JPH07164001A - Method and device for rolling steel sheet - Google Patents

Method and device for rolling steel sheet

Info

Publication number
JPH07164001A
JPH07164001A JP5310412A JP31041293A JPH07164001A JP H07164001 A JPH07164001 A JP H07164001A JP 5310412 A JP5310412 A JP 5310412A JP 31041293 A JP31041293 A JP 31041293A JP H07164001 A JPH07164001 A JP H07164001A
Authority
JP
Japan
Prior art keywords
rolling
slab
width
roll
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5310412A
Other languages
Japanese (ja)
Other versions
JP3221790B2 (en
Inventor
Kenji Yamada
健二 山田
Tetsuo Takeshita
哲郎 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31041293A priority Critical patent/JP3221790B2/en
Publication of JPH07164001A publication Critical patent/JPH07164001A/en
Application granted granted Critical
Publication of JP3221790B2 publication Critical patent/JP3221790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

PURPOSE:To obtain a steel sheet which is prevented from surface flaw without imposing the restrictions on the component of a material to be rolled and inducing the increase in a special process load by making an average draft in specified sections from both ends in the width direction of a slab larger than the average draft in the section on the middle side of those sections. CONSTITUTION:In the case that the relationship between the draft in edge parts and the draft in the middle part of width must be changed in accordance with a rolling-down schedule, it is effective to enable arbitrary and independent setting of the draft in the edge parts and the draft in the middle part. For example, a rolling roll is taken as a divided rolling roll which is divided at the position in the axial direction of roll equivalent to the position of one-sixth slab width from both ends of the slab to be rolled and, with rolling-down screws and/or hydraulic cylinders which are provided at both ends of each divided roll, screw-down position is made so as to be adjustable so that the roll gap between upper and lower rolls in the edge part is smaller than that in the middle part. Then, the surface flaws are remarkably reduced and the yield of product is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延時に発生する
表面疵が少ない鋼板の製造方法、即ち鋼板の熱間圧延に
際して発生する表面疵を、圧延時の圧下率の幅方向分布
を変更することにより、減少させる圧延方法および圧延
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel sheet having few surface flaws generated during hot rolling, that is, for surface flaws generated during hot rolling of a steel sheet by changing the widthwise distribution of the rolling reduction. By doing so, the present invention relates to a rolling method and a rolling apparatus for reducing the rolling amount.

【0002】[0002]

【従来の技術】一般に、熱間圧延された鋼板のエッジ部
には表面疵が発生し易く、とりわけ熱間圧延時の微小割
れに起因するヘゲ疵と称される表面欠陥は、割れ発生後
に生成するスケールが圧延により内部に食い込み、酸洗
工程で除去されずに冷間圧延工程に供せられると圧延方
向に長い線状の欠陥となり、歩留まり低下が特に大き
い。
2. Description of the Related Art Generally, surface defects are apt to occur at the edges of hot-rolled steel sheets, and surface defects called "scarring defects" caused by microcracks during hot-rolling are particularly likely to occur after cracking. If the produced scale bites into the inside by rolling and is subjected to the cold rolling step without being removed in the pickling step, it becomes a linear defect that is long in the rolling direction, and the yield reduction is particularly large.

【0003】従って、従来より熱間圧延時の表面疵を少
なくするため様々な技術が多く考案されてきている。被
圧延材の成分系を規定する方法として、例えばオーステ
ナイト系ステンレス鋼に関する特開昭57−16153
号公報や、Mn、Sを含む鋼に関する特開平3−294
001号公報等が開示されているが、これらは成分系に
対する自由度を制限するものであり、一般性を有するも
のではない。
Therefore, various techniques have been devised from the past in order to reduce surface defects during hot rolling. As a method of defining the component system of the material to be rolled, for example, Japanese Patent Laid-Open No. 57-16153 relating to austenitic stainless steel.
Japanese Patent Publication No. 3-294 related to steel containing Mn and S
Although the publication No. 001 and the like are disclosed, these limit the degree of freedom for the component system and are not general.

【0004】また、特公昭55−50723号公報、特
開平2−15806号公報等ではスラブの表面欠陥(ピ
ンホール)を手入れ除去してヘゲ疵発生を無くする技術
が開示されている。しかしこの技術では手入れ除去の工
程が不可欠であり、かつこれが十分でない場合には割れ
の起点となるスラブ表面欠陥が残存することになり、熱
間圧延後に微小な割れを生じさせてしまう。
Further, Japanese Patent Publication No. 55-50723 and Japanese Patent Application Laid-Open No. 2-15806 disclose a technique for removing surface defects (pinholes) on a slab by maintenance so as to eliminate the occurrence of bald spots. However, in this technique, a step of care removal is indispensable, and if it is not sufficient, a slab surface defect that becomes a starting point of cracking will remain, and minute cracks will occur after hot rolling.

【0005】疵発生をスラブ形状で少なくする技術とし
て、特開昭58−138502号公報および特開平3−
207551号公報が挙げられる。両者ともスラブ短辺
中央部を窪ませ、短片近傍(直近)の幅広がり(幅方向
メタルフロー)を抑えることによりステンレス鋼のエッ
ジシーム疵を低減させる技術を開示している。しかしな
がら、スラブ短片C断面(鋳造方向に直交する断面)形
状変更の効果が現れるのはエッジ直近に限られるもので
あり、熱間圧延時の表面の微小割れが比較的広範囲に生
じるような場合には対応できない。
As a technique for reducing the occurrence of flaws in the shape of a slab, Japanese Patent Laid-Open No. 58-138502 and Japanese Patent Laid-Open No. 3-138502.
No. 207551 is cited. Both of them disclose a technique of reducing the edge seam flaw of stainless steel by recessing the central part of the short side of the slab and suppressing the width spread (metal flow in the width direction) in the vicinity (nearest) of the short piece. However, the effect of changing the shape of the cross section of the slab short piece C (cross section orthogonal to the casting direction) appears only near the edge, and when micro-cracks on the surface during hot rolling occur in a relatively wide range. Cannot handle.

【0006】[0006]

【発明が解決しようとする課題】本発明は熱間圧延時に
発生する微小割れを防止するに当たり、被圧延材の成分
に関する制約や、特段の工程負荷の増大を来すことなく
表面疵発生を防止した鋼板を得ることができる圧延方法
とその装置を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention prevents the occurrence of surface flaws in preventing microcracks that occur during hot rolling without restricting the composition of the material to be rolled or increasing the process load. It is an object of the present invention to provide a rolling method and an apparatus therefor capable of obtaining a rolled steel sheet.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するため、スラブを熱間圧延する際の圧下率の幅方向
分布を規定することで圧延中にスラブ内部に発生する圧
延方向応力状態を調整し、割れの原因であるエッジ近傍
の張力発生を抑えることにより微小割れを防止すること
を特徴とする。その要旨とするところは、図1に示すよ
うに、スラブを熱間圧延するに際し、該スラブのエッジ
部、つまり幅方向において両端から該スラブ幅の1/6
の区間の平均圧下率re を、幅中央部、つまりエッジ部
より幅中央寄りの区間の平均圧下率rc より大きくする
ことであり、更には、該スラブのエッジ部の平均圧下率
e を、幅中央部の平均圧下率rc に比べ1.05〜
1.4倍となるよう圧延すること、あるいはまた、該ス
ラブのエッジ部の平均圧下率re を、幅中央部の平均圧
下率rc との関係が下記(1)式となるよう圧延するこ
とである。 (re −rc )/(1−re )=β×rc k (1) ここで、βは正の定数、kは1.5〜2.0の定数。
In order to achieve the above object, the present invention defines a rolling direction stress generated inside a slab during rolling by defining a distribution in the width direction of a rolling reduction during hot rolling of the slab. It is characterized in that fine cracks are prevented by adjusting the state and suppressing the generation of tension near the edges, which is the cause of cracking. As shown in FIG. 1, when the slab is hot-rolled, the gist thereof is 1/6 of the slab width from the edges of the slab, that is, both ends in the width direction.
The average rolling reduction r e of the section is made larger than the average rolling reduction r c of the width center portion, that is, the section closer to the width center than the edge portion, and further, the average rolling reduction r e of the edge portion of the slab. Is 1.05 compared with the average rolling reduction r c in the width center part.
The rolling is performed so that it becomes 1.4 times, or alternatively, the average rolling reduction r e at the edge portion of the slab is rolled so that the relationship with the average rolling reduction r c at the width center portion becomes the following formula (1). That is. (R e -r c) / ( 1-r e) = β × r c k (1) where, beta is a positive constant, k is a constant of 1.5 to 2.0.

【0008】また、図2(a)に示すように、スラブの
エッジ部、および幅中央部の各々について、両区間を減
厚する圧延ロール軸方向各区間の内、エッジ部を減厚す
る区間におけるロール半径が幅中央部を減厚する区間に
おけるロール半径より大きいロールを有する圧延装置、
もしくは同図(b)に示すような、スラブの幅方向にお
いて両端から該スラブ幅の1/6位置に相当するロール
軸方向位置で分割した圧延ロールと、各々の該分割圧延
ロール両端に設置したスクリュウおよび/もしくは油圧
シリンダによる圧下位置調整機構を有し、かつ該分割圧
延ロールの内、該スラブのエッジ部を減厚する分割圧延
ロールが幅中央部を減厚する分割ロールよりも圧下率を
大きくする側に位置する圧延装置である。
Further, as shown in FIG. 2 (a), with respect to each of the edge portion and the width center portion of the slab, of the sections in the axial direction of the rolling roll in which both sections are reduced in thickness, sections in which the edge portion is reduced in thickness Rolling apparatus having a roll larger than the roll radius in the section where the roll radius in the width central part is reduced,
Alternatively, as shown in FIG. 3B, rolling rolls divided from both ends in the width direction of the slab at roll axial direction positions corresponding to 1/6 position of the slab width and installed on both ends of each of the divided rolling rolls. Among the divided rolling rolls, a divided rolling roll having a screw position and / or a hydraulic cylinder for adjusting a rolling position and having a reduced thickness at the edge portion of the slab has a reduction ratio lower than that of a divided roll having a reduced thickness at the width center portion. It is a rolling mill located on the side to be enlarged.

【0009】ここで圧下率とは幅方向の任意の位置にお
ける減厚量を当該位置における圧延機入側厚さで除した
ものであり、平均圧下率とは所定の区間内での圧下率の
平均値である。平均圧下率については、所定の区間内の
平均減厚量を圧延機入側の平均厚さで除したもので近似
してもよい。
Here, the rolling reduction is the amount of reduction in thickness at any position in the width direction divided by the thickness on the rolling mill entrance side at that position, and the average rolling reduction is the rolling reduction within a predetermined section. It is an average value. The average reduction rate may be approximated by dividing the average thickness reduction amount within a predetermined section by the average thickness on the rolling mill entrance side.

【0010】[0010]

【作用】以下に本発明を詳細に説明する。本発明者らは
熱間圧延時に発生する疵の形態・頻度と圧下率の幅方向
分布との関係について綿密に調査し、本発明を完成した
ものである。
The present invention will be described in detail below. The present inventors have completed the present invention by thoroughly examining the relationship between the morphology / frequency of flaws generated during hot rolling and the widthwise distribution of the reduction ratio.

【0011】まず、本発明者らはスラブの熱間圧延疵発
生状況を綿密に調査した。その結果、図3に示すよう
に、発生する疵はすべてC方向割れ(圧延方向に直角方
向の割れ)であり、かつその発生頻度はスラブエッジに
近くなるほど高くなることが判った。また、そのサイズ
はC方向に0.1〜2mm程度で深さ0.1mm程度の微小
な割れで粗熱延の第1パス後に集中して現れ、その後の
熱延や冷延等の圧延工程によりL方向(圧延方向)に伸
張され、最終製品板で表面品位を致命的に劣化させるヘ
ゲ疵等になることを確認した。
First, the inventors of the present invention have scrutinized the occurrence of hot rolling defects in slabs. As a result, as shown in FIG. 3, it was found that all the flaws that were generated were cracks in the C direction (cracks in the direction perpendicular to the rolling direction), and the frequency of occurrence was higher as the edge was closer to the slab edge. In addition, the size of the cracks is 0.1 to 2 mm in the C direction and 0.1 mm in depth, and the cracks are concentrated and appear after the first pass of rough hot rolling, and the subsequent rolling process such as hot rolling or cold rolling. It was confirmed that the resulting product was stretched in the L direction (rolling direction), resulting in a bald flaw or the like that fatally deteriorates the surface quality of the final product plate.

【0012】本発明者らは上記実験事実、特に微小割れ
はすべてC方向に割れることに注目し、圧延時にスラブ
内部に発生する圧延方向の張力が割れ発生、即ち製品の
表面疵発生の主因であると推定した。この圧延方向張力
の発生は、スラブ幅中央近傍の材料とエッジ近傍の材料
の圧延方向のメタルフローの差で大略説明できる。即
ち、スラブエッジ近傍では圧延時に容易に幅広がりが生
じ、圧延方向へのメタルフロー量が幅中央近傍に比較し
て小さくなり、エッジ近傍の材料が幅中央近傍の材料に
より相対的に引き伸ばされるため、エッジ近傍に圧延方
向の張力が発生する。
The present inventors have paid attention to the above experimental facts, particularly that all microcracks are cracked in the C direction, and the tension in the rolling direction generated inside the slab during rolling is the main cause of cracking, that is, surface flaws of the product. Presumed to be. The generation of the tension in the rolling direction can be roughly explained by the difference in the metal flow in the rolling direction between the material near the center of the slab width and the material near the edge. That is, the width easily expands near the slab edge during rolling, the amount of metal flow in the rolling direction becomes smaller than that near the width center, and the material near the edge is relatively stretched by the material near the width center. , Tension in the rolling direction is generated near the edge.

【0013】しかしながら、このような定性的な解釈で
は、疵発生機構の詳細な検討および本発明のような疵発
生防止策の発案は成し得ない。そこで本発明者らは、三
次元剛塑性有限要素法によりこの圧延方向応力の解析を
行い、以下の知見を得た。
However, with such a qualitative interpretation, detailed examination of the flaw generation mechanism and proposal of the flaw occurrence prevention measure as in the present invention cannot be made. Therefore, the present inventors analyzed the stress in the rolling direction by the three-dimensional rigid-plastic finite element method and obtained the following findings.

【0014】圧延中にスラブ内部に発生する圧延方向応
力(引張を正)は、図4に示すように、幅方向にほぼ放
物線状に分布し、幅中央からエッジに向かって圧縮から
引張に変化する。張力が発生する領域はエッジから約1
/6幅の部分であり、エッジ直近で最大となる。また、
いわゆるスラブのサイズ(板厚/板幅≧約0.1)であ
ればこの傾向は変わらない。これら知見の内、張力発生
域の幅については以下のように理解される。スラブの単
スタンド圧延では圧延方向応力の幅方向の総和はゼロで
あり、即ち圧延方向応力の幅方向平均値はゼロとなる。
ここで、圧延方向応力の分布を放物線(2次曲線)とす
れば、平均値を与える幅方向位置は幅中央から1/(2
×31/2 )幅、即ちエッジから(3−31/2 )/6=
1.268/6幅の点であり、上述したエッジから約1
/6幅の部分で張力が発生するとの結果が理解される。
The stress in the rolling direction (positive tension) generated inside the slab during rolling is distributed in a substantially parabolic shape in the width direction as shown in FIG. 4, and changes from compression to tension from the width center to the edge. To do. The area where tension is generated is about 1 from the edge.
It is a / 6 width portion, and becomes maximum near the edge. Also,
If the so-called slab size (plate thickness / plate width ≧ about 0.1), this tendency does not change. Of these findings, the width of the tension generation region is understood as follows. In single-stand rolling of a slab, the total stress in the rolling direction in the width direction is zero, that is, the average value of the stress in the rolling direction in the width direction is zero.
Here, if the distribution of stress in the rolling direction is a parabola (quadratic curve), the position in the width direction that gives the average value is 1 / (2
× 3 1/2 ) width, that is, (3-3 1/2 ) / 6 = from the edge
1.268 / 6 wide point, about 1 from the above edge
The result that tension is generated in the / 6 width portion is understood.

【0015】この圧延方向応力分布は図3の疵発生状況
と良く対応するものであり、圧延方向に高い張力が生じ
た部位に疵(割れ)が集中して発生することを示してい
る。このことは、圧延中にエッジ近傍に生じるスラブ内
部の圧延方向の張力を減じさせ得れば、本質的に疵発生
を抑えることが可能なことを意味している。
This stress distribution in the rolling direction corresponds well to the situation of flaw generation in FIG. 3, and indicates that flaws (cracks) are concentrated and occur at the portions where high tension is generated in the rolling direction. This means that if the tension in the rolling direction inside the slab that occurs near the edge during rolling can be reduced, the occurrence of flaws can be essentially suppressed.

【0016】圧延方向応力の幅方向分布は、前述したよ
うにマクロ的には幅方向メタルフローに伴う幅中央近傍
とエッジ近傍での圧延方向延伸の差(以下延伸差と略
す)で理解し得るものであり、言い換えれば、エッジ近
傍の圧下率を大きくするような圧下率の幅方向分布を与
えれば、エッジ近傍に生じる張力を低減させ得るものと
考えられる。しかしながら、どのような圧下率分布とす
れば張力発生を効果的に抑えられるかについては明らか
ではない。
As described above, the distribution of the stress in the rolling direction in the width direction can be understood macroscopically from the difference in the drawing in the rolling direction between the vicinity of the width center and the edge along with the widthwise metal flow (hereinafter referred to as the drawing difference). In other words, it is considered that the tension generated in the vicinity of the edge can be reduced by providing a widthwise distribution of the reduction ratio that increases the reduction ratio near the edge. However, it is not clear what kind of rolling reduction distribution can effectively suppress the generation of tension.

【0017】そこで本発明者らは前述した三次元有限要
素法により、この圧下率分布の検討を行った。その結
果、図5の破線に示すように、圧下率を大きくする範囲
を必要以上に広くすると、エッジ近傍の張力は低下する
反面その反作用、即ち前述したように圧延方向応力の幅
方向の総和がゼロとなるべくエッジ近傍での張力低下と
同量の幅中央近傍での張力増加が生じることとなり、幅
中央寄りの張力増大が顕著になり、幅中央での割れ発生
が懸念されるため、圧下率を大きくする範囲としては、
同図中の一点鎖線に示すように、エッジからスラブ幅の
1/6までの区間、即ち本発明で定義したエッジ部が適
当であることが先ず判明した。
Therefore, the present inventors examined this rolling reduction distribution by the above-mentioned three-dimensional finite element method. As a result, as shown by the broken line in FIG. 5, when the range for increasing the rolling reduction is unnecessarily widened, the tension in the vicinity of the edge decreases, but the reaction, that is, the sum of the rolling direction stresses in the width direction as described above. As much as possible, the tension decrease near the edge and the tension increase near the width center occur as much as possible, and the tension increase near the width center becomes remarkable and cracks may occur in the width center. The range of increasing
As shown by the alternate long and short dash line in the figure, it was first found that the section from the edge to 1/6 of the slab width, that is, the edge portion defined in the present invention is suitable.

【0018】更に、図6に示すように、張力低減の効果
はエッジ部の圧下率増加のパターン(図6中、一点鎖線
は直線型、破線は飽和型、点線は加速型)にはそれほど
依存せず、エッジ部の平均圧下率(図6では何れの線種
もエッジ部平均圧下率re は0.07)でほぼ決まる。
また、エッジ部の平均圧下率re とこれより幅中央寄り
の区間、即ち幅中央部の平均圧下率rc の比α(=re
/rc 、以下圧下率比と略す)と、スラブ内部に生じる
張力分布の関係を求めた図7から判るように、エッジ部
の平均圧下率が幅中央部の平均圧下率に比べ、概ね1.
05〜1.4倍の範囲であれば幅中央部に顕著な張力増
加を来さずにエッジ部の張力を低減できることを知見し
た。エッジ部平均圧下率の設定範囲については、幅中央
部の平均圧下率に比べ1.05倍未満ではエッジ部の張
力低減による微小割れ発生防止効果が十分でなく、また
1.4倍超では幅中央部の張力が増加し、幅中央部での
微小割れ発生が問題となるため、上記範囲とすることが
好ましい。
Further, as shown in FIG. 6, the effect of reducing the tension depends to a large extent on the pattern of increasing the draft of the edge portion (in FIG. 6, the one-dot chain line is straight line, the broken line is saturated type, and the dotted line is acceleration type). However, the average reduction rate of the edge portion (in FIG. 6, the average reduction rate r e of the edge portion is 0.07 in any of the line types in FIG. 6) is substantially determined.
Further, the ratio α (= r e of the average rolling reduction r e of the edge portion and the average rolling reduction r c of the section closer to the width center, that is, the width rolling center portion.
/ R c , hereinafter abbreviated as a ratio of reduction ratio) and the distribution of tension generated inside the slab, as can be seen from FIG. 7, the average reduction ratio of the edge portion is about 1 compared to the average reduction ratio of the width center portion. .
It was found that the tension at the edge portion can be reduced without causing a remarkable tension increase in the width center portion within the range of 05 to 1.4 times. Regarding the setting range of the average rolling reduction ratio of the edge part, if the average rolling reduction ratio of the width center part is less than 1.05 times, the effect of preventing micro-cracking due to the tension reduction of the edge part is not sufficient, and if it exceeds 1.4 times the width. The tension in the central portion increases, and the occurrence of fine cracks in the central portion of the width becomes a problem, so the above range is preferable.

【0019】上述したように、圧下率比αを1.0超、
好ましくは1.05〜1.4の範囲に設定することで、
微小割れ発生を抑えることができる。しかしながら、通
常は同一厚さのスラブから異なる板厚の製品を作り分け
る場合が多く、圧下スケジュール、特に圧下率(幅全体
の平均圧下率 幅中央部平均圧下率rc )を大きく変更
させる場合に対応するためには、その変更に応じて圧下
率比αを適切に選択する必要がある。図8、図9、図1
0、図11に種々の幅中央部平均圧下率rc に対して圧
下率比αを変化させた場合の圧延方向張力分布を示した
が、スラブ幅のほぼ全域で張力を生じさせない、即ち最
適な張力分布を得るには、幅中央部平均圧下率rc のレ
ベルに応じて圧下率比αを選択する必要があることが判
る。前述したように、圧延方向応力の幅方向分布は、本
質的には幅方向メタルフローに伴うエッジ部の圧延方向
延伸(以下、延伸と略す)λe (=1/(1−re ))
と幅中央部の延伸λc (=1/(1−rc ))の差(以
下、延伸差と略す)で理解されるものである。そこで、
延伸差の程度を表す指標として(2)式に示す延伸差率
γを定義し、図8〜図11より、スラブ幅のほぼ全域で
張力を生じさせないために必要な延伸差率γと幅中央部
平均圧下率rc との関係を求め、図12を得た。 γ=(λe −λc )/λc ={(1−re )/(1−re )}−1 =(re −rc )/(1−re ) (2)
As described above, the rolling reduction ratio α exceeds 1.0,
By preferably setting the range of 1.05 to 1.4,
The generation of minute cracks can be suppressed. However, if the normal often separately formed product of different thickness from a slab of the same thickness, reduction schedule, which particularly changes rolling reduction (mean reduction ratio width central portion average reduction rate r c of the entire width) larger In order to respond, it is necessary to appropriately select the reduction ratio α according to the change. 8, 9, and 1
0, showed rolling direction tension distribution in the case of changing the rolling reduction ratio α for various width central portion average reduction rate r c in FIG. 11, does not cause tension in substantially the entire slab width, i.e. optimum It is understood that it is necessary to select the reduction ratio α according to the level of the average reduction ratio r c in the width center portion in order to obtain a wide tension distribution. As described above, the distribution of stress in the rolling direction in the width direction is essentially the stretching in the rolling direction of the edge portion along with the width direction metal flow (hereinafter abbreviated as stretching) λ e (= 1 / (1-r e )).
And the difference between the stretching λ c (= 1 / (1-r c )) in the width center portion (hereinafter, abbreviated as stretching difference). Therefore,
The stretching difference ratio γ shown in the equation (2) is defined as an index representing the degree of the stretching difference, and from FIGS. 8 to 11, the stretching difference ratio γ and the width center required to prevent the tension from being generated over almost the entire slab width. The relationship with the partial average rolling reduction r c was obtained, and FIG. 12 was obtained. γ = (λ e -λ c) / λ c = {(1-r e) / (1-r e)} - 1 = (r e -r c) / (1-r e) (2)

【0020】同図より、延伸差率γと幅中央部平均圧下
率rc との間には、下記(3)式の関係が成り立ち、同
式に基づいて幅中央部平均圧下率rc に応じたエッジ部
平均圧下率re を設定し、圧延すれば、圧下スケジュー
ルによらず、スラブ幅のほぼ全域にわたって引張力を発
生させない、即ち製品疵の起点となる微小割れ発生を最
も少なく抑えることが可能なことを知見した。 γ=(re −rc )/(1−re )=β×rc k (3) 上式中のβは、圧下率以外の圧延条件、例えば圧延ロー
ル径、圧延前のスラブ厚、スラブ幅、鋼種等によって定
まる正の定数である。また累乗数kは1.5〜2.0の
定数(図12中、実線はk=2.0、破線はk=1.5
の曲線を表す)であり、圧下率rc の変更範囲内で一定
値を用いてもよいし、該圧下率変更範囲を区間分割し、
各区間毎に数値を変更してもよい。
From the figure, the following difference (3) is established between the drawing difference ratio γ and the average width reduction ratio c in the width center portion, and the average reduction ratio r c in the width center portion is calculated based on the formula (3). By setting the average edge portion reduction ratio r e according to the rolling and rolling, regardless of the rolling schedule, tensile force is not generated over almost the entire area of the slab width, that is, the generation of microcracks that are the starting point of product defects is suppressed to the minimum. It was found that γ = (r e −r c ) / (1−r e ) = β × r c k (3) β in the above formula is a rolling condition other than the reduction ratio, for example, a rolling roll diameter, a slab thickness before rolling, It is a positive constant determined by the slab width, steel type, etc. The exponentiation factor k is a constant of 1.5 to 2.0 (in FIG. 12, the solid line is k = 2.0 and the broken line is k = 1.5.
Of the rolling reduction ratio r c , a constant value may be used within the changing range of the rolling reduction ratio r c , or the rolling reduction ratio changing range is divided into sections.
The numerical value may be changed for each section.

【0021】本発明を実施するための圧延装置として
は、即ち、スラブの熱間圧延時の圧下率分布をエッジ部
で大きく、幅中央部で小さく設定する圧延装置として
は、下記が考えられる。
As a rolling apparatus for carrying out the present invention, that is, as a rolling apparatus in which the rolling reduction distribution during hot rolling of a slab is set to be large at the edge portion and small at the width center portion, the following can be considered.

【0022】まず、図2(a)に示すような、スラブエ
ッジ部を減厚する区間におけるロール半径が幅中央部を
減厚する区間におけるロール半径より大きいロールを用
いる圧延装置である。ロール半径の設定は、例えば、幅
中央部を減厚する区間については通常用いる半径とし、
エッジ部を減厚する区間については、所望の圧下率分布
から幅中央部平均圧下率を差し引いた値(分布)にスラ
ブ厚/2を乗じたものをロール半径の分布とすればよ
い。また、圧下スケジュールに応じてエッジ部圧下率と
幅中央部圧下率の関係を変更しなければならない場合に
は、エッジ部圧下率と幅中央部圧下率を任意かつ独立に
設定可能にすればよい。例えば、同図(b)に示すよう
に、圧延ロールを被圧延スラブの両端から該スラブ幅の
1/6位置に相当するロール軸方向位置で分割した圧延
ロールとし、各々の分割ロール両端に設置した圧下スク
リュウおよび/もしくは油圧シリンダにより、エッジ部
の上下ロール間隙が幅中央部よりも小さくなるように圧
下位置調整可能とした圧延装置である。分割ロールの圧
下位置調整量については、所望の圧下率分布と、スラブ
厚さに従って決定されることは言うまでもない。
First, as shown in FIG. 2 (a), the rolling apparatus uses a roll having a roll radius larger than the roll radius in the section where the slab edge portion is reduced in thickness and the width center portion is reduced in thickness. The roll radius is set, for example, as the radius that is normally used for the section where the width center part is reduced,
For the section in which the thickness of the edge portion is reduced, a value obtained by subtracting the average rolling reduction at the width center portion from the desired rolling reduction distribution (distribution) multiplied by the slab thickness / 2 may be used as the roll radius distribution. Further, when the relationship between the edge reduction ratio and the width center reduction ratio must be changed according to the reduction schedule, the edge reduction ratio and the width center reduction ratio can be set arbitrarily and independently. . For example, as shown in FIG. 2B, rolling rolls are divided from both ends of the slab to be rolled at a roll axial position corresponding to 1/6 position of the slab width, and the rolling rolls are installed at both ends of each divided roll. The rolling device is capable of adjusting the rolling position by using the rolling screw and / or the hydraulic cylinder so that the gap between the upper and lower rolls of the edge portion is smaller than that of the width center portion. It goes without saying that the reduction position adjustment amount of the divided rolls is determined according to the desired reduction ratio distribution and the slab thickness.

【0023】即ち、本発明の圧延方法および圧延装置に
よれば、製品疵の起点となる圧延中のスラブの表面割れ
発生に直接関係する圧延方向応力(張力)を効果的に低
減可能なことがわかる。本発明では、スラブ幅中央部か
らスラブ最エッジまでの圧下率分布の形状については特
に規定しないが、不連続な圧下率分布とした場合は不連
続点近傍に付加的せん断変形が集中して生じ、これに起
因した欠陥の発生が懸念されるため、滑らかな圧下率分
布とすることが望ましい。
That is, according to the rolling method and the rolling apparatus of the present invention, it is possible to effectively reduce the stress (tension) in the rolling direction which is directly related to the occurrence of surface cracks in the slab during rolling, which is the starting point of product defects. Recognize. In the present invention, the shape of the rolling reduction distribution from the central portion of the slab width to the slab most edge is not particularly specified, but when the rolling reduction distribution is discontinuous, additional shear deformation is concentrated near the discontinuous point. However, since there is a concern that defects due to this may occur, it is desirable to have a smooth rolling reduction distribution.

【0024】スラブの熱間圧延時の圧下率分布をエッジ
部で大きく、幅中央部で小さく設定する他の手段として
は、通常のロールを用いた水平圧延(厚み圧下圧延)パ
スの前に、所定の圧下率分布を実現するに必要な厚さ分
布を求め、竪ロールを用いたエッジング圧延によりこの
スラブ厚さ分布を形成する方法がある。以下、実施例に
即して詳細に説明する。
As another means for setting the rolling reduction distribution during hot rolling of the slab to be large at the edge portion and small at the width center portion, before the horizontal rolling (thickness rolling) pass using a normal roll, There is a method of obtaining a thickness distribution required to realize a predetermined rolling reduction distribution and forming this slab thickness distribution by edging rolling using a vertical roll. Hereinafter, detailed description will be given with reference to examples.

【0025】[0025]

【実施例】表1に示した成分のステンレス鋼を転炉にて
溶製し、厚みが165mmで幅が1250mmのスラブを鋳
造した。圧延に際しては、図13に示す2種類の圧下率
分布(一様分布および本発明による分布)を与えるため
に、半径600mmのフラット型ロールと、ロール胴幅中
央から±410mmの間のロール半径が600mmであり、
これより胴端側で放物線状に半径が増加し、かつ胴幅中
央から±625mm位置で半径602.5mmとなるエッジ
径大型ロールの2種類のロールを用いた。
EXAMPLE Stainless steel having the components shown in Table 1 was melted in a converter to cast a slab having a thickness of 165 mm and a width of 1250 mm. At the time of rolling, in order to give two kinds of reduction ratio distributions (uniform distribution and distribution according to the present invention) shown in FIG. 13, a flat roll having a radius of 600 mm and a roll radius between the center of the roll cylinder width and ± 410 mm are used. 600 mm,
Two types of rolls were used, a large edge diameter roll having a parabolic radius increase on the body end side and a radius of 602.5 mm at a position of ± 625 mm from the center of the body width.

【0026】図14に圧延温度1100℃で圧延後のス
ラブ表面割れ発生頻度の幅方向分布を示す。図から明ら
かなように、本発明の方法を適用したエッジ径大型ロー
ルを用いた場合エッジ近傍の割れ発生頻度は激減してお
り、歩留まり向上は著しく大きい。
FIG. 14 shows the widthwise distribution of the occurrence frequency of slab surface cracks after rolling at a rolling temperature of 1100 ° C. As is clear from the figure, when a large-edged roll to which the method of the present invention is applied is used, the frequency of cracks in the vicinity of the edge is drastically reduced, and the yield is significantly improved.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上詳述した様に、本発明によれば、熱
間圧延により鋼板を製造するに際し、適切な圧下率の幅
方向分布を設定し、圧延することにより、製品の表面疵
を著しく低減でき、製品歩留まりを向上できる等、産業
上裨益するところ大である。
As described in detail above, according to the present invention, when a steel sheet is manufactured by hot rolling, the width direction distribution of an appropriate reduction ratio is set and rolling is performed to prevent surface defects of the product. It is a great place to benefit industrially because it can be significantly reduced and the product yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1、2による圧下率分布の一例
を示すグラフ図。
FIG. 1 is a graph showing an example of a reduction ratio distribution according to claims 1 and 2 of the present invention.

【図2】(a)、(b)は請求項1、2に記載の圧下率
分布を実現するための圧延装置(請求項3、4)の一態
様を示す模式図。
2A and 2B are schematic views showing one embodiment of a rolling apparatus (claims 3 and 4) for realizing the rolling reduction distribution according to claims 1 and 2;

【図3】従来法による圧延後のスラブ表面の割れの分布
状態を示した模式図である。
FIG. 3 is a schematic diagram showing a distribution state of cracks on the surface of a slab after rolling by a conventional method.

【図4】従来法による圧延中のスラブ内部に生じる圧延
方向応力の幅方向分布について三次元剛塑性有限要素法
による解析結果の一例を示した図である。
FIG. 4 is a diagram showing an example of an analysis result by a three-dimensional rigid-plastic finite element method regarding a widthwise distribution of rolling direction stress generated inside a slab during rolling by a conventional method.

【図5】本発明の実施に際し、圧下率を大きくするエッ
ジ近傍区間の広さ、エッジ近傍の圧下率増加パターンお
よび平均圧下率の影響に関する知見を得るために行った
解析の結果の例を示したものである。
FIG. 5 is a diagram showing an example of results of an analysis performed to obtain knowledge about the width of an edge vicinity section for increasing the rolling reduction, a pattern of increase in rolling reduction near the edge, and the influence of the average rolling reduction when the present invention is carried out. It is a thing.

【図6】本発明の実施に際し、圧下率を大きくするエッ
ジ近傍区間の広さ、エッジ近傍の圧下率増加パターンお
よび平均圧下率の影響に関する知見を得るために行った
解析の結果の例を示したものである。
FIG. 6 is a diagram showing an example of the results of an analysis performed to obtain knowledge about the width of an edge-neighboring section that increases the rolling reduction, the pattern of increasing the rolling reduction near the edge, and the effect of the average rolling reduction when the present invention is implemented. It is a thing.

【図7】本発明の実施に際し、圧下率を大きくするエッ
ジ近傍区間の広さ、エッジ近傍の圧下率増加パターンお
よび平均圧下率の影響に関する知見を得るために行った
解析の結果の例を示したものである。
FIG. 7 is a diagram showing an example of results of an analysis performed to obtain knowledge about the width of an edge vicinity section for increasing the rolling reduction, the pattern of rolling reduction increase near the edge, and the influence of the average rolling reduction when the present invention is carried out. It is a thing.

【図8】本発明の実施に際し、圧下率を大きくするエッ
ジ近傍区間の広さ、エッジ近傍の圧下率増加パターンお
よび平均圧下率の影響に関する知見を得るために行った
解析の結果の例を示したものである。
FIG. 8 is a diagram showing an example of results of an analysis performed to obtain knowledge about an area of an edge vicinity section for increasing a rolling reduction, a pattern of rolling reduction increase near the edge, and an influence of an average rolling reduction when the present invention is carried out. It is a thing.

【図9】図8と同様の解析結果の例を示したものであ
る。
9 shows an example of analysis results similar to FIG.

【図10】図8と同様の解析結果の例を示したものであ
る。
FIG. 10 shows an example of analysis results similar to FIG.

【図11】図8と同様の解析結果の例を示したものであ
る。
FIG. 11 shows an example of analysis results similar to FIG.

【図12】本発明の実施に際し、圧下率を大きくするエ
ッジ近傍区間の広さ、エッジ近傍の圧下率増加パターン
および平均圧下率の影響に関する知見を得るために行っ
た解析の結果の例を示したものである。
FIG. 12 is a diagram showing an example of results of an analysis performed to obtain knowledge about the width of an edge vicinity section for increasing the rolling reduction, the pattern of increase in rolling reduction near the edge, and the influence of the average rolling reduction when the present invention is carried out. It is a thing.

【図13】実施例において設定した圧下率分布を示した
図である。
FIG. 13 is a diagram showing a rolling reduction ratio distribution set in an example.

【図14】実施例における圧延後のスラブ表面割れ発生
頻度について、従来法と本発明の方法の比較を行ったも
のである。
FIG. 14 is a comparison between the conventional method and the method of the present invention regarding the occurrence frequency of slab surface cracks after rolling in the examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B21B 31/20 D 37/00 BBJ 37/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B21B 31/20 D 37/00 BBJ 37/28

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 スラブを熱間圧延により減厚し、鋼板を
製造するに際し、該スラブの幅方向において両端から該
スラブ幅の1/6の区間(以下エッジ部と称する)の平
均圧下率re を、これより幅中央寄りの区間(以下幅中
央部と称する)の平均圧下率rc より大きくすることを
特徴とする鋼板の圧延方法。
1. When manufacturing a steel sheet by reducing the thickness of a slab by hot rolling, the average rolling reduction ratio r in the width direction of the slab from both ends to 1/6 of the slab width (hereinafter referred to as edge portion). A method of rolling a steel sheet, wherein e is set to be larger than an average reduction ratio r c in a section closer to the width center (hereinafter, referred to as width center portion).
【請求項2】 スラブを熱間圧延により減厚し、鋼板を
製造するに際し、該スラブのエッジ部の平均圧下率re
を、幅中央部の平均圧下率rc に比べ1.05〜1.4
倍となるようにして圧延することを特徴とする鋼板の圧
延方法。
2. A slab is thinned by hot rolling to produce a steel sheet, and an average rolling reduction ratio r e of an edge portion of the slab is manufactured.
Is 1.05 to 1.4 as compared with the average rolling reduction r c in the width center part.
A method for rolling a steel sheet, comprising rolling in a doubled manner.
【請求項3】 スラブを熱間圧延により減厚し、鋼板を
製造するに際し、該スラブのエッジ部の平均圧下率re
を、幅中央部の平均圧下率rc との関係が下式となるよ
うにして圧延することを特徴とする鋼板の圧延方法。 (re −rc )/(1−re )=β×rc k ここで、βは正の定数、kは1.5〜2.0の定数。
3. A slab is thinned by hot rolling to produce a steel sheet, and an average rolling reduction ratio r e of an edge portion of the slab is produced.
Is rolled such that the relationship with the average rolling reduction r c in the width center part is expressed by the following formula. (R e -r c) / ( 1-r e) = β × r c k Here, beta is a positive constant, k is a constant of 1.5 to 2.0.
【請求項4】 スラブのエッジ部、および幅中央部の各
々について、両区間を減厚する圧延ロール軸方向各区間
の内、エッジ部を減厚する区間におけるロール半径が幅
中央部を減厚する区間におけるロール半径より大きいロ
ールを有することを特徴とする鋼板の圧延装置。
4. A roll radius in a section in which the edge portion is thinned is reduced in the width center portion in each of the rolling roll axial direction sections in which both sections are thinned for each of the edge portion and the width center portion of the slab. A rolling device for steel sheet, which has a roll larger than the roll radius in the section.
【請求項5】 スラブの幅方向において両端から該スラ
ブ幅の1/6位置に相当するロール軸方向位置で分割し
た圧延ロールと、各々の該分割圧延ロールの両端に設置
したスクリュウおよび/もしくは油圧シリンダによる圧
下位置調整機構を有し、かつ該分割圧延ロールの内、該
スラブのエッジ部を減厚する分割ロールが幅中央部を減
厚する分割圧延ロールよりも圧下率を大きくする側に位
置することを特徴とする鋼板の圧延装置。
5. A rolling roll divided from both ends in the width direction of the slab at a roll axial position corresponding to 1/6 position of the slab width, and screws and / or hydraulic pressures installed at both ends of each divided rolling roll. It has a rolling position adjusting mechanism by a cylinder, and among the divided rolling rolls, the divided rolls that reduce the thickness of the edge portion of the slab are located on the side where the reduction ratio is larger than that of the divided rolling rolls that reduce the width center portion. A steel plate rolling apparatus characterized by being.
JP31041293A 1993-12-10 1993-12-10 Rolling method and rolling device for steel sheet Expired - Fee Related JP3221790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31041293A JP3221790B2 (en) 1993-12-10 1993-12-10 Rolling method and rolling device for steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31041293A JP3221790B2 (en) 1993-12-10 1993-12-10 Rolling method and rolling device for steel sheet

Publications (2)

Publication Number Publication Date
JPH07164001A true JPH07164001A (en) 1995-06-27
JP3221790B2 JP3221790B2 (en) 2001-10-22

Family

ID=18004955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31041293A Expired - Fee Related JP3221790B2 (en) 1993-12-10 1993-12-10 Rolling method and rolling device for steel sheet

Country Status (1)

Country Link
JP (1) JP3221790B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222882A (en) * 2006-02-22 2007-09-06 Nisshin Steel Co Ltd Method for reducing surface flaw in hot rolling
CN106180332A (en) * 2015-05-27 2016-12-07 蒂森克虏伯钢铁欧洲股份公司 The equipment processed for the edge of the non-cutting formula of sheet material and method
CN114082784A (en) * 2021-11-11 2022-02-25 太原理工大学 Self-adaptive device for inhibiting rolling edge crack of magnesium alloy plate and rolling method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721855B2 (en) * 2005-10-03 2011-07-13 日新製鋼株式会社 Method for reducing surface defects in hot rolling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222882A (en) * 2006-02-22 2007-09-06 Nisshin Steel Co Ltd Method for reducing surface flaw in hot rolling
CN106180332A (en) * 2015-05-27 2016-12-07 蒂森克虏伯钢铁欧洲股份公司 The equipment processed for the edge of the non-cutting formula of sheet material and method
CN114082784A (en) * 2021-11-11 2022-02-25 太原理工大学 Self-adaptive device for inhibiting rolling edge crack of magnesium alloy plate and rolling method

Also Published As

Publication number Publication date
JP3221790B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
EP1637243B1 (en) Method for manufacturing of stainless steel strips
JPH07164001A (en) Method and device for rolling steel sheet
JPH06312201A (en) Method and device for rolling steel sheet
JPH06312248A (en) Slab and mold
JP3344281B2 (en) Hot rolling method for metal sheet
JP3401429B2 (en) Plate rolling method
JP2863402B2 (en) Method for producing steel sheet with few surface defects by hot rolling
JP2786557B2 (en) Anvil for width pressing of hot slab
JP3595369B2 (en) Method for producing austenitic stainless steel sheet with excellent surface quality
JP3298730B2 (en) Manufacturing method of austenitic stainless steel sheet with few surface defects
JPH0254404B2 (en)
JP3156568B2 (en) Cold rolling method
JPH0924401A (en) Method for reducing surface flaw of steel sheet in hot rolling
JP2519103B2 (en) Cold rolling method for electrical steel sheet
JP2758753B2 (en) Vertical roll for hot rolling and width rolling method using this roll
JPH0815640B2 (en) Method for manufacturing austenitic stainless steel strip
JPH0938704A (en) Method for hot-rolling stainless steel plate reducing surface flaw
JP3265977B2 (en) Hot finish rolling method for hot rolled steel strip
JPH0324281B2 (en)
JPH0687005A (en) Cold rolling method
JP2863407B2 (en) Manufacturing method of stainless steel sheet with few surface defects
JP2004025272A (en) Continuously cast slab and method of producing steel sheet using the same
JP2505188B2 (en) Hot rolling method for stainless steel sheet
JPH06218510A (en) Method for continuously casting steel
JP3056466B2 (en) Anvil for stainless steel slab width press

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

LAPS Cancellation because of no payment of annual fees