JPH06312248A - Slab and mold - Google Patents

Slab and mold

Info

Publication number
JPH06312248A
JPH06312248A JP10332593A JP10332593A JPH06312248A JP H06312248 A JPH06312248 A JP H06312248A JP 10332593 A JP10332593 A JP 10332593A JP 10332593 A JP10332593 A JP 10332593A JP H06312248 A JPH06312248 A JP H06312248A
Authority
JP
Japan
Prior art keywords
slab
width
thickness
rolling
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10332593A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
健二 山田
Tetsuo Takeshita
哲郎 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10332593A priority Critical patent/JPH06312248A/en
Publication of JPH06312248A publication Critical patent/JPH06312248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrain the development of surface crack at the time of rolling a slab and to reduce the surface flaw on a product. CONSTITUTION:In this slab, the thickness in the spans of 1/6 width from both ends in the width direction of the slab is thicker than the average thickness in the span near the center of the width direction from the above spans. Further, the average thickness H<e> in the spans of 1/6 width from the both ends of the slab is made to be the thickness calculated in the following inequality by using the average thickness H<c> in the span near the center of the width direction from the above spans. H<e>=alpha(H<c>-h)+h. Wherein, 1.1<=alpha<=1.4, h: slab thickness after hot rolling. Further, a mold, to which related to the gap between the inner walls of the cross section thereof crossing at the right angle in the casting direction, the gap between the inner walls of the mold corresponding to the slab thickness in the spans from the both ends in the width direction to the 1/6 width of the cast slab is larger than the average value of the gap between the inner walls in the thickness direction in the span near the center of the width from the above spans, is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼板の製造のため熱間
圧延に供するスラブを製造するに際し、熱間圧延時に発
生する表面疵の低減を可能とするスラブおよび鋳型に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slab and a mold capable of reducing surface defects generated during hot rolling when manufacturing a slab to be subjected to hot rolling for manufacturing a steel sheet.

【0002】[0002]

【従来の技術】一般に熱間圧延された鋼板のエッジ部に
は表面疵が発生し易く、取り分け、熱間圧延時の微小割
れに起因するヘゲ疵と称される表面欠陥は、割れ発生後
に生成するスケールが圧延により内部に食い込み、酸洗
工程で除去されずに冷間圧延工程に供せられると圧延方
向に長い線状の欠陥となり、歩留まり低下が特に大き
い。
2. Description of the Related Art Generally, surface defects are apt to occur at the edges of hot-rolled steel sheets, and surface defects called "scarring flaws" caused by micro-cracks during hot rolling are particularly If the produced scale bites into the inside by rolling and is subjected to the cold rolling step without being removed in the pickling step, it becomes a linear defect that is long in the rolling direction, and the yield reduction is particularly large.

【0003】従って従来より熱間圧延時の表面疵を少な
くするため様々な技術が多く考案されてきている。被圧
延材の成分系を規定する方法として、例えばオーステナ
イト系ステンレス鋼に関する特開昭57−16153号
や、Mn、Sを含む鋼に関する特開平3−294001
号等が開示されているが、これらは成分系に対する自由
度を制限するものであり、一般性を有するものではな
い。また、特公昭55−50723号、特開平2−15
806号等ではスラブの表面欠陥(ピンホール)を手入
れ除去してヘゲ疵発生を無くする技術が開示されてい
る。しかしこの技術では手入れ除去の工程が不可欠であ
り、かつこれが十分でない場合には割れの起点となるス
ラブ表面欠陥が残存することになり、熱間圧延後に微小
な割れを生じさせてしまう。
Therefore, various techniques have been devised from the prior art in order to reduce surface defects during hot rolling. As a method of defining the component system of the material to be rolled, for example, JP-A-57-16153 for austenitic stainless steel and JP-A-3-294001 for steel containing Mn and S.
However, these limit the degree of freedom for the component system and are not general. In addition, Japanese Examined Patent Publication No. 55-50723, JP-A No. 2-15
No. 806 and the like disclose a technique for removing surface defects (pinholes) on a slab by caring for them to eliminate the occurrence of bald spots. However, in this technique, a process of care removal is indispensable, and if it is not sufficient, a slab surface defect that is a starting point of cracking will remain, and minute cracks will occur after hot rolling.

【0004】また疵発生をスラブ形状で少なくする技術
として、特開昭58−138502号及び特開平3−2
07551号が挙げられる。両者ともスラブ短辺中央部
を窪ませ、短片近傍(直近)の幅広がり(幅方向メタル
フロー)を抑えることによりステンレス鋼のエッジシー
ム疵を低減させる技術を開示している。しかしながら、
スラブ短片C断面(鋳造直角方向断面)形状変更の効果
が現れるのはエッジ直近に限られるものであり、熱間圧
延時の表面の微小割れが比較的広範囲に生じるような場
合には対応できない。
Further, as a technique for reducing the occurrence of flaws in a slab shape, JP-A-58-138502 and JP-A-3-2 are known.
No. 07551 is mentioned. Both of them disclose a technique of reducing the edge seam flaw of stainless steel by recessing the central part of the short side of the slab and suppressing the width spread (metal flow in the width direction) in the vicinity (nearest) of the short piece. However,
The effect of changing the shape of the C section of the slab short piece (cross section in the direction perpendicular to the casting) appears only in the vicinity of the edge, and it is not possible to deal with the case where microcracks on the surface during hot rolling occur in a relatively wide range.

【0005】鋳型の断面形状に関する従来技術として特
公昭61−43133が挙げられる。しかしながら、こ
の技術は、鋳型の断面形状(鋳片上下面の幅)を変更
し、連続鋳造機の鋳片矯正時に鋳片上面側に生じる引張
応力を軽減することにより、矯正時に発生する割れを抑
制するものであり、後工程である熱間圧延時の割れを防
止できるものではない。
Japanese Patent Publication No. 61-43133 is known as a conventional technique relating to the cross-sectional shape of a mold. However, this technology reduces cracks that occur during straightening by changing the cross-sectional shape of the mold (width of the upper and lower surfaces of the slab) and reducing the tensile stress that occurs on the upper surface of the slab when straightening the slab of a continuous casting machine. However, it cannot prevent cracking during hot rolling which is a post-process.

【0006】[0006]

【発明が解決しようとする課題】本発明は、熱間圧延時
に発生する表面欠陥を改善するに当たり、被圧延スラブ
の成分に関する制約や、特段の工程負荷増なく、鋼板の
表面疵を改善し得るスラブおよび鋳型を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention is capable of improving surface defects of a steel sheet in improving surface defects that occur during hot rolling without restricting the composition of the slab to be rolled or increasing the process load. It is intended to provide slabs and molds.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するため、スラブ厚さの幅方向分布(以下厚さ分布と
略す)を規定することで圧延中にスラブ内部に発生する
圧延方向応力状態を調整し、割れの原因であるエッジ近
傍の張力発生を抑えることにより微小割れを防止するこ
とを特徴とする。その要旨とするところは、(1)図1
(a)に示すように、スラブの幅方向において両端から
該スラブ幅の1/6の区間の厚さを、これより幅中央寄
りの区間の平均厚さより大きくすることであり、また、
(2)該スラブの幅方向において両端から該スラブ幅の
1/6の区間の平均厚さHe を、これより幅中央寄りの
区間の平均厚さHc を用いた下式により算出される量と
することである。 He =α(Hc −h)+h ここで、1.1≦α≦1.4、hは熱間圧延後のスラブ
厚さ 更に、(3)図1(b)に示すような、鋳造方向に直交
する断面内でスラブの厚さ方向の鋳型の内壁間隙(以下
内壁間隙と略す)に関し、幅方向両端から鋳造スラブ幅
の1/6までの区間のスラブ厚さに相当する内壁間隙
が、これより幅中央寄りの区間の内壁間隙の平均値に比
して大きいことを特徴とする鋳型にある。
In order to achieve the above-mentioned object, the present invention defines a width direction distribution of slab thickness (hereinafter abbreviated as thickness distribution) so that the rolling direction generated inside the slab during rolling. It is characterized in that fine cracks are prevented by adjusting the stress state and suppressing the generation of tension near the edges, which is the cause of cracking. The main points are (1) Figure 1
As shown in (a), the thickness of a section of 1/6 of the slab width from both ends in the width direction of the slab is made larger than the average thickness of the section closer to the center of the width, and
(2) an average thickness H e from both ends in the width direction of the slab of 1/6 of the slab width section is calculated by the following equation using from the average thickness H c of the width inboard section which It is to be a quantity. H e = α (H c -h ) + h where, 1.1 ≦ α ≦ 1.4, h is further slab thickness after hot rolling, (3) as shown in FIG. 1 (b), casting Regarding the inner wall gap of the mold in the thickness direction of the slab (hereinafter abbreviated as the inner wall gap) in the cross section orthogonal to the direction, the inner wall gap corresponding to the slab thickness in the section from both widthwise ends to 1/6 of the cast slab width is The mold is characterized in that it is larger than the average value of the inner wall gap in the section closer to the width center than this.

【0008】[0008]

【作用】以下に本発明を詳細に説明する。本発明者らは
熱間圧延時に発生する疵の形態・頻度と被圧延スラブの
厚さ分布との関係に付いて綿密に調査し、本発明を完成
したものである。
The present invention will be described in detail below. The present inventors have completed the present invention by scrutinizing the relationship between the morphology / frequency of flaws generated during hot rolling and the thickness distribution of the slab to be rolled.

【0009】まず、本発明者らはスラブの熱間圧延疵発
生状況を綿密に調査した。その結果、図2に示すよう
に、発生する疵はすべてC方向割れ(圧延方向に直角方
向の割れ)であり、かつその発生頻度はスラブエッジに
近くなるほど高くなることが判った。また、そのサイズ
はC方向に0.1〜2mm程度で深さ0.1mm程度の微小
な割れで粗熱延の第1パス後に集中して現れ、その後の
熱延や冷延等の圧延工程によりL方向(圧延方向)に伸
張され、最終製品板で表面品位を致命的に劣化させるヘ
ゲ疵等になることを確認した。
First, the inventors of the present invention have scrutinized the occurrence of hot rolling flaws in slabs. As a result, as shown in FIG. 2, it was found that all the flaws that were generated were C-direction cracks (cracks in the direction perpendicular to the rolling direction), and the frequency of occurrence was higher the closer to the slab edge. In addition, the size of the cracks is 0.1 to 2 mm in the C direction and 0.1 mm in depth, and the cracks are concentrated and appear after the first pass of rough hot rolling, and the subsequent rolling process such as hot rolling or cold rolling. It was confirmed that the resulting product was stretched in the L direction (rolling direction), resulting in a bald flaw or the like that fatally deteriorates the surface quality of the final product plate.

【0010】本発明者らは上記実験事実、特に微小割れ
はすべてC方向に割れることに注目し、圧延時にスラブ
内部に発生する圧延方向の張力が割れ発生、即ち製品の
表面疵発生の主因であると推定した。この圧延方向張力
の発生は、スラブ幅中央部とエッジ部の圧延方向のメタ
ルフローの差で大略説明できる。即ち、スラブエッジ部
では圧延時に容易に幅広がりが生じ、圧延方向へのメタ
ルフロー量が中央部に比較して小さくなり、エッジ部の
材料が中央部の材料により相対的に引き伸ばされるた
め、エッジ部に圧延方向の張力が発生する。
The present inventors have paid attention to the above experimental facts, particularly that all microcracks are cracked in the C direction, and the tension in the rolling direction generated inside the slab during rolling causes cracking, that is, the main cause of surface flaws on the product. Presumed to be. The generation of the tension in the rolling direction can be roughly explained by the difference in the metal flow in the rolling direction between the central portion of the slab width and the edge portion. That is, the width of the slab edge portion is easily widened during rolling, the amount of metal flow in the rolling direction is smaller than that in the central portion, and the material of the edge portion is relatively stretched by the material of the central portion. Tension in the rolling direction is generated in the part.

【0011】しかしながら、このような定性的な解釈で
は、疵発生機構の詳細な検討および本発明のような疵発
生防止策の評価は成し得ない。そこで本発明者らは、三
次元剛塑性有限要素法によりこの圧延方向応力の解析を
行い、以下の知見を得た。
However, with such a qualitative interpretation, detailed examination of the flaw generation mechanism and evaluation of the flaw prevention measures as in the present invention cannot be achieved. Therefore, the present inventors analyzed the stress in the rolling direction by the three-dimensional rigid-plastic finite element method and obtained the following findings.

【0012】圧延中にスラブ内部に発生する圧延方向応
力(引張を正)は、図3に示すように、幅方向にほぼ放
物線状に分布し、幅中央からエッジに向かって圧縮から
引張に変化する。張力が発生する領域はエッジから約1
/6幅の部分であり、エッジ近傍で最大となる。また、
いわゆるスラブのサイズ(板厚/板幅≧約0.1)であ
ればこの傾向は変わらない。これら知見の内、張力発生
域の幅については以下のように理解される。スラブの単
スタンド圧延では圧延方向応力の幅方向の総和はゼロで
あり、即ち圧延方向応力の幅方向平均値はゼロとなる。
ここで、圧延方向応力の分布を放物線(2次曲線)とす
れば、平均値を与える幅方向位置は幅中央から1/(2
・31/2 )幅、即ちエッジから(3−31/2 )/6=
1.268/6幅の点であり、上述したエッジから約1
/6幅の部分で張力が発生するとの結果が理解される。
As shown in FIG. 3, the stress in the rolling direction (positive tension) generated inside the slab during rolling is distributed in a substantially parabolic shape in the width direction and changes from compression to tension from the width center to the edge. To do. The area where tension is generated is about 1 from the edge.
It is a / 6 width portion, and becomes the maximum near the edge. Also,
If the so-called slab size (plate thickness / plate width ≧ about 0.1), this tendency does not change. Of these findings, the width of the tension generation region is understood as follows. In single-stand rolling of a slab, the total stress in the rolling direction in the width direction is zero, that is, the average value of the stress in the rolling direction in the width direction is zero.
Here, if the distribution of stress in the rolling direction is a parabola (quadratic curve), the position in the width direction that gives the average value is 1 / (2
.3 1/2 ) width, that is, (3-3 1/2 ) / 6 from the edge =
1.268 / 6 wide point, about 1 from the above edge
The result that tension is generated in the / 6 width portion is understood.

【0013】この圧延方向応力分布は図2の疵発生状況
と良く対応するものであり、圧延方向に高い張力が生じ
た部位に疵(割れ)が集中して発生することを示してい
る。このことは、圧延中にエッジ近傍に生じるスラブ内
部の圧延方向の張力を減じさせ得れば、本質的に疵発生
を抑えることが可能なことを意味している。
This rolling-direction stress distribution corresponds well to the flaw generation situation shown in FIG. 2, and indicates that flaws (cracks) are concentrated and generated at a portion where high tension is generated in the rolling direction. This means that if the tension in the rolling direction inside the slab that occurs near the edge during rolling can be reduced, the occurrence of flaws can be essentially suppressed.

【0014】圧延方向応力の幅方向分布は、前述したよ
うにマクロ的には幅方向メタルフローに伴う圧延方向延
伸差で理解し得るものであり、言い換えれば、エッジ近
傍のスラブ厚さを大きくするような厚さ分布を与えれ
ば、エッジ部に生じる張力を低減させ得るものと考えら
れる。しかしながら、どのようなスラブ厚さ分布とすれ
ば張力発生を効果的に抑えられるかについては明らかで
はない。
The distribution of the stress in the rolling direction in the width direction can be understood macroscopically from the difference in the drawing in the rolling direction accompanying the metal flow in the width direction. In other words, the slab thickness near the edge is increased. It is considered that the tension generated at the edge portion can be reduced by giving such a thickness distribution. However, it is not clear what kind of slab thickness distribution can effectively suppress the tension generation.

【0015】そこで本発明者らは前述した三次元有限要
素法により、この厚さ分布の検討を行った。その結果、
図4破線に示すように、厚さを大きくする範囲を必要以
上に広くすると、エッジ部の張力は低下する反面その反
作用(前述したように、圧延方向応力の幅方向の総和は
ゼロとなるべきであり、エッジ部での張力低下と同量の
幅中央部での張力増加が生じる)として幅中央寄りの張
力増大が顕著になり、幅中央での割れ発生が懸念される
ため、スラブ厚さを大きくする範囲としてはエッジから
スラブ幅の1/6まで(以下、エッジ1/6幅部と略
す)が適当であることが先ず判明した。更に、図5に示
すように、張力低減の効果はエッジ1/6幅部の厚さ分
布のパターンにはそれほど依存せず、平均厚さでほぼ決
まること、および、図6に示すように、エッジ1/6幅
部の平均厚さHe が、これより幅中央寄りの該スラブ幅
中央部の平均厚さHc を用いた下式により算出される量
であれば幅中央部の顕著な張力増加を来たさずにエッジ
1/6幅部の張力を低減できることを知見した。
Therefore, the present inventors examined this thickness distribution by the above-mentioned three-dimensional finite element method. as a result,
As shown by the broken line in FIG. 4, when the range of increasing the thickness is unnecessarily widened, the tension of the edge portion decreases, but the reaction (as described above, the sum of the rolling direction stress in the width direction should be zero). The tension increase near the width center becomes remarkable as the tension decrease at the edge part and the tension increase at the width center part of the same amount.) It was first found that the range from the edge to ⅙ of the slab width (hereinafter, abbreviated as edge ⅙ width portion) is suitable as the range in which is increased. Further, as shown in FIG. 5, the effect of reducing the tension does not depend so much on the pattern of the thickness distribution of the edge ⅙ width portion, and is almost determined by the average thickness, and as shown in FIG. edge 1/6 the average thickness H e width portion is marked in the width center portion as long as it is an amount that is calculated by the following formula using from the average thickness H c of the slab width central portion of the width inboard this It was found that the tension of the edge 1/6 width portion can be reduced without increasing the tension.

【0016】He =α(Hc −h)+h ここで、1.1≦α≦1.4、hは熱間圧延後のスラブ
厚さ αの設定範囲については、1.1未満ではエッジ部の張
力低減による微小割れ発生防止効果が十分ではなく、ま
た1.4超では幅中央部の張力が増加し、幅中央部での
微小割れ発生が問題となるため、上記範囲とする必要が
ある。
[0016] H e = α (H c -h ) + h where, 1.1 ≦ α ≦ 1.4, h is about setting a range of alpha slab thickness after hot rolling, the edge is less than 1.1 The effect of preventing the generation of microcracks due to the reduction of the tension of the part is not sufficient, and if it exceeds 1.4, the tension in the width center part increases, and the generation of microcracks in the width center part becomes a problem. is there.

【0017】スラブ厚さ分布をエッジ部で大きく、幅中
央部で小さくする手段としては、図1(b)に示す鋳型
が良い。即ち、本発明のスラブおよび装置によれば、製
品疵の起点となる熱間圧延によるスラブの表面割れ発生
に直接関係する圧延方向応力(張力)を効果的に低減可
能なことがわかる。本発明では、スラブ幅中央部からス
ラブ最エッジまでの厚さ分布の形状については特に規定
しないが、不連続な厚さ分布とした場合は不連続点近傍
に付加的せん断変形が集中して生じ、これに起因した欠
陥の発生が懸念されるため、滑らかな厚さ分布とするこ
とが望ましい。
As a means for increasing the slab thickness distribution in the edge portion and decreasing it in the width central portion, the mold shown in FIG. 1 (b) is preferable. That is, according to the slab and apparatus of the present invention, it is possible to effectively reduce the rolling direction stress (tension) directly related to the occurrence of surface cracks in the slab due to hot rolling, which is the starting point of product defects. In the present invention, the shape of the thickness distribution from the central portion of the slab width to the slab outermost edge is not particularly specified, but when the thickness distribution is discontinuous, additional shear deformation is concentrated near the discontinuity point. However, since there is a concern that defects may be caused due to this, it is desirable to have a smooth thickness distribution.

【0018】本発明のスラブを得る他の手段として、矩
形スラブを切削する方法や、竪ロールを用いたエッジン
グ圧延により厚さ分布を付与する方法が考えられる。し
かしながら、いずれも付加的な工程が必要であり、かつ
前者については歩留および作業効率の低下が、後者につ
いてはエッジング圧延中に生じる幅中央部の圧延方向張
力による割れ発生が新たな問題となる。
Other means for obtaining the slab of the present invention include a method of cutting a rectangular slab and a method of imparting a thickness distribution by edging rolling using a vertical roll. However, both require additional steps, and the former causes a reduction in yield and work efficiency, and the latter causes a new problem of cracking due to the rolling direction tension in the width center portion that occurs during edging rolling. .

【0019】[0019]

【実施例】以下、実施例に即して詳細に説明する。表1
に示した成分のステンレス鋼を転炉にて溶製し、スラブ
幅中央厚みが165mmでスラブ幅が1250mmのスラブ
を連続鋳造した。スラブの鋳造に際しては、図7に示す
2種類の厚さ分布(一様分布および本発明による分布)
を与えるために、全幅において内壁間隙が165mmのフ
ラット型、フラット型に比し幅中央±410mm点より両
端側で放物線状に内壁間隙が増加し、かつ両端で+5mm
となるエッジ部内壁間隙拡大型のプロフィルを有する2
種類の鋳型を用いた。鋳型の鋳造方向には凝固収縮を考
慮したテーパが施してあり、上記断面形状は鋳型出口の
寸法である。鋳造後のスラブ断面形状は図7に示した寸
法の±1mm以内に納まっており、かつフラット型とエッ
ジ部内壁間隙拡大型を用いた場合の鋳片の両端における
スラブ厚さの差は4.5mmであった。圧延は直径120
0mmのロールを用い、圧延温度1100℃、幅中央の圧
下率を10%に設定して行った。
Embodiments will be described in detail below with reference to embodiments. Table 1
The stainless steel having the components shown in 1 was melted in a converter, and a slab having a slab width center thickness of 165 mm and a slab width of 1250 mm was continuously cast. When casting a slab, two types of thickness distributions (uniform distribution and distribution according to the present invention) shown in FIG. 7 are used.
In order to provide the inner wall gap of 165 mm in the entire width, the inner wall gap increases parabolically on both ends from the width center ± 410 mm point compared to the flat type and +5 mm at both ends.
2) with a profile that expands the inner wall gap
Different types of molds were used. The casting direction of the mold is tapered in consideration of solidification shrinkage, and the above-mentioned cross-sectional shape is the size of the mold outlet. The cross-sectional shape of the slab after casting is within ± 1 mm of the dimension shown in Fig. 7, and the difference in slab thickness at both ends of the slab when the flat type and the edge inner wall gap widening type are used is 4. It was 5 mm. Rolled diameter 120
Using a 0 mm roll, the rolling temperature was set to 1100 ° C. and the rolling reduction at the width center was set to 10%.

【0020】図8に圧延後のスラブ表面割れ発生頻度の
幅方向分布を示す。図から明らかなように、本発明の方
法を適用したエッジ部内壁間隙拡大型鋳型を用いた場合
エッジ近傍の割れ発生頻度は激減しており、歩留向上は
著しく大きい。
FIG. 8 shows the widthwise distribution of the occurrence frequency of slab surface cracks after rolling. As is apparent from the figure, when the mold for expanding the inner wall gap of the edge portion to which the method of the present invention is applied is used, the frequency of occurrence of cracks near the edge is drastically reduced, and the yield is significantly improved.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】以上詳述した様に、本発明によれば、鋼
板の製造のため熱間圧延に供するスラブを製造するに際
し、適切なスラブ厚さ分布を設定し、鋳造することによ
り、熱間圧延後の製品の表面疵を著しく低減でき、製品
歩留まりを向上できる等、産業上裨益するところ大であ
る。
As described above in detail, according to the present invention, when producing a slab to be subjected to hot rolling for producing a steel sheet, by setting an appropriate slab thickness distribution and casting, The surface flaws of the product after hot rolling can be significantly reduced, and the product yield can be improved, which is a great advantage in terms of industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の請求項1、2によるスラブ厚さ
分布の一例。 (b)請求項1、2に記載の厚さ分布を実現するための
鋳型(請求項3)の一態様を示す模式図。
FIG. 1 (a) is an example of a slab thickness distribution according to claims 1 and 2 of the present invention. (B) A schematic view showing one mode of a mold (claim 3) for realizing the thickness distribution according to claims 1 and 2.

【図2】従来法による圧延後のスラブ表面の割れの分布
状態を示した模式図。
FIG. 2 is a schematic diagram showing a distribution state of cracks on the surface of a slab after rolling by a conventional method.

【図3】従来法による圧延中のスラブ内部に生じる圧延
方向応力の幅方向分布について三次元剛塑性有限要素法
による解析結果の一例を示した図。
FIG. 3 is a diagram showing an example of an analysis result by a three-dimensional rigid-plastic finite element method regarding a widthwise distribution of rolling direction stress generated inside a slab during rolling by a conventional method.

【図4】本発明を行うに際し、スラブ厚さを変化させる
範囲、エッジ近傍の厚さ分布パターンおよび平均厚さの
影響に関する知見を得るために行った解析の結果の例を
示したもの。
FIG. 4 is a diagram showing an example of results of analysis performed to obtain knowledge about influences of a range in which the slab thickness is changed, a thickness distribution pattern near an edge, and an average thickness when the present invention is performed.

【図5】本発明を行うに際し、スラブ厚さを変化させる
範囲、エッジ近傍の厚さ分布パターンおよび平均厚さの
影響に関する知見を得るために行った解析の結果の例を
示したもの。
FIG. 5 is a diagram showing an example of a result of analysis performed to obtain knowledge about influences of a range in which a slab thickness is changed, a thickness distribution pattern near an edge, and an average thickness when the present invention is performed.

【図6】本発明を行うに際し、スラブ厚さを変化させる
範囲、エッジ近傍の厚さ分布パターンおよび平均厚さの
影響に関する知見を得るために行った解析の結果の例を
示したもの。
FIG. 6 is a diagram showing an example of results of analysis performed to obtain knowledge about influences of a range in which a slab thickness is changed, a thickness distribution pattern near an edge, and an average thickness when the present invention is performed.

【図7】実施例において設定したスラブ厚さ分布を示し
た図。
FIG. 7 is a diagram showing a slab thickness distribution set in the example.

【図8】実施例における圧延後のスラブ表面割れ発生頻
度について、従来法と本発明の方法の比較を行ったも
の。
FIG. 8 shows a comparison between the conventional method and the method of the present invention regarding the occurrence frequency of slab surface cracks after rolling in the examples.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の製造のため熱間圧延に供されるス
ラブにおいて、該スラブの幅方向において両端から該ス
ラブ幅の1/6の区間の厚さが、これより幅中央寄りの
区間の平均厚さより大きいことを特徴とするスラブ。
1. In a slab to be subjected to hot rolling for producing a steel sheet, a thickness of a section of 1/6 of the slab width from both ends in the width direction of the slab is in a section closer to the center of the width. A slab characterized by being larger than the average thickness.
【請求項2】 鋼板の製造のため熱間圧延に供されるス
ラブにおいて、該スラブの幅方向において両端から該ス
ラブ幅の1/6の区間の平均厚さHe が、これより幅中
央寄りの区間の平均厚さHc を用いた下式により算出さ
れる量となることを特徴とするスラブ。 He =α(Hc −h)+h ここで、1.1≦α≦1.4、h:熱間圧延後のスラブ
厚さ
2. A steel slab is subjected to hot rolling for the production of an average thickness H e 1/6 section of the slab width from both ends in the width direction of the slab, which than the width near the center A slab characterized by a quantity calculated by the following formula using the average thickness H c of the section. H e = α (H c -h ) + h where, 1.1 ≦ α ≦ 1.4, h : slab thickness after hot rolling
【請求項3】 鋳造方向に直交する鋳型断面の内壁間隙
において、幅方向両端から鋳造スラブ幅の1/6までの
区間のスラブ厚さに相当する該内壁間隙が、これより幅
中央寄りの区間の厚み方向該内壁間隙の平均値に比して
大きいことを特徴とする鋳型。
3. In the inner wall gap of the mold cross section orthogonal to the casting direction, the inner wall gap corresponding to the slab thickness in the section from both widthwise ends to 1/6 of the casting slab width is a section closer to the center of the width. The mold is characterized in that it is larger than the average value of the inner wall gap in the thickness direction of the mold.
JP10332593A 1993-04-28 1993-04-28 Slab and mold Pending JPH06312248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10332593A JPH06312248A (en) 1993-04-28 1993-04-28 Slab and mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10332593A JPH06312248A (en) 1993-04-28 1993-04-28 Slab and mold

Publications (1)

Publication Number Publication Date
JPH06312248A true JPH06312248A (en) 1994-11-08

Family

ID=14351035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10332593A Pending JPH06312248A (en) 1993-04-28 1993-04-28 Slab and mold

Country Status (1)

Country Link
JP (1) JPH06312248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433824A (en) * 2018-09-29 2019-03-08 江阴兴澄特种钢铁有限公司 A kind of production technology of big thickness high-performance pre-hardening SM4Cr2Mn plastic steel plate for die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433824A (en) * 2018-09-29 2019-03-08 江阴兴澄特种钢铁有限公司 A kind of production technology of big thickness high-performance pre-hardening SM4Cr2Mn plastic steel plate for die

Similar Documents

Publication Publication Date Title
EP1114871B1 (en) Process for the production of material of metals and alloys having fine microstructure or fine nonmetallic inclusions and having less segregation of alloying elements.
JP2980006B2 (en) Continuous casting method
JPH06312248A (en) Slab and mold
JP3528504B2 (en) Manufacturing method of extra thick steel plate
JP3221790B2 (en) Rolling method and rolling device for steel sheet
JP2863402B2 (en) Method for producing steel sheet with few surface defects by hot rolling
JPH08238550A (en) Method for continuously casting steel
JP2000015412A (en) Method for continuously casting steel
JP3298730B2 (en) Manufacturing method of austenitic stainless steel sheet with few surface defects
JPH06312201A (en) Method and device for rolling steel sheet
JP3344281B2 (en) Hot rolling method for metal sheet
JP2863407B2 (en) Manufacturing method of stainless steel sheet with few surface defects
JPH05138207A (en) Hot rolling method for reducing edge crack in grain oriented electric steel sheet
JP4428213B2 (en) Method for suppressing surface flaws near the edge of hot-rolled steel sheet
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JPH0924401A (en) Method for reducing surface flaw of steel sheet in hot rolling
JP2004025272A (en) Continuously cast slab and method of producing steel sheet using the same
JPH0569001A (en) Manufacture of extremely thick steel plate
JP3147803B2 (en) Continuous casting method
JP3067944B2 (en) Method for producing ferritic stainless steel with excellent surface properties
JP2000140906A (en) Manufacture of ultra-heavy steel plate at extremely large reduction ratio
JP3310161B2 (en) Method for producing slab free of rolling defects and slab thereof
JPS6150045B2 (en)
JPS6152975A (en) Continuous casting method
JPH0347916A (en) Production of thick steel plate