JP2001027634A - Water quality-monitoring system - Google Patents
Water quality-monitoring systemInfo
- Publication number
- JP2001027634A JP2001027634A JP11198366A JP19836699A JP2001027634A JP 2001027634 A JP2001027634 A JP 2001027634A JP 11198366 A JP11198366 A JP 11198366A JP 19836699 A JP19836699 A JP 19836699A JP 2001027634 A JP2001027634 A JP 2001027634A
- Authority
- JP
- Japan
- Prior art keywords
- plankton
- water quality
- data
- meteorological
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は水源地の水質を監視
する水質監視システムに係わり、特に水中に含まれるプ
ランクトンなどの粒子の種類・量を計測する装置と日射
量や降水量,風速などの気象データを計測する装置から
得られたデータをもとに将来の水質を予測するのに好適
な水質監視システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality monitoring system for monitoring the quality of water at a water source, and more particularly to a device for measuring the type and amount of particles such as plankton contained in water and a device for measuring the amount of solar radiation, precipitation, and wind speed. The present invention relates to a water quality monitoring system suitable for predicting future water quality based on data obtained from a device for measuring weather data.
【0002】[0002]
【従来の技術】湖沼や河川などの水道水源の水質悪化に
伴い、植物プランクトンからなるアオコなどが大発生
し、水源地の浄化設備の運転だけではなく、浄水場での
オゾン注入などの高度処理が必要となってきている。ま
た、浄水場の既存設備である濾過池の逆洗頻度や沈殿池
での凝集剤の注入量の増加により運転の効率化が要求さ
れてきている。これらの効率化のためには問題となるプ
ランクトンを直接、監視し浄水場などの浄化設備にフィ
ードバックする必要があり、特開平5−172728号,特開
平5−332915号,特開平5−172728号,特開平6−27014
号,特開平6−304556号,特開平7−20199号などに対象
とする水圏内に水質および気象計測器を設置し、水圏域
内のプランクトンの増殖状態や、水質値などの把握と同
時に、シミュレーションにより水圏での水の対流,拡
散,生物学的,化学的反応状態をシミュレートし水質分
布を把握しこの結果にもとづいて水圏内に設置した浄化
装置で浄化を行ったり、浄水場の運転を制御している。2. Description of the Related Art As the water quality of tap water sources such as lakes and rivers deteriorates, water blooms such as phytoplankton are generated, and not only the operation of purification facilities at water source sites but also advanced treatment such as ozone injection at water purification plants. Is becoming necessary. In addition, the efficiency of operation has been required due to the frequency of backwashing of filtration ponds, which are existing facilities of water purification plants, and the increase in the amount of coagulant injected into sedimentation basins. In order to improve the efficiency, it is necessary to directly monitor plankton, which is a problem, and feed it back to a purification facility such as a water purification plant, as disclosed in JP-A-5-172728, JP-A-5-332915, and JP-A-5-172728. , JP-A-6-27014
Water quality and meteorological instruments are installed in the water area to be targeted, as described in JP-A-6-304556, JP-A-7-20199, etc., and at the same time as grasping the growth state of plankton and water quality values in the water area, and simulating Simulates the convection, diffusion, biological and chemical reaction states of water in the aquatic area, grasps the water quality distribution, and based on the results, purifies it with a purification device installed in the aquatic area, and operates the water purification plant. Controlling.
【0003】プランクトンについては、水中にカメラを
没したり、ポンプにより水をくみ上げフローセルに流し
プランクトンの拡大像をカメラにより捉えて、画像処理
してプランクトンの種類・量を把握している。これらの
従来例では、例えば、水域へ水の流入・流出情報,監視
ブロックごとの水質情報,気象情報,地形データベース
からの水域の地形情報を読み出し、監視ブロックごと
の、流速,水温,水域への流入・流出情報にもとづき水
域全体の対流を計算する。この対流計算値と水温から、
水質情報が監視ブロック内で拡散する状態をモデル化す
る。次に、現在の水質情報を初期値として一定時間後の
DO,濁度Tu,リンP,窒素TN,化学的酸素要求量
COD,pHを計算し、続いて、画像情報と栄養塩,水
温,DO,CODを初期値とし、プランクトン繁殖モデ
ルを用いてプランクトン発生量を計算して未来の水質変
動を予測し対策を行うものである。With regard to plankton, a camera is immersed in water, water is pumped up and flown into a flow cell, an enlarged image of plankton is captured by the camera, and image processing is performed to determine the type and amount of plankton. In these conventional examples, for example, information on inflow / outflow of water into a water area, water quality information for each monitoring block, weather information, topographic information of a water area from a terrain database are read, and the flow velocity, water temperature, Calculate the convection of the whole water area based on the inflow / outflow information. From this convection calculation value and water temperature,
Model the condition where water quality information is diffused in the monitoring block. Next, DO, turbidity Tu, phosphorus P, nitrogen TN, chemical oxygen demand COD, and pH after a certain period of time are calculated using the current water quality information as initial values, and then image information and nutrients, water temperature, With DO and COD as initial values, plankton generation is calculated using a plankton breeding model to predict future water quality fluctuations and take measures.
【0004】[0004]
【発明が解決しようとする課題】これらを達成するため
には膨大な地理情報や過去の計測データベースの蓄積,
大量の測定機器が必要で、複雑なシステムを長期にわた
り構築する必要が生じる。In order to achieve these, a huge amount of geographic information and the accumulation of past measurement databases,
A large amount of measuring equipment is required, and a complicated system needs to be built for a long time.
【0005】[0005]
【課題を解決するための手段】このような課題を解決す
るために、プランクトンの発生量を計測する手段から得
られたプランクトンの種類や量を、より少ない地理情報
や水質や気象データにより予測することが重要である。
通常、水質データを収集するためにはセンサを水没させ
る必要がある。また、DOやpHなどは電極などは電極
の校正や交換などのメンテナンスが必要である。また、
CODやリン,窒素などの計測についてもそれぞれの項
目に着いて専用の試薬とシーケンスを必要とし装置が高
価になる。In order to solve such a problem, the type and amount of plankton obtained from the means for measuring the amount of plankton generated are predicted based on less geographic information, water quality and weather data. This is very important.
Usually, it is necessary to submerge the sensor in order to collect water quality data. For DO and pH, for electrodes and the like, maintenance such as calibration and replacement of the electrodes is required. Also,
As for the measurement of COD, phosphorus, nitrogen, etc., each item requires a dedicated reagent and sequence, and the equipment becomes expensive.
【0006】一方、日射量や、降水量,風速などの気象
センサは構成が単純でメンテナンスが容易、かつ既設の
計測器が広く分布しており、通信ネットワークの拡大に
より気象庁などからの情報がオンラインで得られるよう
になってきている。On the other hand, weather sensors for solar radiation, precipitation, wind speed, etc. have a simple configuration and are easy to maintain, and existing measuring instruments are widely distributed. It is becoming available at.
【0007】したがって、現場でプランクトンの計測が
自動でできるプランクトン計測装置と気象センサから将
来のプランクトン量の予測できれば低コストのシステム
が構築できると考えられる。そこで、気象センサから得
られる気象データを説明変数としてプランクトン計測装
置によりえられるプランクトンデータを目的変数として
重回帰分析により予測することを試みたところ、日単位
の過去の気象データから現在のプランクトン量が重回帰
式により予測できることが判明した。[0007] Therefore, if a plankton amount in the future can be predicted from a plankton measuring device and a weather sensor that can automatically measure plankton on site, a low-cost system can be constructed. Therefore, we attempted to predict the plankton data obtained by the plankton measurement device as an objective variable by multiple regression analysis using the weather data obtained from the weather sensor as an explanatory variable. It turned out that it can be predicted by the multiple regression equation.
【0008】[0008]
【発明の実施の形態】図1にシステム構成を示す。プラ
ンクトンの種類や量をモニタするプランクトン計測装置
を含む水質計測点1を湖などの水源地2や河川の流入・
流出点や浄水場入口付近,浄水場3内などに設ける。ま
た、気象台などの気象計測点4が随所に存在する。水質
計測点1付近の気象を代表できる近接した気象計測点4
が無い場合は水質計測点1に気象センサを設けてもよ
い。各点のデータはネットワークなどの通信手段5を通
じて図示しない中央の水質監視センタや浄水場3に集め
られ処理される。FIG. 1 shows a system configuration. A water quality measurement point 1 including a plankton measurement device that monitors the type and quantity of plankton is used for inflow and
It will be installed near the outflow point, near the entrance of the water treatment plant, and inside the water treatment plant 3. In addition, weather measurement points 4 such as weather stations exist everywhere. Close meteorological measurement point 4 that can represent the weather near water quality measurement point 1
If there is no, a weather sensor may be provided at the water quality measurement point 1. The data of each point is collected and processed by a central water quality monitoring center and a water purification plant (not shown) through communication means 5 such as a network.
【0009】処理は水質計測点と水質計測点付近の気象
計測点を組とし、水質計測点で得られたプランクトンの
種類・量のデータ(プランクトンデータ)を目的変数と
し、気象計測点で得られた日射量・降水量・風速・気温
などの気象データを説明変数として重回帰分析する。プ
ランクトンデータとの相関で正の相関がある組と負の相
関がある組を分ける。数日の短い時間範囲では正の相関
のある組としては日射量,風速,気温などがある。ま
た、降水量は負の相関がある。In the processing, a set of water quality measurement points and meteorological measurement points near the water quality measurement points is used as a set, and the plankton type / quantity data (plankton data) obtained at the water quality measurement points is used as a target variable, and is obtained at the weather measurement points. Multiple regression analysis is performed using weather data such as solar radiation, precipitation, wind speed, and temperature as explanatory variables. In the correlation with plankton data, a group having a positive correlation and a group having a negative correlation are separated. In a short time range of several days, pairs having a positive correlation include solar radiation, wind speed, and temperature. Precipitation has a negative correlation.
【0010】このとき、それぞれのプランクトンデータ
に対して、それぞれの気象データの時間を独立させてず
らし、プランクトンデータと気象データ間で相関を求め
る。At this time, the time of each weather data is independently shifted with respect to each plankton data, and a correlation is obtained between the plankton data and the weather data.
【0011】図2に遊水池で夏期に計測した一例を示
す。FIG. 2 shows an example of measurements taken in a summer at a retarding pond.
【0012】図2は線状のプランクトン密度の日平均値
である。プランクトン密度は第32回水環境学会年会講
演集p43に記載の装置でフローセルに試料水を連続し
て流し、カメラにより捉えたプランクトン画像を処理し
外形形状により分類計数し求めた。プランクトン密度は
10日程度の期間で日毎に変化し、200〜1,000粒子/m
L の範囲を増減している。FIG. 2 shows the daily average of the linear plankton density. The plankton density was determined by continuously flowing sample water through the flow cell using an apparatus described in the 32nd Annual Meeting of the Society of Water Environment, p43, processing plankton images captured by a camera, and classifying and counting according to the external shape. Plankton density varies from day to day in a period of about 10 days, 200-1,000 particles / m
The range of L is increased or decreased.
【0013】図3,図4は気象庁から発表された気象月
報のデータを図示したものである。それぞれ日射量(全
天日射量),降水量,気温,風速の1日毎の値である。
プランクトン密度の変化と比較すると、どの気象データ
も単独ではプランクトン密度の変化を説明できていな
い。FIGS. 3 and 4 show data of a monthly weather report released by the Japan Meteorological Agency. These are daily values of solar radiation (global solar radiation), precipitation, temperature, and wind speed.
No meteorological data alone can explain the change in plankton density when compared to the change in plankton density.
【0014】図5はサンプル水に含まれた珪藻類など細
長い線状のプランクトンの密度と各気象データの相関を
求めたものである。図から明らかなようにプランクトン
計測日の2日前の日射量と線状プランクトン密度の正の
相関が最も高く、プランクトン計測日の2日前の降水量
と線状プランクトン密度の負の相関が最も高い。多重共
線性の問題を避けるため正の相関ある変数のうち最も相
関の高い日射量のデータのみを使用する。FIG. 5 shows the correlation between the density of elongated linear plankton such as diatoms contained in the sample water and each weather data. As is clear from the figure, the positive correlation between the amount of solar radiation two days before the plankton measurement day and the linear plankton density is the highest, and the negative correlation between the precipitation two days before the plankton measurement day and the linear plankton density is the highest. To avoid the multicollinearity problem, only the most correlated solar radiation data among the positively correlated variables is used.
【0015】この二つの気象データを説明変数とし線状
プランクトン密度を目的変数として気象データの時間軸
を2日ずらし重回帰分析した結果を図6に示す。図から
明らかなように線状プランクトン密度との予測結果と実
測値がよく一致している(このとき重相関係数は0.9
8となる)。FIG. 6 shows the result of multiple regression analysis with the time axis of the weather data shifted by two days using the two weather data as explanatory variables and the linear plankton density as the objective variable. As is clear from the figure, the predicted result of the linear plankton density and the measured value are in good agreement (at this time, the multiple correlation coefficient is 0.9).
8).
【0016】本実施例によれば、プランクトン密度を過
去の気象データにより重回帰分析により予測することが
可能になるので、水源地や浄水場の水質管理に利用でき
る。According to this embodiment, the plankton density can be predicted by multiple regression analysis based on past weather data, so that it can be used for water quality management in water sources and water purification plants.
【0017】なお、本実施例では、日射量と降水量の2
つの気象データの組み合わせにより線状プランクトン密
度の予測を行った。過去のデータの積み上げからこのよ
うに気象データを絞って分析してもよいし、他のプラン
クトンや季節,地形により予測に用いる気象データが異
なってもよいことは言うまでもない。In this embodiment, two values of the amount of solar radiation and the amount of precipitation
The linear plankton density was predicted by combining two meteorological data. It is needless to say that the weather data may be narrowed down and analyzed based on the accumulation of the past data as described above, and the weather data used for the prediction may be different depending on other plankton, season, and terrain.
【0018】[0018]
【発明の効果】(1)水質センサを必要最小限とできる
のでセンサの設置コスト・ランニングコストが大幅に低
減する。(1) Since the water quality sensor can be minimized, the installation cost and running cost of the sensor are greatly reduced.
【0019】(2)データベースが小さくかつ生体系の
モデル化が不要なので水質監視システム構築の時間が短
縮できる。(2) Since the database is small and there is no need to model a biological system, the time required to construct a water quality monitoring system can be reduced.
【0020】(3)低コストでシステムが構成されるの
で適用範囲が拡大できる。(3) Since the system is configured at low cost, the applicable range can be expanded.
【図1】本発明の実施例である水質監視システムの構成
図。FIG. 1 is a configuration diagram of a water quality monitoring system according to an embodiment of the present invention.
【図2】本発明の遊水池におけるプランクトン密度を示
す特性図。FIG. 2 is a characteristic diagram showing plankton density in a retarding pond according to the present invention.
【図3】本発明の気象月報の実測データを示す特性図。FIG. 3 is a characteristic diagram showing actual measurement data of a weather report according to the present invention.
【図4】本発明の気象月報のデータ間の相関を表す特性
図。FIG. 4 is a characteristic diagram showing a correlation between data of a weather monthly report of the present invention.
【図5】本発明のプランクトンの密度と各気象データの
相関を求めた特性図。FIG. 5 is a characteristic diagram showing a correlation between plankton density and each meteorological data of the present invention.
【図6】本発明の線状プランクトン密度と気象データと
の関係を求めた特性図。FIG. 6 is a characteristic diagram showing a relationship between linear plankton density and weather data according to the present invention.
1…水質計測点、2…水源地、3…浄水場、4…気象計
測点、5…通信手段。1 ... water quality measurement point, 2 ... water source, 3 ... water purification plant, 4 ... weather measurement point, 5 ... communication means.
Claims (1)
測する手段からなる監視システムにおいて、水質データ
を計測する手段および気象状況を計測する手段により得
た気象データをもとに統計的分析により、水質データを
計測する手段から得られた水質データを説明する手段を
有することを特徴とする水質監視システム。1. A monitoring system comprising means for measuring water quality data and means for measuring weather conditions, wherein a statistical analysis is performed on the basis of weather data obtained by means for measuring water quality data and means for measuring weather conditions. And a means for explaining water quality data obtained from a means for measuring water quality data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11198366A JP2001027634A (en) | 1999-07-13 | 1999-07-13 | Water quality-monitoring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11198366A JP2001027634A (en) | 1999-07-13 | 1999-07-13 | Water quality-monitoring system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001027634A true JP2001027634A (en) | 2001-01-30 |
Family
ID=16389920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11198366A Pending JP2001027634A (en) | 1999-07-13 | 1999-07-13 | Water quality-monitoring system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001027634A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263893A (en) * | 2006-03-29 | 2007-10-11 | Chugoku Electric Power Co Inc:The | Ship for investigating plankton distribution |
JP2008112428A (en) * | 2006-10-02 | 2008-05-15 | Shinko Electric Co Ltd | Method and apparatus for statistically predicting quality of inflow water in water disposal facility |
CN103299380A (en) * | 2011-04-08 | 2013-09-11 | 三菱电机株式会社 | Process for suppressing copper sulphide production |
CN109489721A (en) * | 2018-11-09 | 2019-03-19 | 朱光兴 | A kind of water environment sensitizing range remote sensing recognition system |
CN109520567A (en) * | 2018-11-27 | 2019-03-26 | 深圳先进技术研究院 | A kind of sea-farming water quality early-warning method |
CN110378822A (en) * | 2019-05-22 | 2019-10-25 | 云南省大理白族自治州气象局 | A kind of optimal meteorological factor building screening technique influencing lake water quality |
CN111220210A (en) * | 2020-01-15 | 2020-06-02 | 辽宁工程技术大学 | Water and soil conservation multi-index dynamic real-time monitoring system |
JP2021068173A (en) * | 2019-10-23 | 2021-04-30 | 株式会社日立物流 | Prediction device and prediction method |
CN115545576A (en) * | 2022-11-30 | 2022-12-30 | 广东广宇科技发展有限公司 | River inner lake water quality monitoring method based on multiple targets |
-
1999
- 1999-07-13 JP JP11198366A patent/JP2001027634A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263893A (en) * | 2006-03-29 | 2007-10-11 | Chugoku Electric Power Co Inc:The | Ship for investigating plankton distribution |
JP2008112428A (en) * | 2006-10-02 | 2008-05-15 | Shinko Electric Co Ltd | Method and apparatus for statistically predicting quality of inflow water in water disposal facility |
CN103299380A (en) * | 2011-04-08 | 2013-09-11 | 三菱电机株式会社 | Process for suppressing copper sulphide production |
CN109489721A (en) * | 2018-11-09 | 2019-03-19 | 朱光兴 | A kind of water environment sensitizing range remote sensing recognition system |
CN109520567A (en) * | 2018-11-27 | 2019-03-26 | 深圳先进技术研究院 | A kind of sea-farming water quality early-warning method |
CN110378822A (en) * | 2019-05-22 | 2019-10-25 | 云南省大理白族自治州气象局 | A kind of optimal meteorological factor building screening technique influencing lake water quality |
CN110378822B (en) * | 2019-05-22 | 2023-04-07 | 云南省大理白族自治州气象局 | Optimal meteorological factor construction and screening method for influencing lake water quality |
JP2021068173A (en) * | 2019-10-23 | 2021-04-30 | 株式会社日立物流 | Prediction device and prediction method |
JP7532707B2 (en) | 2019-10-23 | 2024-08-14 | ロジスティード株式会社 | Prediction device and prediction method |
CN111220210A (en) * | 2020-01-15 | 2020-06-02 | 辽宁工程技术大学 | Water and soil conservation multi-index dynamic real-time monitoring system |
CN115545576A (en) * | 2022-11-30 | 2022-12-30 | 广东广宇科技发展有限公司 | River inner lake water quality monitoring method based on multiple targets |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112883644B (en) | Dynamic water environment management method | |
CN110135622B (en) | River water quality pollution prediction method and device | |
CN114723179A (en) | Water environment early warning traceability system and method based on water yield and water quality combined control | |
JPH0627014A (en) | Method and apparatus for monitoring contamination of water | |
JP4469271B2 (en) | Method and system for confirming presence of toxic substance in sample using electrochemically active microorganism | |
CN106444534A (en) | Control method of cultivated soil monitoring system | |
Rounds | Development of a neural network model for dissolved oxygen in the Tualatin River, Oregon | |
Nayan et al. | River water quality analysis and prediction using GBM | |
CN114839343B (en) | Portable water quality monitoring and inspecting instrument device and using method | |
JP2001027634A (en) | Water quality-monitoring system | |
CN115829420A (en) | Method for judging steady-state conversion threshold of shallow lake | |
CN115757367A (en) | Method and system for finely managing and controlling small watershed water ecological environment | |
CN115790611A (en) | Unmanned aerial vehicle acquisition navigation method and system for smart city water conservancy information | |
Jácome et al. | Assessment of water quality monitoring for the optimal sensor placement in lake Yahuarcocha using pattern recognition techniques and geographical information systems | |
Pant et al. | Automated IoT based smart water quality assessment system | |
CN114595631A (en) | Water quality prediction method based on EFDC model and machine learning algorithm | |
Kathiravan et al. | Spatio-temporal variability of hydro-chemical characteristics of coastal waters of Gulf of Mannar Marine Biosphere Reserve (GoMMBR), South India | |
CN108928928A (en) | A kind of water correction method for dispersing Point source treating | |
CN117023863B (en) | Culture tail water supervision system and method | |
CN105600841A (en) | Aquatic product culture water quality monitoring and purifying treatment method | |
Krogh et al. | Environmental variables and their association with faecal coliform and faecal streptococci densities at thirteen Sydney beaches | |
Wahyuningsih et al. | The Analysis of Water Quality Compliance of Jompo River Irrigation in Jember Regency | |
Jin et al. | Prediction of swimmability in a brackish water body | |
CN115471115B (en) | Electronic river length control system for unified combined treatment of global water body | |
CN118070234B (en) | Water quality state fusion sensing and prediction tracing method |