JPH06269804A - Manufacture of steel sheet having minimized surface flaw with hot rolling - Google Patents

Manufacture of steel sheet having minimized surface flaw with hot rolling

Info

Publication number
JPH06269804A
JPH06269804A JP6222393A JP6222393A JPH06269804A JP H06269804 A JPH06269804 A JP H06269804A JP 6222393 A JP6222393 A JP 6222393A JP 6222393 A JP6222393 A JP 6222393A JP H06269804 A JPH06269804 A JP H06269804A
Authority
JP
Japan
Prior art keywords
slab
hot rolling
thickness
rolling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6222393A
Other languages
Japanese (ja)
Other versions
JP2863402B2 (en
Inventor
Tetsuo Takeshita
哲郎 竹下
Kenji Yamada
健二 山田
Masayuki Abe
阿部  雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6222393A priority Critical patent/JP2863402B2/en
Publication of JPH06269804A publication Critical patent/JPH06269804A/en
Application granted granted Critical
Publication of JP2863402B2 publication Critical patent/JP2863402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the surface flaw that is formed at the time of hot rolling. CONSTITUTION:At the time of manufacturing a steel sheet by hot rolling, the generation of surface flaw at the time of hot rolling is decreased by making the slab thickness at outtermost edge part thicker than the slab thickness in the middle part of slab in the shape of a slab of base stock. Further, by taking the value of the ratio (k) (=DELTA/S) of the area DELTAS of a part bulged out from the rectangle to the area S of the rectangle when the slab is superposed on a perfect rectangle which is specified by the thickness in the middle part of slab and the width of slab as 0.003-0.03, the generation of surface flaw is decreased. In this way, the fine crack generated at the time of hot rolling is prevented and the yield of product is greatly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延時に発生する
表面疵が少ない鋼板の製造方法、即ち鋼板の熱間圧延に
際して発生する表面疵を、スラブの横断面形状を変える
ことにより、減少させる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is directed to a method for producing a steel sheet having less surface flaws generated during hot rolling, that is, reducing surface flaws generated during hot rolling of a steel sheet by changing the cross-sectional shape of a slab. It is about how to make.

【0002】[0002]

【従来の技術】一般に熱間圧延された鋼板のエッジ部に
は表面疵が発生し易く、特に鋼板の割れや表面凹凸に起
因する表面疵内部にはスケールが生成して後工程の酸洗
時に十分除去されず、冷間圧延後に重大な表面欠陥とな
り、製品歩留まりの低下を来す。とりわけ、熱間圧延時
の微小割れに起因するヘゲ疵と称される表面欠陥は、割
れ発生後に生成するスケールが圧延により内部に食い込
み、酸洗工程で除去されずに冷間圧延工程に供せられる
と、圧延方向に長い線状の欠陥となり歩留まり低下度が
特に大きい。またこれらの表面欠陥による歩留まり低下
が特に問題とされる鋼種は、製品表面美麗性が問題にな
り易くかつ熱間圧延時の変形抵抗が高く熱間加工性の悪
いステンレス鋼である。
2. Description of the Related Art Generally, surface flaws are likely to occur at the edges of hot-rolled steel sheets, and especially scales are generated inside the surface flaws caused by cracks and surface irregularities of the steel sheet, which may occur during pickling in the subsequent process. It is not removed sufficiently and becomes a serious surface defect after cold rolling, resulting in a decrease in product yield. In particular, surface defects called bald spots caused by microcracks during hot rolling enter the cold rolling process without being removed by the pickling process because the scale generated after cracking penetrates into the interior by rolling. If this occurs, linear defects that are long in the rolling direction become defects, and the yield reduction rate is particularly large. Further, a steel type in which a yield reduction due to these surface defects is a particular problem is a stainless steel which is likely to have a problem of product surface beauty and has high deformation resistance during hot rolling and poor hot workability.

【0003】従って従来より熱間圧延時の表面疵を少な
くするための様々な技術が、主にステンレス鋼に関して
多く考案されてきている。例えば特開昭57−1615
3号ではオーステナイト系ステンレス鋼の成分を規定し
て熱間加工性を確保し、当該鋼の耳われやヘゲ疵を少な
くする技術が開示されている。特開平2−15806号
ではステンレス鋼スラブの表面欠陥(ピンホール)を手
入れ除去してヘゲ疵発生をなくする技術が開示されてい
る。しかしこの技術では熱間圧延時に発生する微小な割
れを防止することはできない。また熱間圧延疵発生をス
ラブ形状を工夫して少なくする技術として、特開昭58
−138502号及び特開平3−207551号が挙げ
られる。両者ともスラブ短辺中央部を窪ませてステンレ
ス鋼のエッジシーム疵を低減させる技術を開示してい
る。しかしながらこの技術では上述の熱間圧延時の微小
割れを防ぐことはできない。
Therefore, various techniques for reducing surface defects during hot rolling have hitherto been devised mainly for stainless steel. For example, JP-A-57-1615
No. 3 discloses a technique in which the components of an austenitic stainless steel are specified to secure hot workability and reduce the earing and bald spots of the steel. Japanese Unexamined Patent Publication (Kokai) No. 2-15806 discloses a technique for eliminating surface defects (pinholes) in stainless steel slabs by maintenance to eliminate the occurrence of bald spots. However, this technique cannot prevent minute cracks generated during hot rolling. Further, as a technique for reducing the occurrence of hot rolling flaws by devising a slab shape, Japanese Patent Laid-Open No. 58-58
No. 138502 and JP-A-3-207551. Both of them disclose a technique in which the central portion of the short side of the slab is recessed to reduce the edge seam flaw of the stainless steel. However, this technique cannot prevent the above-mentioned microcracking during hot rolling.

【0004】[0004]

【発明が解決しようとする課題】本発明は熱間圧延時に
発生する表面欠陥を改善するに当たり、特段の工程負荷
増なく表面疵を改善した鋼板を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a steel sheet which has improved surface defects without a particular increase in process load in improving surface defects generated during hot rolling.

【0005】[0005]

【課題を解決するための手段】本発明は上記問題点を解
決するため熱間圧延の素材であるスラブの形状を特定し
たもので、その骨子は、素材スラブの形状を、その横断
面において対向する長辺の最エッジ部でのスラブ厚み
を、中央部のスラブ厚みより厚くして熱間圧延に供する
ことである。更には素材スラブの横断面において、対向
する長辺の長さwと中央部スラブ厚みhC より定義され
る矩形を想定し、この矩形とスラブ横断面を重ね合せた
時に当該矩形よりはみ出る部分(以下はみ出し部と称す
る)を求め、そのはみ出し部がスラブエッジ部に存在
し、なおかつ当該はみ出し部の面積ΔSと当該矩形面積
S(S=w×hC )との比k値(=ΔS/S)を0.0
03以上で0.03以下として熱間圧延に供することで
ある。
In order to solve the above-mentioned problems, the present invention specifies the shape of a slab which is a material for hot rolling, and its skeleton is such that the shape of the material slab is opposite in its cross section. That is, the slab thickness at the outermost edge of the long side is made thicker than the slab thickness at the central portion and subjected to hot rolling. Further, in the cross section of the raw material slab, a rectangle defined by the length w of the opposite long side and the central portion slab thickness h C is assumed, and when the rectangle is overlapped with the cross section of the slab, a portion protruding from the rectangle ( The protrusion portion is present in the slab edge portion, and the ratio k of the area ΔS of the protrusion portion to the rectangular area S (S = w × h C ) (= ΔS / S) ) To 0.0
It is to be subjected to hot rolling with a value of 03 or more and 0.03 or less.

【0006】[0006]

【作用】以下に本発明を詳細に説明する。本発明者らは
熱間圧延時に発生する疵頻度と素材スラブの形状との関
係について綿密に調査し、本発明を完成したものであ
る。まず図1に本発明によるスラブ形状を示す。図はス
ラブの横断面を示しており、図中のwは対向する長辺の
長さ(即ちスラブ幅)を、hC はスラブ中央部の平均厚
みを、hE はスラブ最エッジ部の厚みを各々示す。更に
スラブ中央部厚みhC とスラブ幅wで定義される矩形を
点線で示し、この矩形よりはみ出す部分を図中に斜線で
示した。本発明の請求項1のスラブとは、hE >hC
ある形状を有するスラブである。また請求項2記載のス
ラブとは、当該矩形よりはみ出した部分(図中の斜線
部)がスラブエッジ部に存在し、そのはみ出し部の面積
ΔSと当該矩形面積Sとの比k値(=ΔS/S)が0.
003以上で0.03以下である形状を有するスラブで
ある。またスラブのエッジ部及び中央部とは図中に示し
たようにスラブ幅を大略3等分した範囲を意味する。尚
図中の斜線部面積ΔSは定義を明確に示せるように誇張
して図示しており、そのk値は特許請求の範囲と関係な
いことを付言しておく。
The present invention will be described in detail below. The inventors of the present invention completed the present invention by meticulously investigating the relationship between the defect frequency generated during hot rolling and the shape of the raw material slab. First, FIG. 1 shows a slab shape according to the present invention. The figure shows the cross section of the slab. In the figure, w is the length of the opposite long side (that is, slab width), h C is the average thickness of the slab center, and h E is the thickness of the slab outermost edge. Are shown respectively. Further, a rectangle defined by the slab center thickness h C and the slab width w is shown by a dotted line, and a portion protruding from this rectangle is shown by a slanted line in the drawing. The slab according to claim 1 of the present invention is a slab having a shape in which h E > h C. Further, the slab according to claim 2 has a portion protruding from the rectangle (hatched portion in the figure) at the slab edge portion, and a ratio k value (= ΔS) between the area ΔS of the protrusion and the rectangular area S. / S) is 0.
It is a slab having a shape of 003 or more and 0.03 or less. The edge portion and the central portion of the slab mean a range in which the slab width is roughly divided into three, as shown in the figure. It should be noted that the shaded area ΔS in the drawing is exaggerated for the sake of clear definition, and the k value is not related to the scope of the claims.

【0007】図2は従来のスラブ形状を示した図で、
(a)図は鋳造時にバルジングが生じなかった時に得ら
れる完全矩形スラブの横断面を示し、図中のhとwは各
々スラブ厚みとスラブ幅を意味する。(b)図は鋳造時
にバルジング等によりスラブ長辺面に凹部が形成された
時のスラブ横断面を示す。凹部の発生位置は通常スラブ
エッジから10〜300mmの範囲に形成され、図中のΔ
hは最大凹部深さを、Δwはスラブエッジから最大凹部
深さ発生位置までの距離を示す。
FIG. 2 shows a conventional slab shape.
(A) shows a cross section of a completely rectangular slab obtained when bulging does not occur during casting, and h and w in the drawing mean the slab thickness and the slab width, respectively. FIG. 6B shows a cross section of the slab when a recess is formed on the long side surface of the slab by bulging or the like during casting. The position where the recess is generated is usually formed in the range of 10 to 300 mm from the slab edge.
h represents the maximum recess depth, and Δw represents the distance from the slab edge to the maximum recess depth generation position.

【0008】本発明者らは熱間圧延疵発生とスラブ形状
との関係を綿密に調査したところ、図2(a)の完全矩
形スラブよりも図2(b)の凹部発生スラブで熱延疵発
生が多いことを見い出した。更にその発生位置は、完全
矩形スラブではスラブエッジに近くなるほど発生頻度が
高くなり、凹部発生スラブでは矩形スラブを上回る発生
頻度で凹部に熱延疵が発生することが判明した。また凹
部発生スラブでの熱延疵発生頻度は最大凹部深さΔhに
左右される傾向が認められ、Δhが大きいほど疵発生頻
度が高くなる。ところがエッジ部のスラブ厚みが中央部
のスラブ厚みより厚いと、完全矩形スラブ程度かそれ以
上に熱延疵の発生が少ないことを見い出した。
The inventors of the present invention have investigated the relationship between the occurrence of hot rolling flaws and the shape of the slab, and as a result, have found that the recessed slab of FIG. 2 (b) has a hot rolling flaw rather than the perfect rectangular slab of FIG. 2 (a). We found that there were many outbreaks. Further, it has been found that the occurrence frequency is higher in the complete rectangular slab as it is closer to the slab edge, and in the concave part slab, the thermal defect is generated in the concave part with the occurrence frequency exceeding the rectangular slab. Further, it is recognized that the frequency of hot-rolling defects in the recessed slab depends on the maximum recess depth Δh. The larger Δh, the higher the frequency of defects. However, it has been found that when the slab thickness at the edge portion is thicker than the slab thickness at the central portion, the occurrence of hot-rolling defects is less than that of a complete rectangular slab.

【0009】更に本発明者らは、疵の発生形態を明確に
するために粗熱延1パス終了後の熱延疵を調査した。そ
の結果、スラブエッジやスラブ凹部に発生する疵はすべ
てC方向に割れ(圧延方向に直角方向の割れ)であるこ
とが判った。そのサイズはC方向に0.1〜0.2mm程
度で深さ0.1mm程度の微少な割れで、その後の熱延や
冷延等の圧延工程によりL方向(圧延方向)に伸張さ
れ、最終製品板で表面品位を致命的に劣化させるヘゲ疵
等になることを確認した。
Furthermore, the present inventors investigated the hot rolling flaw after the completion of one pass of the rough hot rolling in order to clarify the form of the flaw. As a result, it was found that all the flaws generated in the slab edge and the slab recess were cracks in the C direction (cracks in the direction perpendicular to the rolling direction). The size is a minute crack of 0.1 to 0.2 mm in the C direction and about 0.1 mm in depth, and it is stretched in the L direction (rolling direction) by the subsequent rolling process such as hot rolling and cold rolling, and finally. It was confirmed that the product plate will cause bald defects and the like that will seriously deteriorate the surface quality.

【0010】上記事実に鑑み、本発明者らは熱延疵の発
生しないスラブ形状を開発考案したものである。即ち、
素材スラブの形状を、その横断面において対向する長辺
の最エッジ部スラブ厚みを、中央部のスラブ厚みより厚
くして熱間圧延に供することである。更には素材スラブ
の横断面において、対向する長辺の長さwのと中央部ス
ラブ厚みhC より定義される矩形を想定し、この矩形と
スラブ横断面を重ね合せた時に当該矩形よりはみ出る部
分を求め、そのはみ出し部がスラブエッジ部に存在し、
なおかつ当該はみ出し部の面積ΔSと当該矩形面積S
(S=w×hC )との比k値(=ΔS/S)を0.00
3以上で0.03以下として熱間圧延に供することであ
る。
In view of the above facts, the inventors of the present invention have developed and devised a slab shape free from hot-rolling defects. That is,
The shape of the raw material slab is to be subjected to hot rolling by making the thickness of the slab at the outermost edge of the long sides facing each other in its cross section thicker than the thickness of the slab at the center. Further, in the cross section of the raw material slab, a rectangle defined by the length w of the opposite long side and the central portion slab thickness h C is assumed, and the portion that protrudes from the rectangle when the rectangle and the slab cross section are overlapped. , The protruding portion exists at the slab edge portion,
Furthermore, the area ΔS of the protruding portion and the rectangular area S
The ratio k value (= ΔS / S) with (S = w × h C ) is 0.00
It is to be subjected to hot rolling with a value of 3 or more and 0.03 or less.

【0011】以下に特許請求の範囲限定理由を述べる。
まず請求項1記載の発明について述べる。素材スラブの
横断面において、対向する長辺の最エッジ部スラブ厚み
を、中央部スラブ厚みより厚くする理由は、熱延疵の発
生を完全矩形スラブと同等か或いはそれ以上に減じせし
めるためである。ここでスラブの横断面とは、そのスラ
ブが圧延される際の圧延方向に垂直な面を意味し、必ず
しも鋳造方向に対して垂直な面でなくてもよい。最エッ
ジ部のスラブ厚みとは、図1に示したようにスラブ端面
でのスラブ厚みであるが、端面より少し内側に入った箇
所でのスラブ厚みでもよい。中央部のスラブ厚みとは、
スラブ幅方向(長辺方向)中心でのスラブ厚みでよい
が、実際のスラブでは微少な凹凸があるので中央部全体
の平均厚みであることが望ましい。ここで中央部及びエ
ッジ部とは図1に示したように、スラブ幅(長辺)を大
略3等分した範囲を指し示す。スラブ最エッジでの厚み
と中央部での平均厚みとの差については特に規定しない
が、少なくとも1mm以上は必要である。この厚み差が極
端に大きくなると、スラブエッジ部ではなく逆に中央部
での熱間微少割れが生じる等の不都合が生じるので、ス
ラブ厚みの高々20%程度までである。また本発明で
は、スラブ中央部からスラブ最エッジまでの形状につい
ては特に規定しないが、本発明の趣旨より考えて、滑ら
かにスラブ厚みが変化することが望ましい。
The reasons for limiting the scope of the claims will be described below.
First, the invention according to claim 1 will be described. In the cross section of the raw material slab, the reason for making the outermost edge slab thickness of the opposing long side thicker than the central slab thickness is to reduce the occurrence of hot-defects to the same level as or more than that of the complete rectangular slab. . Here, the cross section of the slab means a plane perpendicular to the rolling direction when the slab is rolled, and does not necessarily have to be a plane perpendicular to the casting direction. The slab thickness at the outermost edge is the slab thickness at the slab end face as shown in FIG. 1, but may be the slab thickness at a position slightly inside the end face. What is the central slab thickness?
The slab thickness at the center of the slab width direction (long-side direction) may be sufficient, but in an actual slab, since there are minute irregularities, it is desirable that it is the average thickness of the entire central portion. Here, the central portion and the edge portion indicate a range in which the slab width (long side) is roughly divided into three, as shown in FIG. The difference between the thickness at the outermost edge of the slab and the average thickness at the center is not specified, but at least 1 mm or more is necessary. If this thickness difference becomes extremely large, disadvantages such as hot microcracking at the central portion rather than at the slab edge portion occur, so it is up to about 20% of the slab thickness. Further, in the present invention, the shape from the central portion of the slab to the outermost edge of the slab is not particularly specified, but it is desirable that the slab thickness changes smoothly in consideration of the gist of the present invention.

【0012】つぎに請求項2記載の発明について述べ
る。請求項2乃至図1で定義したはみ出し部(ΔS)が
スラブエッジ部に存在しかつΔS値と仮想矩形面積S値
(=hC ×w)との比k値(=ΔS/S)を0.003
以上で0.03以下の範囲に定める理由は、熱延疵の発
生を完全矩形スラブの場合以上に減じせしめるか或いは
ほぼ皆無にするためである。k値の下限を0.003と
した理由は、それ以下では熱延疵減少効果が認められな
いからである。k値の上限を0.03とした理由は、こ
れ以上では中央部に疵が発生し易くなり当初の目的を達
成できないからである。またはみ出し部の形状について
は特に規定しないが、はみ出し部のスラブ厚みが滑らか
に変化することが望ましく、最エッジ部に近づくほどス
ラブ厚みが厚くなることが望ましい。
Next, the invention according to claim 2 will be described. The protruding portion (ΔS) defined in claims 2 to 1 exists in the slab edge portion, and the ratio k value (= ΔS / S) between the ΔS value and the virtual rectangular area S value (= h C × w) is 0. .003
The reason why the range is set to 0.03 or less is to reduce the occurrence of hot-rolling defects more than in the case of a completely rectangular slab, or to eliminate it at all. The reason for setting the lower limit of the k value to 0.003 is that the effect of reducing the hot-rolling defect cannot be recognized below that. The reason for setting the upper limit of the k value to 0.03 is that if the k value is more than this, a flaw is likely to occur in the central portion and the original purpose cannot be achieved. Although the shape of the protruding portion is not particularly specified, it is desirable that the slab thickness at the protruding portion changes smoothly, and it is desirable that the slab thickness becomes thicker toward the outermost edge portion.

【0013】スラブ最エッジ部厚みを中央部厚みより厚
くしたり、或いは上記はみ出し部がスラブエッジ部に存
在させる手段としては、下記等が考えられる。まず鋳造
時にスラブエッジ部を厚くする方法がある。例えば連続
鋳造鋳型内面の短辺長さを、長辺中央部の短辺長さより
大きくしておくもので、図3に示すごとく長辺両端部に
適当なテーパ等をつければよい。このような鋳型を用い
て鋳造することで所定のスラブを得ることができる。
As means for increasing the thickness of the outermost edge of the slab to be thicker than the thickness of the central portion or for allowing the protruding portion to exist at the edge of the slab, the following can be considered. First, there is a method of thickening the slab edge portion during casting. For example, the length of the short side of the inner surface of the continuous casting mold is made larger than the length of the short side of the central portion of the long side. As shown in FIG. 3, both ends of the long side may be appropriately tapered. A predetermined slab can be obtained by casting using such a mold.

【0014】他の手段としては、圧延によるスラブ形状
改善が考えられる。例えば、鋼塊を分塊圧延する際に所
定のスラブ形状が得られるようなカリバーロールを用い
る方法がある。また分塊工程が省略される場合には、水
平ロールによる粗熱延前に垂直ロール(例えばエッジャ
ー圧延等)で圧延して、いわゆるドッグボーン形状を形
成せしめ、上記所定のはみ出し部を形成することができ
る。その他、スラブ手入れ時に本発明の形状となるよう
に研削・手入れする方法もある。
As another means, it is possible to improve the slab shape by rolling. For example, there is a method of using a caliber roll that can obtain a predetermined slab shape when slab-rolling a steel ingot. If the agglomeration step is omitted, the so-called dogbone shape should be formed by rolling with a vertical roll (for example, edger rolling) before the rough hot rolling with a horizontal roll to form the predetermined protruding portion. You can In addition, there is also a method of grinding / maintening the slab so that it has the shape of the present invention.

【0015】ところで、スラブ最エッジ部厚みを中央部
厚みより厚くしたり、或いは上記はみ出し部が存在する
ことで、熱延疵が改善乃至解消できる理由については現
在のところ必ずしも明確ではないが、下記が考えられ
る。上述したように従来粗熱延時に生成する微少割れは
すべてC方向に割れており、圧延時に圧延方向の張力が
作用したことが伺われる。この圧延方向張力は、スラブ
中央部とエッジ部の圧延方向のメタルフローの差に起因
すると考えられる。即ちエッジ部では圧延時に幅広がり
が生じ、圧延方向へのメタルフロー量が中央部に比較し
て小さくなる。その結果、エッジ部のメタルは中央部の
メタルのフローに引きずられ、エッジ部に圧延方向の張
力が発生する。上記が、従来完全矩形スラブでもエッジ
部に微少割れが生じた理由と考えられる。また図2
(b)に示した凹部発生スラブでは、スラブ厚みが薄く
圧延方向へのメタルフローが少ない凹部域で、圧延方向
張力が高くなり、疵発生が集中したものと考えられる。
従って、本発明によるスラブ形状で熱延疵発生が減じら
れる理由は、エッジ部の圧延方向へのメタルフロー量を
増やして中央部でのメタルフロー量との差を少なくし、
エッジ部での圧延方向張力を低くして熱延疵発生を減じ
せしめたものと推定される。即ち本発明による方法は鋼
種によらず、圧延時のメタルフローに即した発明である
ことが一大特徴である。
By the way, it is not always clear at present that the reason why the hot-defects can be improved or eliminated by making the thickness of the outermost edge of the slab thicker than the thickness of the central portion or the presence of the protruding portion is as follows. Can be considered. As described above, all the microcracks generated during the conventional rough hot rolling are cracked in the C direction, which indicates that tension in the rolling direction acts during rolling. It is considered that this rolling direction tension is due to the difference in metal flow between the slab center part and the edge part in the rolling direction. That is, the width of the edge portion is widened during rolling, and the amount of metal flow in the rolling direction is smaller than that in the central portion. As a result, the metal at the edge portion is dragged by the flow of the metal at the central portion, and tension in the rolling direction is generated at the edge portion. The above is considered to be the reason why even the conventional perfect rectangular slab had microcracks in the edge portion. See also FIG.
In the recessed slab shown in (b), it is considered that the tensile force in the rolling direction becomes high and defects are concentrated in the recessed area where the slab thickness is small and the metal flow in the rolling direction is small.
Therefore, the reason why the occurrence of hot-rolled defects in the slab shape according to the present invention is reduced is to increase the metal flow amount in the rolling direction of the edge portion to reduce the difference from the metal flow amount in the central portion,
It is presumed that the tension in the rolling direction at the edge portion was lowered to reduce the occurrence of hot rolling defects. That is, the method according to the present invention has a major feature that it is an invention that matches the metal flow during rolling, regardless of the steel type.

【0016】[0016]

【実施例】以下、実施例に即して詳細に説明する。表1
に示した成分のステンレス鋼を通常の溶製法に従って溶
製し、スラブ中央部厚みが165mmでスラブ幅が125
0mm及び1000mmのスラブを鋳造した。鋳造に際して
用いた鋳型は3種類で、1000mm幅スラブの鋳造には
鋳型内面が完全矩形のA鋳型を、1250mm幅スラブの
鋳造には鋳型内面が完全矩形のB鋳型と図3に示す形状
のC鋳型を用いた。C鋳型のエッジ部の短辺長さLE
中央部の短辺長さLC より10mm長くした。また連続鋳
造時の引き抜き速度は高速鋳造と低速鋳造の2水準とし
た。得られたスラブの一部はそのままの形状で熱延に供
し、一部はスラブ手入れしてその形状を変えて熱延に供
した。熱延コイルは全て通常の酸洗・冷延工程を経て
1.5mm厚みの冷延コイルとした。その冷延コイルを巻
き戻して圧延方向1m当たりの疵発生個数を求め、疵発
生頻度とした。
Embodiments will be described in detail below with reference to embodiments. Table 1
The stainless steel having the components shown in 1) was melted according to the usual melting method, and the slab center thickness was 165 mm and the slab width was 125 mm.
Slabs of 0 mm and 1000 mm were cast. There are three types of molds used in casting. For casting a 1000 mm width slab, an A mold with a completely rectangular inner surface is used, and for casting a 1250 mm width slab, a B mold with a completely rectangular inner surface and a C shape having the shape shown in FIG. A template was used. The short side length L E of the edge portion of the C mold was 10 mm longer than the short side length L C of the central portion. The drawing speed during continuous casting was set to two levels, high speed casting and low speed casting. A part of the obtained slab was subjected to hot rolling in the same shape, and a part of the slab was maintained and subjected to hot rolling while changing its shape. All hot-rolled coils were made into a cold-rolled coil having a thickness of 1.5 mm through a normal pickling and cold-rolling process. The cold rolled coil was rewound to determine the number of flaws generated per 1 m in the rolling direction, which was taken as the flaw occurrence frequency.

【0017】上記プロセス条件とスラブ形状及び疵発生
頻度をまとめて表2に示す。表中のwはスラブ幅を、h
C はスラブ中央部の平均厚みを、hE はスラブ最エッジ
部(スラブ端面)でのスラブ厚みを、Δhはスラブに凹
部が存在した時の最大凹部深さ(スラブ中央部水平面か
らの深さ)を、Δwはスラブ最エッジ(スラブ端面)か
ら最大凹部深さ発生位置までの距離を、ΔSは仮想矩形
(wとhC で定義)と素材スラブを重ね合せた時に仮想
矩形よりはみ出た部分の面積を、kはΔS値と仮想矩形
面積S(=hC ×w)との比(ΔS/S)を、各々意味
する。
Table 2 summarizes the above process conditions, the slab shape and the defect occurrence frequency. W in the table is the slab width, h
C is the average thickness of the slab center, h E is the slab thickness at the slab outermost edge (slab end face), Δh is the maximum recess depth when the slab has a recess (depth from the horizontal plane of the slab center) ), Δw is the distance from the slab outermost edge (slab end face) to the maximum recess depth generation position, and ΔS is the portion that protrudes from the virtual rectangle when the virtual slab (defined by w and h C ) and the material slab are overlapped. , K means the ratio (ΔS / S) between the ΔS value and the virtual rectangular area S (= h C × w).

【0018】表2より明らかなように、従来法のスラブ
に比較して本発明法によるスラブを用いて製造した時の
表面疵の発生が少ないことが認められる。大略完全矩形
スラブと判断されるスラブ符号10での疵発生頻度と本
発明によるスラブでの疵発生頻度を比較すると、本発明
による効果が明確である。特に請求項2記載の本発明に
よるスラブ(スラブ符号:3,4,9,11,12,1
3)より製造した場合の疵発生頻度は極めて低く、歩留
まり向上効果が著しく大きい。
As is clear from Table 2, it is recognized that the occurrence of surface defects is smaller when the slab according to the method of the present invention is used as compared with the slab according to the conventional method. The effect of the present invention is clear by comparing the defect occurrence frequency of the slab code 10 that is determined to be a substantially complete rectangular slab with the defect occurrence frequency of the slab of the present invention. Particularly, the slab according to the present invention as defined in claim 2 (slab code: 3, 4, 9, 11, 12, 1)
The defect occurrence frequency in the case of manufacturing 3) is extremely low, and the yield improving effect is remarkably large.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】以上詳述したように、本発明の効果は、
熱間圧延により鋼板を製造するに際し所定のスラブ形状
を持つスラブより熱延することで、製品の表面疵を著し
く低減でき、製品歩留まりを向上できる等、産業上裨益
するところ大である。
As described in detail above, the effects of the present invention are
When a steel sheet is manufactured by hot rolling, hot rolling from a slab having a predetermined slab shape can significantly reduce the surface defects of the product and improve the product yield, which is a great industrial benefit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるスラブの横断面形状を示してい
る。ここで横断面とは当該スラブが圧延される時の圧延
方向に垂直な面を意味する。
1 shows a cross-sectional shape of a slab according to the invention. Here, the cross section means a plane perpendicular to the rolling direction when the slab is rolled.

【図2】従来のスラブ形状を示した図で、(a)図は鋳
造時にバルジングが生じなかった時に得られる完全矩形
スラブの横断面を示し、(b)図は鋳造時にバルジング
等によりスラブ長辺面に凹部が形成された時のスラブ横
断面を示す。
FIG. 2 is a view showing a conventional slab shape, in which (a) shows a cross section of a completely rectangular slab obtained when bulging does not occur during casting, and (b) shows slab length due to bulging during casting. The slab cross section when a concave part is formed in the side surface is shown.

【図3】本発明のスラブ形状を得るための連続鋳造鋳型
の横断面を示す。ここでの横断面とは鋳造方向に垂直な
面を意味する。
FIG. 3 shows a cross section of a continuous casting mold for obtaining the slab shape of the present invention. The cross section here means a plane perpendicular to the casting direction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延により鋼板を製造するに際し、
素材スラブの形状を、その横断面において対向する長辺
の最エッジ部でのスラブ厚みを中央部のスラブ厚みより
厚くすることを特徴とする熱間圧延による表面疵の少な
い鋼板の製造方法。
1. When manufacturing a steel sheet by hot rolling,
A method for producing a steel sheet with less surface defects by hot rolling, characterized in that the shape of a raw material slab is set such that the slab thickness at the outermost edge portions of the long sides facing each other in its cross section is made larger than the slab thickness at the central portion.
【請求項2】 熱間圧延により鋼板を製造するに際し、
素材スラブの形状を、その横断面において対向する長辺
の長さwと中央部スラブ厚みhC より定義される短形を
想定し、この矩形とスラブ横断面を重ね合せた時に当該
矩形よりはみ出る部分(以下はみ出し部と称する)を求
め、そのはみ出し部がスラブエッジ部に存在し、なおか
つ当該はみ出し部の面積ΔSと当該矩形面積S(S=w
×hC)との比k値(=ΔS/S)を0.003以上で
0.03以下の範囲に定めることを特徴とする熱間圧延
による表面疵の少ない鋼板の製造方法。
2. When manufacturing a steel sheet by hot rolling,
The shape of the material slab is assumed to be a short shape defined by the length w of the long side and the central portion slab thickness h C that face each other in the cross section, and when this rectangle and the slab cross section are overlapped, it protrudes from the rectangle. A portion (hereinafter referred to as a protruding portion) is obtained, and the protruding portion exists at the slab edge portion, and the area ΔS of the protruding portion and the rectangular area S (S = w)
The method for producing a steel sheet with few surface defects by hot rolling, characterized in that the ratio k value (= ΔS / S) with respect to × h C ) is set in the range of 0.003 or more and 0.03 or less.
JP6222393A 1993-03-22 1993-03-22 Method for producing steel sheet with few surface defects by hot rolling Expired - Lifetime JP2863402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6222393A JP2863402B2 (en) 1993-03-22 1993-03-22 Method for producing steel sheet with few surface defects by hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6222393A JP2863402B2 (en) 1993-03-22 1993-03-22 Method for producing steel sheet with few surface defects by hot rolling

Publications (2)

Publication Number Publication Date
JPH06269804A true JPH06269804A (en) 1994-09-27
JP2863402B2 JP2863402B2 (en) 1999-03-03

Family

ID=13193943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6222393A Expired - Lifetime JP2863402B2 (en) 1993-03-22 1993-03-22 Method for producing steel sheet with few surface defects by hot rolling

Country Status (1)

Country Link
JP (1) JP2863402B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456934B1 (en) * 2001-12-11 2004-11-10 현대하이스코 주식회사 A manufacturing method of a steel sheet for preventing edge break phenomenon of a steel sheet coil
JP2008055512A (en) * 2007-10-10 2008-03-13 Sumitomo Metal Ind Ltd Continuously cast slab, and method for producing steel sheet using the same
KR101387323B1 (en) * 2011-12-16 2014-04-21 (주)포스코 Method for manufacturing stainless steel strips having low surface defect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456934B1 (en) * 2001-12-11 2004-11-10 현대하이스코 주식회사 A manufacturing method of a steel sheet for preventing edge break phenomenon of a steel sheet coil
JP2008055512A (en) * 2007-10-10 2008-03-13 Sumitomo Metal Ind Ltd Continuously cast slab, and method for producing steel sheet using the same
KR101387323B1 (en) * 2011-12-16 2014-04-21 (주)포스코 Method for manufacturing stainless steel strips having low surface defect

Also Published As

Publication number Publication date
JP2863402B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP2863402B2 (en) Method for producing steel sheet with few surface defects by hot rolling
JPH08238550A (en) Method for continuously casting steel
JP3528504B2 (en) Manufacturing method of extra thick steel plate
JP3298730B2 (en) Manufacturing method of austenitic stainless steel sheet with few surface defects
JP2863407B2 (en) Manufacturing method of stainless steel sheet with few surface defects
JP4424224B2 (en) A slab that is a material of a hot-rolled steel sheet, a method for producing the slab, a method for producing the hot-rolled steel sheet, and a method for reducing the rate of occurrence of surface flaws occurring in the hot-rolled steel sheet
JP2004058129A (en) Method for preventing surface flaw on cast slab, and its cast slab
JPH05138207A (en) Hot rolling method for reducing edge crack in grain oriented electric steel sheet
JPH06312248A (en) Slab and mold
JPH07164001A (en) Method and device for rolling steel sheet
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
JP3994852B2 (en) Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby
JP3104003B2 (en) Continuous casting method
JP3606249B2 (en) Rolling method of shape steel
JPH0924401A (en) Method for reducing surface flaw of steel sheet in hot rolling
JPH07124602A (en) Rolling method of rough billet for z-shaped steel short pile
JP4089543B2 (en) Universal rolling method for narrow flange width H-section steel
JPH0542301A (en) Manufacture of rail
JP2000140906A (en) Manufacture of ultra-heavy steel plate at extremely large reduction ratio
JP3344281B2 (en) Hot rolling method for metal sheet
JPS6150045B2 (en)
JPS63260605A (en) Method for hot rolling aluminum slab
JPH0569001A (en) Manufacture of extremely thick steel plate
JPH08243621A (en) Manufacture of hot rolled steel sheet minimized in seam flaw
JPH06312201A (en) Method and device for rolling steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981124