JP2010254605A - Method for removing blue-green algae - Google Patents

Method for removing blue-green algae Download PDF

Info

Publication number
JP2010254605A
JP2010254605A JP2009105196A JP2009105196A JP2010254605A JP 2010254605 A JP2010254605 A JP 2010254605A JP 2009105196 A JP2009105196 A JP 2009105196A JP 2009105196 A JP2009105196 A JP 2009105196A JP 2010254605 A JP2010254605 A JP 2010254605A
Authority
JP
Japan
Prior art keywords
duckweed
blue
microorganisms
rhizosphere
sea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009105196A
Other languages
Japanese (ja)
Other versions
JP5614828B2 (en
Inventor
Takashi Amamiya
隆 雨宮
Jun Hitai
淳 比田井
Kiminori Ito
公紀 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2009105196A priority Critical patent/JP5614828B2/en
Publication of JP2010254605A publication Critical patent/JP2010254605A/en
Application granted granted Critical
Publication of JP5614828B2 publication Critical patent/JP5614828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently reducing blue-green algae at a low cost without applying load to the environment. <P>SOLUTION: Duckweed having a rhizosphere microorganism with algicidal properties is grown in the presence of blue-green algae. In this case, it is preferred to grow the total X<SB>1</SB>(pieces) of duckweed which satisfies the relationship of formula (2): X<SB>1</SB>≥Y/(3.6×10<SP>7</SP>) relative to the total Y (pieces) of blue-green algae. Further, in the duckweed, it is preferred to increase the expression level of a gene encoding chalcone synthase. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ウキクサと根圏微生物の共生的相互作用を利用したアオコの除去方法に関する。   The present invention relates to a method for removing sea cucumber using a symbiotic interaction between duckweed and rhizosphere microorganisms.

従来、夏期の富栄養化した湖沼においては、アオコの大量発生が問題となっている。アオコとは、通常、浮遊性の藍藻等、又はこれらが大量発生して水面を覆いつくすほどになったものを指す。アオコは有毒性物質(アオコ毒)を産生するため、その大量発生は、景観の悪化だけでなく、家畜の死亡や人の健康障害を引き起こしたり、湖沼生態系における機能不全を招くなど、重大な問題を引き起こすことが知られている。そこで、これまでにアオコを低減するための様々な対策が検討されている。   In the past, large-scale occurrence of blue-green sea urchins has become a problem in eutrophic lakes in summer. Aoko usually refers to floating blue-green algae or the like, or a large amount of these that cover the surface of the water. Because blue sea lions produce toxic substances (blue sea venoms), their mass outbreaks are not only deteriorating the landscape, but also cause serious animal deaths, human health problems, and malfunctions in lake ecosystems. Known to cause problems. Therefore, various countermeasures for reducing the water melon have been studied so far.

例えば、アオコの大量発生を事前に防止する方法として、大量発生の主要な原因の一つである、リン原子や窒素原子を有する化学物質の過剰な流入を抑制する方法が挙げられる。しかし、この方法では、例えば6月から9月までの間といった長期間での装置の可動が必要となり、高コストであるという問題点があった。さらに、この方法には能力に限界があり、アオコの大量発生を完全には防止できないという問題点があった。
これに対して、リン原子や窒素原子を有する化学物質を、ホテイアオイ等の大型の浮遊性植物を使用して、これに吸収させる手法が知られている。しかし、この方法では、使用後の植物の処理が困難であるという問題点があった。
そこで、発生したアオコを除去する方法が種々検討されている。
For example, as a method for preventing a large amount of aquatic mushroom generation in advance, there is a method for suppressing an excessive inflow of a chemical substance having a phosphorus atom or a nitrogen atom, which is one of the main causes of the large-scale generation. However, this method has a problem that the apparatus needs to be moved for a long period of time, for example, from June to September, and the cost is high. Furthermore, this method has a limit in capacity, and there has been a problem that it is impossible to completely prevent the large-scale occurrence of blue sea cucumbers.
On the other hand, there is known a method of absorbing a chemical substance having a phosphorus atom or a nitrogen atom using a large floating plant such as water hyacinth. However, this method has a problem that it is difficult to treat the plant after use.
Thus, various methods for removing the generated sea cucumber have been studied.

従来、発生したアオコを除去する方法としては、アオコを機械的に吸引し、超音波破壊する方法が知られている。しかし、この方法では、特殊な設備が必要であり、高コストであるという問題点があった。
これに対して、微生物を利用した生物学的手法によるアオコの除去方法(例えば、非特許文献1参照)が検討されている。
2. Description of the Related Art Conventionally, as a method for removing a generated sea cucumber, a method of mechanically sucking the sea bream and ultrasonically destroying it is known. However, this method requires special equipment and is expensive.
On the other hand, a method for removing sea cucumber by a biological technique using microorganisms (for example, see Non-Patent Document 1) has been studied.

Sigee D. et al., (1999): Biological control of cyanobacteria: principles and possibilities. In The Ecological Bases of Lake and Reservoir Management, (Harper D. et al., Eds), pp.161-172. Kluwer Academic, Dordrecht, The Netherlands.Sigee D. et al., (1999): Biological control of cyanobacteria: principles and possibilities.In The Ecological Bases of Lake and Reservoir Management, (Harper D. et al., Eds), pp.161-172.Kluwer Academic, Dordrecht, The Netherlands.

しかし、上記生物学的手法では、例えば、水圏に微生物を投入してもすぐに拡散してしまうため、やはりアオコの除去能力に限界があるという問題点があった。
このように従来は、環境に負荷をかけることなく、低コストで且つ効率的にアオコを低減する方法が無いのが現状であった。
However, in the above biological method, for example, even if a microorganism is introduced into the hydrosphere, it diffuses immediately.
Thus, conventionally, there has been no method for efficiently reducing watermelon at low cost without placing a burden on the environment.

本発明は上記事情に鑑みてなされたものであり、環境に負荷をかけることなく、低コストで且つ効率的にアオコを低減する方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for efficiently reducing watermelon at low cost without placing a burden on the environment.

上記課題を解決するため、
本発明のアオコの除去方法は、殺藻性の根圏微生物を有するウキクサをアオコ共存下で生育させることを特徴とする。
本発明のアオコの除去方法においては、アオコの総数Y(個)に対して、下記式(2)の関係を満たす総数X(個)のウキクサを生育させることが好ましい。
≧Y/(3.6×10) ・・・・(2)
本発明のアオコの除去方法においては、前記ウキクサにおいて、カルコンシンターゼをコードする遺伝子の発現量を増大させることが好ましい。
To solve the above problem,
The method for removing sea cucumber according to the present invention is characterized in that a duckweed having algicidal rhizosphere microorganisms is grown in the presence of the sea bream.
In the method for removing sea cucumbers of the present invention, it is preferable to grow a total number of X 1 (duckweeds) satisfying the relationship of the following formula (2) with respect to the total number Y (pieces) of the sea bream.
X 1 ≧ Y / (3.6 × 10 7 ) (2)
In the method for removing sea cucumber of the present invention, it is preferable to increase the expression level of a gene encoding chalcone synthase in the duckweed.

本発明によれば、環境に負荷をかけることなく、低コストで且つ効率的にアオコを低減できる。   According to the present invention, aquatic can be efficiently reduced at low cost without placing a burden on the environment.

実施例1〜2及び比較例1〜2におけるアオコの総数を示すグラフである。It is a graph which shows the total number of the water-bloom in Examples 1-2 and Comparative Examples 1-2. 試験例1におけるCHS遺伝子の発現量とアオコの総数を示すグラフである。2 is a graph showing the expression level of CHS gene and the total number of blue-tailed fish in Test Example 1.

本発明のアオコの除去方法は、殺藻性の根圏微生物(以下、根圏微生物と略記する)を有するウキクサをアオコ共存下で生育させることを特徴とする。
本発明においては、前記根圏微生物がアオコを除去する活性本体となり、前記ウキクサが該根圏微生物と共生することでその殺藻能を高める担体として機能する。そして、ウキクサ又は水中の微生物を単独で使用した場合よりも、優れたアオコの除去効率を示す。
以下、本発明について、より詳細に説明する。
The method for removing sea cucumber according to the present invention is characterized in that a duckweed having algicidal rhizosphere microorganisms (hereinafter abbreviated as rhizosphere microorganisms) is grown in the presence of blue sea urchins.
In the present invention, the rhizosphere microorganism serves as an active main body that removes the sea cucumber, and the duckweed functions as a carrier that enhances its algicidal ability by symbiosis with the rhizosphere microorganism. And the removal efficiency of the blue sea urchin superior to the case where a duckweed or microorganisms in water is used alone is shown.
Hereinafter, the present invention will be described in more detail.

本発明の適用対象であるアオコは特に限定されるものではない。具体的には、ミクロキスティス(Microcystis)属、アナベナ(Anabaena)属、アナベノプシス(Anabaenopsis)属等の藍藻類;クロレラ(Chlorella)属、セネデスムス(Scenedesmus)属、クラミドモナス(Chlamydomonas)属等の緑藻類に属する微生物が例示できる。   There is no particular limitation on the aiko that is the application target of the present invention. Specifically, cyanobacteria such as the genus Microcystis, the genus Anabaena, the genus Anabenopsis; the genus Chlorella, the genus Scededesmus, the genus Chlamydomonas, etc. A microorganism can be exemplified.

前記ウキクサは、ウキクサ(Lemnaceae)科に属し、前記根圏微生物を有するものであれば特に限定されず、目的に応じて適宜選択できる。ここで、「ウキクサが根圏微生物を有する」とは、例えば、ウキクサに根圏微生物が付着するか又はウキクサの近傍で根圏微生物が共存して、共生関係にあることを指し、好ましくはウキクサの根部で根圏微生物が生存していることを指す。ウキクサとして具体的には、ウキクサ(Spirodela)属、アオウキクサ(Lenma)属、ミジンコウキクサ(Wolffia)属に属するものが例示でき、葉状体の大きさが5〜10mm程度の小型の在来種が好ましい。   The duckweed is not particularly limited as long as it belongs to the duckweed (Lemnaceae) family and has the rhizosphere microorganism, and can be appropriately selected according to the purpose. Here, the term “duckweed has rhizosphere microorganisms” means, for example, that rhizosphere microorganisms adhere to duckweed or that rhizosphere microorganisms coexist in the vicinity of duckweed and are in a symbiotic relationship, preferably duckweed. It means that the rhizosphere microorganisms are alive at the root of Specific examples of the duckweed include those belonging to the genus Spirodella, the genus Lenma, and the genus Wolffia, and a small native species having a leaf-like body size of about 5 to 10 mm is preferable. .

前記根圏微生物は、通常、植物の根部又はその近傍で好適に生育するものであり、さらに殺藻性を有するものであれば特に限定されない。具体的には、殺藻性細菌が例示でき、好ましいものとして、バチルス(Bacillus)属、フラボバクテリウム(Flavobacterium)属、サイトファーガ(Cytophaga)属、リソバクター(Rhizobacter)属等に属するものが例示できる。根圏微生物は、ウキクサから糖、アミノ酸、ビタミン類、フラボノイド化合物、酸素等の供給を受けることで、活発に生育すると考えられる。一方、例えば、動物プランクトンは、通常はアオコに対して十分な殺藻性を有さない。
ウキクサが有する根圏微生物は、一種でも良いし、二種以上でも良い。
The rhizosphere microorganism is not particularly limited as long as it normally grows suitably at or near the root of a plant, and further has algicidal properties. Specific examples include algicidal bacteria, and preferable examples include those belonging to the genus Bacillus, the genus Flavobacterium, the genus Cytophaga, the genus Rhizobacter, and the like. it can. Rhizosphere microorganisms are considered to grow actively when they are supplied with sugar, amino acids, vitamins, flavonoid compounds, oxygen and the like from duckweed. On the other hand, for example, zooplankton usually does not have sufficient algicidal properties against blue sea cucumber.
The rhizosphere microorganisms of duckweed may be one kind or two or more kinds.

本発明においては、ウキクサと根圏微生物との間で共生関係によって物質の授受が行われているものを使用することが好ましい。この場合には、ウキクサが産生する物質を根圏微生物が利用することで、根圏微生物の生育が一層良好となり、殺藻活性(アオコの除去活性)が向上するのに対し、根圏微生物が産生する物質をウキクサが利用することで、ウキクサの生育も一層良好となる。その結果、アオコの除去効率が一層向上する。
したがって、本発明においては、ウキクサと根圏微生物との間で良好な共生関係が成立するように、根圏微生物が利用する物質のウキクサによる産生及び/又はウキクサが利用する物質の根圏微生物による産生を促進することが好ましい。
In the present invention, it is preferable to use those in which substances are exchanged between duckweed and rhizosphere microorganisms by a symbiotic relationship. In this case, the rhizosphere microorganisms use the substances produced by duckweed to improve the growth of the rhizosphere microorganisms and improve the algicidal activity (the removal activity of the sea lions). Duckweed grows even better when duckweed uses the substances it produces. As a result, the removal efficiency of the sea cucumber is further improved.
Therefore, in the present invention, in order to establish a good symbiotic relationship between the duckweed and the rhizosphere microorganism, the substance used by the rhizosphere microorganism is produced by the duckweed and / or the substance used by the duckweed is obtained by the rhizosphere microorganism. It is preferable to promote production.

ウキクサが産生し、根圏微生物が利用する物質としては、フラボノイドが例示できる。ここでフラボノイドとは、フラボン類、イソフラボン類、フラボノール類、フラバノン類、アントシアン類等の、フラバン(2−フェニルクロマン)誘導体を指す。
フラボノイドの多くが色素性を有しており、フラボノイドを介した根圏微生物との共生関係が良好に成立しているウキクサは、根部にフラボノイド由来の着色が見られるので、目視でも容易に認識できる。
Examples of substances produced by duckweed and used by rhizosphere microorganisms include flavonoids. Here, the flavonoid refers to a flavan (2-phenylchroman) derivative such as flavones, isoflavones, flavonols, flavanones, anthocyans.
Many of the flavonoids have pigment properties, and duckweeds that have a good symbiotic relationship with rhizosphere microorganisms via flavonoids can be easily recognized visually because the roots are colored from flavonoids. .

ウキクサでのフラボノイドの生合成は、アオコとの共存により活性化される。フラボノイドは、フラバノン類の一種であるナリンゲニンが修飾を受けて生成されるが、ナリンゲニンの生合成に必要な酵素の一種であるカルコンシンターゼをコードする遺伝子(以下、CHS遺伝子と略記する)の発現量が、アオコとの共存下で増大する。その理由は定かではないが、アオコの存在により、根圏微生物へのシグナル伝達、アオコ毒に対する防御反応、アオコに対する成長阻害物質の放出等が生じ、これらにフラボノイドが関与していると推測される。このように、フラボノイドが、アオコの除去活性の向上に寄与していると推測され、CHS遺伝子の発現量を増大させることで、アオコの除去活性が一層向上すると考えられる。   The biosynthesis of flavonoids in duckweed is activated by the coexistence with blue sea bream. Flavonoids are produced by modification of naringenin, a type of flavanone, but the expression level of a gene encoding chalcone synthase (hereinafter abbreviated as CHS gene), which is a type of enzyme required for biosynthesis of naringenin. However, it increases in the presence of Aoko. The reason for this is not clear, but the presence of blue-tailed plants causes signal transduction to rhizosphere microorganisms, defense reaction against blue-toothed venom, release of growth inhibitory substances against blue-tailed peas, and it is speculated that flavonoids are involved in these. . Thus, it is presumed that the flavonoids contribute to the improvement of the removal activity of the sea cucumber, and it is considered that the removal activity of the sea bream is further improved by increasing the expression level of the CHS gene.

根圏微生物を有するウキクサは、例えば、天然の閉鎖水系における淡水の共存下で生育している状態のものが好ましい。より具体的には、天然のウキクサを採取して、そのまま直ちに又は所定期間天然の淡水共存下で生育させてから使用しても良いし、天然の淡水非共存下で生育させたウキクサに、天然の淡水を添加してさらに生育させたものを使用しても良い。ここで、「天然の淡水」とは、湖沼、池等、ウキクサの生育に適した自然環境下の水を指す。このようにすることで、特別な作業を行うことなく、所望の数だけ根圏微生物を有するウキクサを使用できる。
ウキクサは、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は、目的に応じて適宜選択すれば良い。
For example, the duckweed having rhizosphere microorganisms is preferably grown in the presence of fresh water in a natural closed water system. More specifically, a natural duckweed can be collected and used as it is or after being grown in the presence of natural fresh water for a predetermined period of time, or a duckweed grown in the absence of natural fresh water can be used as a natural duckweed. You may use what was further grown by adding fresh water. Here, “natural fresh water” refers to water in a natural environment suitable for duckweed growth, such as lakes and ponds. By doing in this way, the duckweed which has a desired number of rhizosphere microorganisms can be used, without performing a special operation | work.
A duckweed may be used individually by 1 type, and may use 2 or more types together. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose.

ウキクサ根部の単位質量あたりの根圏微生物の数は、ウキクサや根圏微生物の生育を妨げない範囲で多い方がアオコの除去効率が向上する。このような観点から、ウキクサ根部の乾燥質量1mgあたりの根圏微生物の数n(個)は、1×10〜1.5×10個であることが好ましく、5×10〜3×10個であることがより好ましく、1×10〜1.5×10個であることが特に好ましい。
ウキクサ根部の単位質量あたりの根圏微生物の数は、ウキクサの生育環境を適宜調節することで、調節できる。
The greater the number of rhizosphere microorganisms per unit mass of duckweed roots, the greater is the range that does not hinder the growth of duckweed or rhizosphere microorganisms, so that the removal efficiency of sea cucumbers is improved. From such a viewpoint, the number n (pieces) of rhizosphere microorganisms per 1 mg of dry weight of duckweed roots is preferably 1 × 10 5 to 1.5 × 10 8 , and 5 × 10 5 to 3 ×. 10 7 is more preferable, and 1 × 10 6 to 1.5 × 10 7 is particularly preferable.
The number of rhizosphere microorganisms per unit mass of duckweed root can be adjusted by appropriately adjusting the growth environment of duckweed.

使用する根圏微生物の総数Z(個)は、アオコの総数Y(個)に応じて適宜調整すれば良いが、通常は、Y/Zが130以下であることが好ましく、90以下であることがより好ましく、70以下であることが特に好ましい。Y/Zの下限値は特に限定されない。このような範囲とすることで、アオコの除去効率が一層向上する。   The total number Z (number) of rhizosphere microorganisms to be used may be adjusted as appropriate according to the total number Y (number) of the aquatic plants. However, usually, Y / Z is preferably 130 or less, and 90 or less. Is more preferable, and 70 or less is particularly preferable. The lower limit of Y / Z is not particularly limited. By setting it as such a range, the removal efficiency of sea cucumber is further improved.

生育させるウキクサの総数は、アオコの総数に応じて調整することが好ましい。この時、ウキクサが有する根圏微生物の数に基いて、好ましいウキクサの総数を算出できる。具体的には、生育させるウキクサの総数は、下記式(1)を満たすX(個)であることが好ましい。
X≧Y/(n×D×f) ・・・・(1)
式(1)中、Xはウキクサの総数(個)、Yはアオコの総数(個)、nはウキクサ根部の乾燥質量1mgあたりの根圏微生物の数(個/mg)、Dはアオコの総数(Y個)と根圏微生物の総数(Z個)との最適比(Y/Zの最適値、定数)、fはウキクサ根部の乾燥質量から新鮮質量への変換定数(mg/個)をそれぞれ示す。ここでウキクサ根部の「新鮮質量」とは、乾燥等の含水量を変化させる人為的な操作を行っていない状態でのウキクサ根部の質量を指し、通常は良好な生育状態にあるウキクサの根部の質量である。
The total number of duckweeds to be grown is preferably adjusted according to the total number of duckweeds. At this time, a preferable total number of duckweed can be calculated based on the number of rhizosphere microorganisms of duckweed. Specifically, the total number of duckweed to be grown is preferably X (pieces) that satisfies the following formula (1).
X ≧ Y / (n × D × f) (1)
In the formula (1), X is the total number of duckweed, Y is the total number of duckweed (number), n is the number of rhizosphere microorganisms per mg of dry weight of duckweed root (number / mg), and D is the total number of duckweed. (Y) and the total ratio of rhizosphere microorganisms (Z) (optimum value of Y / Z, constant), f is the conversion constant (mg / piece) from duckweed root dry mass to fresh mass, respectively Show. Here, the “fresh mass” of the duckweed root means the mass of the duckweed root without artificial manipulation that changes the water content, such as drying, and is usually the root of duckweed in a good growth state. Mass.

前記式(1)の右辺は、ウキクサ根部の乾燥質量1mgあたりの根圏微生物の数nから、アオコの効率的除去に求められるウキクサの総数の下限値を概算するものであり、前記変換定数fにより、ウキクサの総数が乾燥状態のものから生育状態のものへと正しく反映される。
fは通常、0.01〜0.1であることが好ましく、0.05程度であることがより好ましい。
Dは、上記Y/Zの範囲から設定すれば良いが、通常は60程度であれば良い。
The right side of the formula (1) approximates the lower limit of the total number of duckweed required for efficient removal of duckweed from the number n of rhizosphere microorganisms per 1 mg of dry weight of duckweed roots, and the conversion constant f Thus, the total number of duckweed is correctly reflected from the dry state to the growing state.
In general, f is preferably 0.01 to 0.1, and more preferably about 0.05.
D may be set from the above Y / Z range, but normally it may be about 60.

上記観点から、生育させるウキクサの総数のより好ましい例としては、下記式(2)の関係を満たす総数X(個)が例示できる。
≧Y/(3.6×10) ・・・・(2)
式(2)は、式(1)において、nが1.2×10(個)、Dが60、fが0.05である場合に相当する式である。
したがって、例えば、Yが1×1010である場合には、Xが概ね280以上であれば、アオコの除去効率が一層向上する。
From the above viewpoint, as a more preferable example of the total number of duckweed to grow, the total number X 1 (pieces) satisfying the relationship of the following formula (2) can be exemplified.
X 1 ≧ Y / (3.6 × 10 7 ) (2)
Expression (2) is an expression corresponding to the case where n is 1.2 × 10 7 (pieces), D is 60, and f is 0.05 in Expression (1).
Therefore, for example, when Y is 1 × 10 10 , if X 1 is approximately 280 or more, the removal efficiency of sea cucumber is further improved.

アオコが大量に発生した場合、これを分解する水中微生物が大量に増殖する可能性がある。一方、ウキクサは、水面又はその近傍(水深の浅い領域)で生育するので、日光を遮蔽して水中への日光の入射を低減する効果を有する。この場合、水中微生物の内、植物性のものは、増殖が抑制されるため、これを栄養源とする動物性の微生物も増殖が抑制されることになる。その一方で、ウキクサが有する根圏微生物により、大量のアオコは除去されていく。すなわち、本発明においては、大量のアオコを除去する過程で、水中微生物の異常な増殖も抑制するので、生態系の変化を抑制できる点でも従来法より優れる。   When a large amount of blue-tailed sea urchins are generated, there is a possibility that a large number of underwater microorganisms that decompose them will grow. On the other hand, duckweed grows on the surface of the water or in the vicinity thereof (an area where the water depth is shallow), and thus has the effect of blocking sunlight and reducing the incidence of sunlight into water. In this case, since the growth of plant-based microorganisms in the water is suppressed, the growth of animal microorganisms using this as a nutrient source is also suppressed. On the other hand, a large amount of sea cucumber is removed by rhizosphere microorganisms of duckweed. That is, in the present invention, abnormal growth of microorganisms in the water is also suppressed in the process of removing a large amount of sea cucumbers, which is superior to the conventional method in that changes in the ecosystem can be suppressed.

ウキクサの生育条件は、良好に生育する限り特に限定されない。
例えば、アオコ除去の対象域である湖沼、池等の中で、アオコ共存下でウキクサを生育させても良いし、ウキクサを生育させている生育槽を通過するように湖沼、池等のアオコを含む淡水を循環させても良い。
また、必要に応じて、ウキクサ及びアオコが含まれる淡水の温度を、ウキクサの生育により適した温度に調節しても良い。
また、ウキクサは、本発明の効果を妨げない範囲内において、根圏微生物及びアオコ以外の生物の共存下、又は根圏微生物由来若しくはアオコ由来の成分以外の成分の共存下で生育させても良い。例えば、自然環境下での淡水中で生育している微生物(水中微生物)の共存下でウキクサを生育させても良い。また、富栄養状態の自然環境に相当するように、リン原子濃度が0.1ppm以上、窒素原子濃度が1ppm以上となるように、リン原子や窒素原子を有する化学物質共存下でウキクサを生育させても良い。
The duckweed growth conditions are not particularly limited as long as they grow well.
For example, a duckweed may be grown in the presence of a duck in a lake, pond, etc., which is a target area for removing duck, or a duckweed such as a lake, pond, etc. may be passed through a growth tank in which duckweed is growing. The fresh water containing may be circulated.
Moreover, you may adjust the temperature of the fresh water containing a duckweed and a duck as needed to the temperature more suitable for the growth of duckweed.
In addition, duckweed may be grown in the coexistence of organisms other than rhizosphere microorganisms and aoko, or in the coexistence of components other than components derived from rhizosphere microorganisms or aoko. . For example, duckweed may be grown in the presence of microorganisms (underwater microorganisms) growing in fresh water in a natural environment. Also, duckweed grows in the coexistence of chemical substances containing phosphorus atoms and nitrogen atoms so that the phosphorus atom concentration is 0.1 ppm or more and the nitrogen atom concentration is 1 ppm or more so as to correspond to the eutrophic natural environment. May be.

本発明においては、ウキクサを担体として根圏微生物が生育し、その過程での根圏微生物の殺藻活性によりアオコが除去される。この時、根圏微生物が水中に拡散することがなく、ウキクサはアオコと同様に水面又はその近傍(水深の浅い領域)で生育するので、アオコを効率的に除去できる。また、ウキクサと根圏微生物との間で物質の授受が行われ、良好な共生関係が成立しているものを使用することで、アオコを一層効率的に除去できる。また、特別な装置が不要で、使用後のウキクサも簡便に処理できるので、低コストでアオコを除去できる。さらに、ウキクサを使用するだけで化学薬品等が不要なので、環境に負荷をかけずにアオコを除去できる。また、ウキクサとして、対象地域又はその周辺部に自生している在来種を使用できるので、外来種の侵入に伴う生態系への悪影響がなく、水中微生物の異常な増殖も抑制するので、生態系の保全効果に優れる。   In the present invention, rhizosphere microorganisms grow by using duckweed as a carrier, and the sea cucumber is removed by the algicidal activity of the rhizosphere microorganisms in the process. At this time, rhizosphere microorganisms do not diffuse in water, and duckweed grows on the surface of the water or in the vicinity thereof (a region with a shallow depth of water) in the same manner as the aoko. In addition, by using a substance in which a substance is exchanged between a duckweed and a rhizosphere microorganism and a good symbiotic relationship is established, the sea cucumber can be removed more efficiently. In addition, since no special device is required and duckweed after use can be easily processed, the sea cucumber can be removed at low cost. Furthermore, just using a duckweed eliminates the need for chemicals and so on, so it is possible to remove sea cucumbers without burdening the environment. In addition, native species native to the target area or its surroundings can be used as duckweed, so there is no adverse impact on the ecosystem due to the invasion of alien species, and abnormal growth of microorganisms in the water is also suppressed. Excellent system maintenance effect.

以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.

<アオコの除去>
[実施例1]
(1)ウキクサの培養
横浜国立大学構内の水中微生物を含む池水を採取し、温度を27℃に設定したものを培地とした。ここで、「水中微生物」とは、池水に生息する不特定多数の微生物のことを指す。ガラス製の腰高シャーレ(外径60mm×高さ90mm)に前記培地150mlを加え、さらに、根圏微生物を有するウキクサとして、20個程度のSpirodela polyrhiza(L.) Schleidを入れて培養した。池水の平均窒素原子濃度は1.3ppm、リン原子濃度は0.12ppmであった。培地は週に2回の割合で取り替えた。ウキクサ根部の乾燥質量1mgあたりの根圏微生物の数nは、文献値より1.2×10個/mgと見積もった。また、ウキクサの根部は赤色に着色しており、フラボノイドと考えられる物質の産生が確認された。
<Removal of sea cucumber>
[Example 1]
(1) Culture of duckweed Pond water containing aquatic microorganisms in Yokohama National University campus was collected, and the temperature was set to 27 ° C. as a medium. Here, “underwater microorganisms” refers to an unspecified number of microorganisms that inhabit pond water. 150 ml of the medium was added to a glass waist petri dish (outer diameter 60 mm × height 90 mm), and about 20 Spirodella polyrhiza (L.) Schleid were added and cultured as a duckweed having rhizosphere microorganisms. The average nitrogen atom concentration of the pond water was 1.3 ppm, and the phosphorus atom concentration was 0.12 ppm. The medium was changed twice a week. The number n of rhizosphere microorganisms per 1 mg of dry weight of duckweed roots was estimated to be 1.2 × 10 7 / mg from literature values. Moreover, the root part of duckweed is colored red, and production of a substance considered to be a flavonoid was confirmed.

(2)アオコの培養
アオコとして、ミクロキスチンを産生する有毒シアノバクテリアであるミクロキスティス アエルギノーサ(Microcystis aeruginosa) NIES−298を、独立行政法人国立環境研究所微生物系統保存施設より入手し、表1に示す組成のMA培地(pH8.6)を使用してこれを培養して、月一回の割合で継代を行った。
(2) Culture of blue sea cucumber Microcystis aeruginosa NIES-298, a toxic cyanobacterium that produces microkistin, was obtained from the National Institute for Environmental Studies, Microbial System Storage Facility, as shown in Table 1. This was cultured using MA medium (pH 8.6) and subcultured once a month.

Figure 2010254605
Figure 2010254605

(3)アオコ共存下でのウキクサの生育
2Lの前記培地にアオコを5×10個/mlとなるように加え、さらに、培養した前記ウキクサを300個加えて、供給水の窒素濃度を5ppm、リン濃度を0.5ppm、供給水と排水の流速を6ml/時間に調節した。すなわち、培地中のアオコの総数Yは1×1010個、ウキクサ根部の総乾燥質量は14mg、根圏微生物の総数Zは1.68×10個であり、fを0.05とした場合、前記式(2)の関係を満たしていた。この条件で2週間、ウキクサを生育させ、アオコの総数の変動を観察した。結果を図1に示す。図1中、グラフの縦軸は対数目盛りである。なお、ここでのアオコの「5×10個/ml」という数は、自然環境下で現実に生じ得る数を大きく越えるものである。
(3) Growth of duckweed in the presence of blue seaweed Add 2 ml of green seaweed to 5 × 10 6 / ml, and add 300 cultured duckweed to make the nitrogen concentration of the feed water 5 ppm. The phosphorus concentration was adjusted to 0.5 ppm, and the flow rates of the feed water and waste water were adjusted to 6 ml / hour. That is, when the total number Y of the mushrooms in the medium is 1 × 10 10 , the total dry mass of duckweed root is 14 mg, the total number Z of rhizosphere microorganisms is 1.68 × 10 8 , and f is 0.05 The relationship of the formula (2) was satisfied. Under these conditions, duckweeds were grown for 2 weeks, and the change in the total number of blue seaweeds was observed. The results are shown in FIG. In FIG. 1, the vertical axis of the graph is a logarithmic scale. Here, the number “5 × 10 6 / ml” of Aoko greatly exceeds the number that can actually occur in the natural environment.

[実施例2]
ウキクサを50個使用したこと以外は実施例1と同様の条件で、アオコの除去を行った。結果を図1に示す。
[Example 2]
The sea cucumber was removed under the same conditions as in Example 1 except that 50 duckweeds were used. The results are shown in FIG.

[比較例1]
前記培地にウキクサを加えなかったこと以外は実施例1と同様に、アオコの総数の変動を観察した。結果を図1に示す。
[Comparative Example 1]
Similar to Example 1, except that duckweed was not added to the medium, the change in the total number of blue-tailed was observed. The results are shown in FIG.

[比較例2]
前記MA培地中のアオコの数を5×10個/mlに調整した。次いで、これを円沈管に移し、5000rpmで5分間遠心し、上清を除去して、サンプル水を加えて懸濁させ、アオコを純粋培養し、アオコの総数の変動を観察した。結果を図1に示す。
[Comparative Example 2]
The number of mushrooms in the MA medium was adjusted to 5 × 10 6 / ml. Next, this was transferred to a circular tube, centrifuged at 5000 rpm for 5 minutes, the supernatant was removed, sample water was added and suspended, the sea cucumber was purely cultured, and fluctuations in the total number of sea cucumbers were observed. The results are shown in FIG.

図1から明らかなように、実施例1ではウキクサの使用による顕著なアオコの除去効果を確認できた。また、実施例2では比較例2と比較して、明らかなアオコの除去効果を確認できた。また、比較例1と同等の除去効果であったが、本実施例では、例えば、水中微生物の異常な増加等、生態系の変化を抑制できると考えられ、従来法よりも優れた方法であると言える。   As can be seen from FIG. 1, in Example 1, a remarkable effect of removing sea cucumber by using duckweed was confirmed. Further, in Example 2, the clear effect of removing the sea bream could be confirmed as compared with Comparative Example 2. Moreover, although it was the removal effect equivalent to the comparative example 1, in a present Example, it is thought that it can suppress the change of ecosystems, such as an abnormal increase in aquatic microorganisms, for example, and is a method superior to the conventional method. It can be said.

<CHS遺伝子の発現量の解析>
[試験例1]
(1)RNAの抽出
ウキクサを30個使用したこと以外は実施例1と同様の条件で、アオコ共存下でウキクサを生育させ、生育開始から1、2、3及び4日目のウキクサをそれぞれサンプリングし、その15mgを、液体窒素で冷却することでチューブ状の容器中で凍結させ、平均粒径1mmのジルコニアビーズを使用して、50×100pm、30秒の条件で3回破砕した。次いで、2−メルカプトエタノールを添加したLysis Buffer LRT(商品名、富士フイルム社製QuickGene RNA組織キットの溶解液)を520μl加え、4℃において13000rpmで5分間遠心分離し、上澄みを350μl抜き取り、別のチューブ状の容器中へ移した。ここへ、特級エタノールを350μl加え、ボルテックス撹拌を行い、ライセートとした。
得られたライセートを、QuickGene−Mini80(商品名、富士フイルム社製)のカートリッジに全量添加した。次いで、これを加圧した後、Wash Buffer WRC(商品名、富士フイルム社製QuickGene RNA培養細胞キットの洗浄液)を500μl加え、加圧する操作を三回行った。
次いで、カートリッジホルダを回収位置にセットし、Elution Buffer CRC(商品名、富士フイルム社製QuickGene RNA培養細胞キットの回収液)を100μl加え、室温で2分間インキュベーションした。
次いで、加圧し、total RNAを抽出した。
以上の操作を、いずれの日においても正午に行った。
<Analysis of CHS gene expression level>
[Test Example 1]
(1) RNA extraction Except that 30 duckweeds were used, duckweeds were grown under the same conditions as in Example 1 under the coexistence of blue-green algae, and duckweeds were sampled on the first, second, third and fourth days from the start of growth. Then, 15 mg of the solution was frozen in a tube-like container by cooling with liquid nitrogen, and crushed three times under the conditions of 50 × 100 pm and 30 seconds using zirconia beads having an average particle diameter of 1 mm. Next, 520 μl of Lysis Buffer LRT (trade name, Quick Gene RNA tissue kit lysate manufactured by FUJIFILM) to which 2-mercaptoethanol was added was added, centrifuged at 13,000 rpm for 5 minutes at 4 ° C., 350 μl of the supernatant was extracted, Transferred into a tube-shaped container. To this, 350 μl of special grade ethanol was added and vortexed to make a lysate.
The total amount of the obtained lysate was added to a cartridge of QuickGene-Mini 80 (trade name, manufactured by Fuji Film). Next, after pressurizing this, 500 μl of Wash Buffer WRC (trade name, Wash Solution of QuickGene RNA Cultured Cell Kit manufactured by FUJIFILM Corporation) was added, and pressurization was performed three times.
Next, the cartridge holder was set at the collection position, and 100 μl of Election Buffer CRC (trade name, collection solution of QuickGene RNA culture cell kit manufactured by FUJIFILM) was added and incubated at room temperature for 2 minutes.
Subsequently, pressurization was performed and total RNA was extracted.
The above operation was performed at noon on any day.

(2)RT−PCR
抽出した前記total RNAを、そのままRT−PCRに供し、CHS遺伝子の発現解析を行った。
PCR溶液としては、表2に示す組成のTaKaRa PrimeScript One Step RT−PCR Kit Ver.2(タカラバイオ社製)を使用した。CHS遺伝子を増幅するプライマーとしては、配列番号1に示す塩基配列のフォワードプライマー、配列番号2に示す塩基配列のリバースプライマーをそれぞれ使用した。そして、前記PCR溶液をTaKaRa Thermal cycler(タカラバイオ社製)にセットして、RT−PCRを行い、目的とするCHS遺伝子を増幅した。RT−PCRの温度条件は以下に示す通りである。
(2) RT-PCR
The extracted total RNA was directly subjected to RT-PCR, and the expression analysis of the CHS gene was performed.
As the PCR solution, TaKaRa Prime Script One Step RT-PCR Kit Ver. 2 (manufactured by Takara Bio Inc.) was used. As primers for amplifying the CHS gene, a forward primer having the base sequence shown in SEQ ID NO: 1 and a reverse primer having the base sequence shown in SEQ ID NO: 2 were used. Then, the PCR solution was set in TaKaRa Thermal cycler (manufactured by Takara Bio Inc.) and RT-PCR was performed to amplify the target CHS gene. RT-PCR temperature conditions are as follows.

Figure 2010254605
Figure 2010254605

・RT−PCR温度条件:50℃/30分、94℃/2分(逆転写)→[94℃/30秒(変性)→60℃/30秒(アニーリング)→72℃/1分(伸長反応)]×35サイクル→4℃   RT-PCR temperature conditions: 50 ° C./30 minutes, 94 ° C./2 minutes (reverse transcription) → [94 ° C./30 seconds (denaturation) → 60 ° C./30 seconds (annealing) → 72 ° C./1 minute (extension reaction) )] X 35 cycles → 4 ° C

(3)電気泳動
得られた増幅産物を電気泳動に供し、Lane&Spot Analyzer 6.0(アトー社製)を使用して解析した。すなわち、解析するレーンを指定し、バンドを検出して、バックグラウンド補正等を行った後、抽出したtotal RNA量を示すバンドの強度を1として標準化し、CHS遺伝子の発現量を解析した。解析結果を、アオコの総数と共に図2に示す。なお、図2中、「コントロール」は、アオコを共存させずに生育させたウキクサをサンプルとして使用した場合の結果を示す。
(3) Electrophoresis The obtained amplification product was subjected to electrophoresis and analyzed using Lane & Spot Analyzer 6.0 (manufactured by ATTO). That is, after specifying the lane to be analyzed, detecting the band, performing background correction, etc., the intensity of the band indicating the extracted total RNA amount was normalized as 1, and the expression level of the CHS gene was analyzed. The analysis results are shown in FIG. In FIG. 2, “control” indicates a result when a duckweed grown without coexisting with a blue sea cucumber is used as a sample.

(4)解析結果
図2から明らかなように、CHS遺伝子の発現量の増大が確認された。CHS遺伝子の発現量は、生育開始から1日目ではコントロールよりも減少していたが、これはアオコ毒の影響の可能性がある。そして2日目には、発現量が大幅に増大した。この時、上記のように、根圏微生物へのシグナル伝達、アオコ毒に対する防御反応、アオコに対する成長阻害物質の放出等にフラボノイドが関与している可能性がある。そして、3日目には発現量が大幅に減少した。これは、前日の発現量増加に対するフィードバック調節の発現を示している可能性がある。さらにこの時、アオコの総数が大幅に減少した。すなわち、CHS遺伝子の発現量が大幅に増大してから、アオコの除去効率が顕著に向上した。そして、4日目にはコントロールとほぼ同等の発現量を示した。これは、アオコの減少による可能性がある。
以上の結果から、アオコの存在がCHS遺伝子の発現、すなわちフラボノイドの産生と密接に関連していること、CHS遺伝子の発現量の増大により、アオコの除去活性が向上することが示唆された。
(4) Analysis Results As is clear from FIG. 2, an increase in the expression level of the CHS gene was confirmed. The expression level of the CHS gene was decreased from the control on the first day from the start of growth, but this may be due to the effect of the blue venom. On the second day, the expression level increased significantly. At this time, as described above, flavonoids may be involved in signal transduction to rhizosphere microorganisms, defense reaction against blue-green venom, release of growth inhibitory substances against blue-green potato. On the third day, the expression level decreased significantly. This may indicate the expression of feedback regulation with respect to the increase in the expression level of the previous day. Furthermore, at this time, the total number of blue sea cucumbers decreased significantly. That is, after the expression level of the CHS gene was greatly increased, the removal efficiency of sea cucumber was remarkably improved. On day 4, the expression level was almost the same as that of the control. This may be due to a decrease in blue-green.
From the above results, it was suggested that the presence of the blue-tailed fish is closely related to the expression of the CHS gene, that is, the production of flavonoids, and that the removal activity of the blue-tailed fish is improved by increasing the expression level of the CHS gene.

本発明は、湖沼や池等の環境浄化に利用可能である。   The present invention can be used for environmental purification of lakes and ponds.

Claims (3)

殺藻性の根圏微生物を有するウキクサをアオコ共存下で生育させることを特徴とするアオコの除去方法。   A method for removing sea cucumber characterized in that duckweed having algicidal rhizosphere microorganisms is grown in the presence of the sea bream. アオコの総数Y(個)に対して、下記式(2)の関係を満たす総数X(個)のウキクサを生育させることを特徴とする請求項1に記載のアオコの除去方法。
≧Y/(3.6×10) ・・・・(2)
2. The method for removing sea cucumber according to claim 1, wherein a total number X 1 (duckweed) satisfying the relationship of the following formula (2) is grown with respect to the total number Y (pieces) of the blue sea bream.
X 1 ≧ Y / (3.6 × 10 7 ) (2)
前記ウキクサにおいて、カルコンシンターゼをコードする遺伝子の発現量を増大させることを特徴とする請求項1又は2に記載のアオコの除去方法。   The method for removing sea cucumbers according to claim 1 or 2, wherein the expression level of a gene encoding chalcone synthase is increased in the duckweed.
JP2009105196A 2009-04-23 2009-04-23 How to remove blue water Expired - Fee Related JP5614828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105196A JP5614828B2 (en) 2009-04-23 2009-04-23 How to remove blue water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105196A JP5614828B2 (en) 2009-04-23 2009-04-23 How to remove blue water

Publications (2)

Publication Number Publication Date
JP2010254605A true JP2010254605A (en) 2010-11-11
JP5614828B2 JP5614828B2 (en) 2014-10-29

Family

ID=43315962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105196A Expired - Fee Related JP5614828B2 (en) 2009-04-23 2009-04-23 How to remove blue water

Country Status (1)

Country Link
JP (1) JP5614828B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627014A (en) * 1992-07-07 1994-02-04 Hitachi Ltd Method and apparatus for monitoring contamination of water
JPH0716596A (en) * 1993-06-18 1995-01-20 Toshiro Sekine Water clarification method of closed water such as lake, marsh, pond, etc.
JPH07171595A (en) * 1993-12-20 1995-07-11 Toshiro Sekine Apparatus for improving water quality of closed water area such as lake, marsh or pond
JPH08243538A (en) * 1995-03-13 1996-09-24 Aqua Tec Kk Method and device for suppressing propagation of phytoplankton

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627014A (en) * 1992-07-07 1994-02-04 Hitachi Ltd Method and apparatus for monitoring contamination of water
JPH0716596A (en) * 1993-06-18 1995-01-20 Toshiro Sekine Water clarification method of closed water such as lake, marsh, pond, etc.
JPH07171595A (en) * 1993-12-20 1995-07-11 Toshiro Sekine Apparatus for improving water quality of closed water area such as lake, marsh or pond
JPH08243538A (en) * 1995-03-13 1996-09-24 Aqua Tec Kk Method and device for suppressing propagation of phytoplankton

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013013579; 水環境学会誌 Vol.27, 2004, P. 69-72 *
JPN6013056293; 生物工学会誌 V86, 2008, P18 *
JPN6013056295; 日本生物工学会大会講演要旨集 , 2004, P207 *

Also Published As

Publication number Publication date
JP5614828B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
Lian et al. The effect of the algal microbiome on industrial production of microalgae
Li et al. Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture system
JP6349322B2 (en) Method for culturing microorganisms under non-pure culture mixed nutrient conditions
Granéli et al. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N-or P-deficient conditions
Larsdotter Wastewater treatment with microalgae-a literature review
US10834907B2 (en) Method for cultivating oysters on land
Smith et al. Interaction between Mesodinium rubrum and its prey: importance of prey concentration, irradiance and pH
Salazar et al. Nutrient removal from hydroponic effluent by Nordic microalgae: From screening to a greenhouse photobioreactor operation
US20120244603A1 (en) Production of Cyanobacterial or Algal Biomass Using Chitin as a Nitrogen Source
Arriada et al. Nannochloropsis oculata growth in produced water: an alternative for massive microalgae biomass production
WO2016109190A2 (en) Method of treating bacterial contamination in a microalgae culture with ph shock
Ahmed et al. Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9
Selim et al. Selection of newly identified growth-promoting Archaea haloferax species with a potential action on cobalt resistance in maize plants
Liu et al. Interactions between selected microalgae and microscopic propagules of Ulva prolifera
JP5374750B2 (en) Method for culturing difficult-to-cultivate microorganisms
JP5614828B2 (en) How to remove blue water
KR20070056594A (en) Method to control dinoflagellate of heterosigma sp. by microorganism of pseudomonas sp
CN103981128A (en) Alcaligenes faecalis strain Box-4 and application
CN103553213A (en) Method for improving sulphur-rich bottom material of aquaculture pond by using urechis unicinctus
CN107828679B (en) Rhodococcus roseus strain XHRR1 for purifying ammonia in aquaculture water and application thereof
Banerjee et al. Immobilized periphytic cyanobacteria for removal of nitrogenous compounds and phosphorus from shrimp farm wastewater
CN105907664A (en) Bacillus amyloliquefaciens PSBHY-3 used for organic phosphorus decomposition in aquaculture pond and application thereof
CN106010969B (en) Large-scale culture method of flagellates palmeri for phagocytosing microcystis
CN113234608B (en) Abnormal yeast Weikehan for degrading nitrite
Cao et al. High temporal variability in bacterial community, silicatein and hsp70 expression during the annual life cycle of Hymeniacidon sinapium (Demospongiae) in China's Yellow Sea

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140905

R150 Certificate of patent or registration of utility model

Ref document number: 5614828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees