality fluctuation of the next day, the countermeasure can be taken early. When abnormality is detected by diagnosis or simulation, purification means such as aeration operation by air or oxygen blowing, agitation operation, and ultraviolet irradiation is activated. There are two methods of purification: one is fixedly installed at multiple points in the water area and the other is moved to a contaminated point. The display device 9 displays information in the computer 8 and displays measurement data, a pollution state, a simulation result, etc. in the horizontal and vertical directions of the water area. It also sends signals from the mouse, light pen, keyboard, etc. to the computer 8.
【0013】[0013]
【発明の効果】本発明によれば、湖沼や河川中のプラン
クトン数が希薄であっても、懸濁浮遊物質を濃縮するこ
とにより、画像認識の効率を高めことができる。また、
閉鎖性水域の汚染状態をプランクトン出現量と水質情報
から連続的かつ定量的に計測できるので、水域の水質監
視及び浄化を効率的に実行することが可能となる。ま
た、シミュレーションにより、汚染状況を事前に予測す
ることができると共に汚染水域の浄化対策を講ずること
が可能になる。According to the present invention, the efficiency of image recognition can be improved by concentrating suspended suspended matter even if the number of plankton in a lake or river is low. Also,
Since the pollution status of the closed water area can be measured continuously and quantitatively from the plankton appearance amount and water quality information, it becomes possible to efficiently monitor and purify the water quality of the water area. In addition, the simulation makes it possible to predict the pollution situation in advance and take measures to purify the contaminated water area.
【図1】本発明の一実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.
【図2】サンプル装置の構成を示す図。FIG. 2 is a diagram showing a configuration of a sample device.
【図3】濃縮装置の構成を示す図。FIG. 3 is a diagram showing a configuration of a concentrating device.
【図4】撮像装置の構成を示す図。FIG. 4 is a diagram showing a configuration of an imaging device.
【図5】画像処理装置のを示す図。FIG. 5 is a diagram showing an image processing apparatus.
【図6】プランクトン画像の一例を示す図。FIG. 6 is a diagram showing an example of a plankton image.
【図7】2値化処理の手順を示す図。FIG. 7 is a diagram showing a procedure of binarization processing.
【図8】2値化処理の詳細な手順を示す図。FIG. 8 is a diagram showing a detailed procedure of binarization processing.
【図9】計算機の構成を示す図。FIG. 9 is a diagram showing the configuration of a computer.
【図10】異常診断プログラムの処理を示す図。FIG. 10 is a diagram showing processing of an abnormality diagnosis program.
【図11】計算方法の一例を示す図。FIG. 11 is a diagram showing an example of a calculation method.
【図12】計算方法の一例を示す図。FIG. 12 is a diagram showing an example of a calculation method.
【図13】シミュレ−ション手順の詳細を示す図。FIG. 13 is a diagram showing details of a simulation procedure.
1 水域 2 サンプリング装置 3 濃縮装置 4 撮像装置 5 画像処理装置 6 水質計測装置 7 気象情報計測装置 8 計算機 9 表示装置 1 Water Area 2 Sampling Device 3 Concentrating Device 4 Imaging Device 5 Image Processing Device 6 Water Quality Measuring Device 7 Meteorological Information Measuring Device 8 Calculator 9 Display Device
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // G06F 15/20 D 7052−5L (72)発明者 渡辺 昭二 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 矢萩 捷夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI technical display location // G06F 15/20 D 7052-5L (72) Inventor Shoji Watanabe 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hiritsu Manufacturing Co., Ltd. (72) Nobuo Yahagi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture
Claims (9)
を自動的にサンプルする手段と、サンプル中の浮遊物質
を濃縮する手段と、濃縮液中の濁質を撮像する手段と、
撮像画像を画像処理し、濁質を抽出する手段と、該抽出
濁質の特徴を計算する手段と、該特徴から浮遊物質を複
数の形状に分類する手段を具備し、浮遊物質の形状分類
毎に出現量を計測することを特徴とする水質汚染監視装
置。1. A means for automatically sampling the water quality of lake water, sea water, river water, dam water, etc., means for concentrating suspended matter in the sample, and means for imaging turbidity in the concentrate.
Each of the shape classifications of suspended matter is provided with a means for image-processing the captured image and extracting turbidity, a means for calculating the characteristics of the extracted turbidity, and a means for classifying the suspended matter into a plurality of shapes based on the characteristics. A water pollution monitoring device characterized by measuring the amount of appearance.
と、水質、季節、気象データから汚染状態を判定するこ
とを特徴とする水質汚染監視装置。2. The water pollution monitoring device according to claim 1, wherein the pollution state is determined from the distribution of appearance quantity for each classification and the water quality, season, and meteorological data.
毎の出現量分布計測は、水域の水平方向及び水深方向に
ついて実施することを特徴とする水質汚染監視装置。3. The water pollution monitoring device according to claim 1 or 2, wherein the appearance amount distribution measurement for each classification is performed in a horizontal direction and a depth direction of the water area.
いて、対象水域の地形、面積等の地理情報を記憶する手
段と、汚染状況をシミュレーションする手段を具備し、
汚染箇所を推定することを特徴とする水質汚染監視装
置。4. The method according to claim 1, claim 2 or claim 3, comprising means for storing geographical information such as topography and area of the target water area, and means for simulating a pollution situation.
A water pollution monitoring device characterized by estimating a polluted point.
果に基づいて汚染領域を判定し、該領域を浄化する手段
を具備することを特徴とする水質汚染監視装置。5. The water pollution monitoring device according to claim 4, further comprising means for determining a contaminated region based on a simulation result and purifying the contaminated region.
て、それぞれの結果を表示する手段を具備することを特
徴とする水質汚染監視装置。6. A water pollution monitoring device according to any one of claims 1 to 5, further comprising means for displaying the respective results.
水域を複数の監視ブロックに分割し、該監視ブロック毎
に栄養塩指標、有機物指標、プランクトン指標を計算
し、これらの指標と水質情報及び浮遊物質の濁質を画像
処理した画像情報を基にシミュレーションし、該シミュ
レーション値が基準範囲を超えた場合、出現プランクト
ンの種類及び量が異常発生したと判定し、異常診断する
ことを特徴とする水質汚染監視方法。7. A target water area such as lake water, sea water, river water, dam water, etc. is divided into a plurality of monitoring blocks, and a nutrient index, an organic matter index, a plankton index are calculated for each of these monitoring blocks, A simulation is performed based on image information obtained by image-processing water quality information and suspended solids of suspended solids.If the simulation value exceeds the reference range, it is determined that the type and amount of the appearing plankton have abnormally occurred, and abnormal diagnosis is performed. Characteristic water pollution monitoring method.
異常発生場所、異常要因となる流入水を推定し、該異常
要因に対する対策を推論することを特徴とする水質汚染
監視方法。8. The water pollution monitoring method according to claim 7, wherein the place where the abnormality occurs and the inflow water that causes the abnormality are estimated from the result of the abnormality diagnosis, and the countermeasure against the abnormality factor is inferred.
水域を複数の監視ブロックに分割し、監視ブロック毎の
流速、水温、水域への流入・流出情報に基づいて水域全
体の対流を計算し、該対流計算値から水質情報が監視ブ
ロック間で拡散する状態をモデル化し、次いで、現在を
初期値として一定時間後の水質情報とプランクトン発生
量を計算し、これらの計算値を基に栄養塩指標、有機物
指標、プランクトン指標を計算し、一定時間後の水域全
体の状態をシミュレ−ション計算し、水質変動を予知す
ることを特徴とする水質汚染監視方法。9. The target water area such as lake water, sea water, river water, and dam water is divided into a plurality of monitoring blocks, and convection of the entire water area is based on the flow velocity, water temperature, and inflow / outflow information to / from each monitoring block. From the calculated convection values to model the state in which the water quality information diffuses between the monitoring blocks, and then calculate the water quality information and the plankton generation amount after a certain period of time with the present as the initial value, and based on these calculated values. A method for monitoring water pollution, characterized in that the nutrient index, the organic matter index, and the plankton index are calculated, the state of the entire water area after a certain period of time is simulated, and fluctuations in water quality are predicted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20311492A JP3131661B2 (en) | 1992-07-07 | 1992-07-07 | Water pollution monitoring apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20311492A JP3131661B2 (en) | 1992-07-07 | 1992-07-07 | Water pollution monitoring apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0627014A true JPH0627014A (en) | 1994-02-04 |
JP3131661B2 JP3131661B2 (en) | 2001-02-05 |
Family
ID=16468637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20311492A Expired - Fee Related JP3131661B2 (en) | 1992-07-07 | 1992-07-07 | Water pollution monitoring apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3131661B2 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0720119A (en) * | 1993-07-06 | 1995-01-24 | Hitachi Ltd | Method and system for supporting management of water purification plant |
JPH08233737A (en) * | 1995-02-28 | 1996-09-13 | Yua Tec:Kk | Capillary photodetector, photometric apparatus and method for measuring microparticles in suspension using it |
US6130956A (en) * | 1998-02-17 | 2000-10-10 | Butterworth; Francis M. | Continuous microbiotal recognition method |
KR100419130B1 (en) * | 2000-10-28 | 2004-02-25 | 농업기반공사 | Integrated system of agricultural water quality management using a gis |
KR100667966B1 (en) * | 2005-02-17 | 2007-01-11 | 인하대학교 산학협력단 | System and Method for Coastal Water Quality Management |
JP2007146422A (en) * | 2005-11-25 | 2007-06-14 | Toshiba Corp | Water intake system |
JP2007530950A (en) * | 2004-03-26 | 2007-11-01 | アン・アーバー・テクニカル・サービシーズ | Geomorphology for environmental restoration processes and systems |
JP2010167362A (en) * | 2009-01-22 | 2010-08-05 | Ishigaki Co Ltd | Inspection apparatus, pollution flocculating treating apparatus and pollution flocculating treating system |
JP2010191695A (en) * | 2009-02-18 | 2010-09-02 | Hitachi Ltd | Water safety management system |
JP2010254605A (en) * | 2009-04-23 | 2010-11-11 | Yokohama National Univ | Method for removing blue-green algae |
JP2011179111A (en) * | 2010-02-05 | 2011-09-15 | Jfe Steel Corp | Method of estimating concentration of material component in fluid system, method of estimating concentration distribution of the same, method of monitoring concentration of the same, method of managing concentration of aluminum in molten zinc stored in hot-dip galvanizing pot, hot-dip galvanized steel sheet and device for estimating concentration of material component in fluid system |
JP2016095259A (en) * | 2014-11-17 | 2016-05-26 | 横河電機株式会社 | Plankton measurement system and plankton measurement method |
JP2017207323A (en) * | 2016-05-17 | 2017-11-24 | 三菱電機株式会社 | Image processing type water quality monitoring device |
JP2020125618A (en) * | 2019-02-04 | 2020-08-20 | 東京電力ホールディングス株式会社 | Information processing method, program, water intake control system, and learned model creation method |
JP2021020165A (en) * | 2019-07-29 | 2021-02-18 | 水ing株式会社 | Determination system of determining cleanness of water present in water tank for rearing aquatic life, and water treatment system and water treatment method of maintaining water quality in water tank |
CN112505278A (en) * | 2020-11-30 | 2021-03-16 | 深圳市联正通达科技有限公司 | Sampling formula sewage control analytical equipment |
CN113203691A (en) * | 2021-05-06 | 2021-08-03 | 福建省水利水电科学研究院 | Water quality pollutant tracing method based on wavelet analysis |
CN113622145A (en) * | 2020-05-07 | 2021-11-09 | 云米互联科技(广东)有限公司 | Laundry control method, laundry control system, washing machine and computer readable storage medium |
CN114858987A (en) * | 2022-03-30 | 2022-08-05 | 河海大学 | River and lake water quantity and quality monitoring and management system based on Internet of things |
CN115035416A (en) * | 2022-08-10 | 2022-09-09 | 广东广宇科技发展有限公司 | Method and system for quickly identifying polluted water source, electronic equipment and storage medium |
CN115423383A (en) * | 2022-11-03 | 2022-12-02 | 湖南易净环保科技有限公司 | Distributed village and town drinking water monitoring and regulation system and method based on artificial intelligence |
WO2023002755A1 (en) * | 2021-07-20 | 2023-01-26 | 国立研究開発法人海洋研究開発機構 | Pollution level estimation system, pollution level estimation method, and pollution level estimation program |
JP2023033163A (en) * | 2021-08-27 | 2023-03-09 | 生態環境部南京環境科学研究所 | Method for analyzing black and odorous water body sediment heavy metal source based on multiple variables and pmf model |
CN116233370A (en) * | 2023-04-27 | 2023-06-06 | 安徽哈斯特自动化科技有限公司 | Intelligent video monitoring method based on water quality monitoring |
CN116403092A (en) * | 2023-06-02 | 2023-07-07 | 北京建工环境修复股份有限公司 | Underground water NAPL pollution degree judging method and system based on image learning |
CN116625973A (en) * | 2023-07-21 | 2023-08-22 | 江苏省环境科学研究院 | Groundwater detection system and method based on Fourier infrared technology |
CN117689273A (en) * | 2024-02-02 | 2024-03-12 | 埃睿迪信息技术(北京)有限公司 | Information processing method, device and equipment |
CN118188626A (en) * | 2024-04-16 | 2024-06-14 | 哈尔滨电机厂(镇江)有限责任公司 | Control system and method for high-pressure oil jacking device of impact generator set |
CN118225995A (en) * | 2024-05-22 | 2024-06-21 | 宁波瀚陆海洋科技有限公司 | Bay nitrogen and phosphorus pollutant monitoring method and system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102156107B1 (en) | 2020-01-10 | 2020-09-15 | 서울대학교산학협력단 | A method of predicting changes on primary production of marine ecosystem during offshore sand mining and a computer readable medium thereof |
-
1992
- 1992-07-07 JP JP20311492A patent/JP3131661B2/en not_active Expired - Fee Related
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0720119A (en) * | 1993-07-06 | 1995-01-24 | Hitachi Ltd | Method and system for supporting management of water purification plant |
JPH08233737A (en) * | 1995-02-28 | 1996-09-13 | Yua Tec:Kk | Capillary photodetector, photometric apparatus and method for measuring microparticles in suspension using it |
US6130956A (en) * | 1998-02-17 | 2000-10-10 | Butterworth; Francis M. | Continuous microbiotal recognition method |
KR100419130B1 (en) * | 2000-10-28 | 2004-02-25 | 농업기반공사 | Integrated system of agricultural water quality management using a gis |
US8047743B2 (en) | 2004-03-26 | 2011-11-01 | Ann Arbor Technical Services | Geomorphology for environmental remediation process and systems |
JP2007530950A (en) * | 2004-03-26 | 2007-11-01 | アン・アーバー・テクニカル・サービシーズ | Geomorphology for environmental restoration processes and systems |
KR100667966B1 (en) * | 2005-02-17 | 2007-01-11 | 인하대학교 산학협력단 | System and Method for Coastal Water Quality Management |
JP2007146422A (en) * | 2005-11-25 | 2007-06-14 | Toshiba Corp | Water intake system |
JP2010167362A (en) * | 2009-01-22 | 2010-08-05 | Ishigaki Co Ltd | Inspection apparatus, pollution flocculating treating apparatus and pollution flocculating treating system |
JP2010191695A (en) * | 2009-02-18 | 2010-09-02 | Hitachi Ltd | Water safety management system |
JP2010254605A (en) * | 2009-04-23 | 2010-11-11 | Yokohama National Univ | Method for removing blue-green algae |
JP2011179111A (en) * | 2010-02-05 | 2011-09-15 | Jfe Steel Corp | Method of estimating concentration of material component in fluid system, method of estimating concentration distribution of the same, method of monitoring concentration of the same, method of managing concentration of aluminum in molten zinc stored in hot-dip galvanizing pot, hot-dip galvanized steel sheet and device for estimating concentration of material component in fluid system |
JP2016095259A (en) * | 2014-11-17 | 2016-05-26 | 横河電機株式会社 | Plankton measurement system and plankton measurement method |
JP2017207323A (en) * | 2016-05-17 | 2017-11-24 | 三菱電機株式会社 | Image processing type water quality monitoring device |
JP2020125618A (en) * | 2019-02-04 | 2020-08-20 | 東京電力ホールディングス株式会社 | Information processing method, program, water intake control system, and learned model creation method |
JP2021020165A (en) * | 2019-07-29 | 2021-02-18 | 水ing株式会社 | Determination system of determining cleanness of water present in water tank for rearing aquatic life, and water treatment system and water treatment method of maintaining water quality in water tank |
CN113622145A (en) * | 2020-05-07 | 2021-11-09 | 云米互联科技(广东)有限公司 | Laundry control method, laundry control system, washing machine and computer readable storage medium |
CN113622145B (en) * | 2020-05-07 | 2023-11-07 | 云米互联科技(广东)有限公司 | Laundry control method, laundry control system, washing machine and computer readable storage medium |
CN112505278A (en) * | 2020-11-30 | 2021-03-16 | 深圳市联正通达科技有限公司 | Sampling formula sewage control analytical equipment |
CN112505278B (en) * | 2020-11-30 | 2024-05-17 | 福建钱江水务有限公司 | Sampling type sewage monitoring and analyzing equipment |
CN113203691A (en) * | 2021-05-06 | 2021-08-03 | 福建省水利水电科学研究院 | Water quality pollutant tracing method based on wavelet analysis |
WO2023002755A1 (en) * | 2021-07-20 | 2023-01-26 | 国立研究開発法人海洋研究開発機構 | Pollution level estimation system, pollution level estimation method, and pollution level estimation program |
JP2023033163A (en) * | 2021-08-27 | 2023-03-09 | 生態環境部南京環境科学研究所 | Method for analyzing black and odorous water body sediment heavy metal source based on multiple variables and pmf model |
CN114858987A (en) * | 2022-03-30 | 2022-08-05 | 河海大学 | River and lake water quantity and quality monitoring and management system based on Internet of things |
CN115035416A (en) * | 2022-08-10 | 2022-09-09 | 广东广宇科技发展有限公司 | Method and system for quickly identifying polluted water source, electronic equipment and storage medium |
CN115035416B (en) * | 2022-08-10 | 2022-11-22 | 广东广宇科技发展有限公司 | Method and system for quickly identifying polluted water source, electronic equipment and storage medium |
CN115423383A (en) * | 2022-11-03 | 2022-12-02 | 湖南易净环保科技有限公司 | Distributed village and town drinking water monitoring and regulation system and method based on artificial intelligence |
CN115423383B (en) * | 2022-11-03 | 2023-01-13 | 湖南易净环保科技有限公司 | Distributed village and town drinking water monitoring and regulation system and method based on artificial intelligence |
CN116233370B (en) * | 2023-04-27 | 2023-07-25 | 安徽哈斯特自动化科技有限公司 | Intelligent video monitoring method based on water quality monitoring |
CN116233370A (en) * | 2023-04-27 | 2023-06-06 | 安徽哈斯特自动化科技有限公司 | Intelligent video monitoring method based on water quality monitoring |
CN116403092A (en) * | 2023-06-02 | 2023-07-07 | 北京建工环境修复股份有限公司 | Underground water NAPL pollution degree judging method and system based on image learning |
CN116403092B (en) * | 2023-06-02 | 2023-08-18 | 北京建工环境修复股份有限公司 | Underground water NAPL pollution degree judging method and system based on image learning |
CN116625973A (en) * | 2023-07-21 | 2023-08-22 | 江苏省环境科学研究院 | Groundwater detection system and method based on Fourier infrared technology |
CN116625973B (en) * | 2023-07-21 | 2023-10-20 | 江苏省环境科学研究院 | Groundwater detection system and method based on Fourier infrared technology |
CN117689273A (en) * | 2024-02-02 | 2024-03-12 | 埃睿迪信息技术(北京)有限公司 | Information processing method, device and equipment |
CN118188626A (en) * | 2024-04-16 | 2024-06-14 | 哈尔滨电机厂(镇江)有限责任公司 | Control system and method for high-pressure oil jacking device of impact generator set |
CN118225995A (en) * | 2024-05-22 | 2024-06-21 | 宁波瀚陆海洋科技有限公司 | Bay nitrogen and phosphorus pollutant monitoring method and system |
Also Published As
Publication number | Publication date |
---|---|
JP3131661B2 (en) | 2001-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3131661B2 (en) | Water pollution monitoring apparatus and method | |
Beyenal et al. | Quantifying biofilm structure: facts and fiction | |
CN116233370B (en) | Intelligent video monitoring method based on water quality monitoring | |
CN112734694A (en) | Water quality monitoring method based on big data | |
JP2019209271A (en) | Water quality determination device and water quality determination method in waste water treatment facility | |
JPH05332915A (en) | Hydrosphere monitoring apparatus and purifying apparatus | |
CN113011661A (en) | Aeration control system for river ecological restoration and control method thereof | |
CN114943917A (en) | Algorithm for visually identifying aeration rate of aerobic tank of sewage plant | |
CN115829420A (en) | Method for judging steady-state conversion threshold of shallow lake | |
CN111898677A (en) | Plankton automatic detection method based on deep learning | |
CN115100215A (en) | Method and system for predicting dissolved oxygen content in sewage treatment process | |
CN114387235B (en) | Water environment monitoring method and system | |
CN116448988A (en) | Industrial park soil pollution monitoring system and method | |
CN114005064A (en) | Biological water body pollution early warning method and device based on machine vision technology | |
JP3148314B2 (en) | Aquatic observation, monitoring and purification system | |
JPH05263411A (en) | Object observation method and device | |
CN117474857A (en) | Sludge activity detection model, modeling method, detection method and early warning method | |
CN117711500A (en) | Method suitable for rapid quantitative analysis of lake plankton | |
KR102543484B1 (en) | Harmful Bacterium real-time monitoring, Prediction and Control system | |
WO2021112992A1 (en) | Systems and methods for treating wastewater | |
CN116502034A (en) | River hydrologic monitoring system based on wireless communication | |
CN112505278B (en) | Sampling type sewage monitoring and analyzing equipment | |
JP2001027634A (en) | Water quality-monitoring system | |
CN112561307B (en) | Watershed water environment big data image system and method | |
CN113049593A (en) | Method for realizing online biological monitoring by using intelligent imaging and recognition technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |