JP3401429B2 - Plate rolling method - Google Patents

Plate rolling method

Info

Publication number
JP3401429B2
JP3401429B2 JP08956398A JP8956398A JP3401429B2 JP 3401429 B2 JP3401429 B2 JP 3401429B2 JP 08956398 A JP08956398 A JP 08956398A JP 8956398 A JP8956398 A JP 8956398A JP 3401429 B2 JP3401429 B2 JP 3401429B2
Authority
JP
Japan
Prior art keywords
rolling
warp
different peripheral
peripheral speed
shape ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08956398A
Other languages
Japanese (ja)
Other versions
JPH11169931A (en
Inventor
康宏 東田
茂 小川
泰 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08956398A priority Critical patent/JP3401429B2/en
Publication of JPH11169931A publication Critical patent/JPH11169931A/en
Application granted granted Critical
Publication of JP3401429B2 publication Critical patent/JP3401429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、板状の金属製品を
圧延によって製造する圧延方法に関する。
TECHNICAL FIELD The present invention relates to a rolling method for producing a plate-shaped metal product by rolling.

【0002】[0002]

【従来の技術】板材の圧延時に発生する反りは、圧延能
率の低下、設備事故の発生、精整工程の増加など、製品
の生産性に多大な影響を及ぼす。例えば、精整工程に関
しては、レベラー、プレス等による反りの矯正が必要と
なり、極端な場合、不良部を切断しなければならないこ
ともある。また、さらに大きな反りが発生した場合、板
の衝突によって、圧延設備が破損することもある。この
場合、板自体が製品価値を失うばかりでなく、生産停
止、圧延設備の修理など多大の損害をもたらす。
2. Description of the Related Art A warp that occurs during the rolling of a plate material has a great influence on the productivity of products, such as a reduction in rolling efficiency, an occurrence of equipment accidents, and an increase in a refining process. For example, in the adjusting step, warping needs to be corrected by a leveler, a press, etc., and in an extreme case, the defective portion may have to be cut. Further, when a larger warp occurs, the rolling equipment may be damaged due to the collision of the plates. In this case, the plate itself not only loses its product value, but also causes a great deal of damage such as production suspension and repair of rolling equipment.

【0003】圧延反りが発生するメカニズムについて
は、必ずしも全て解明されている訳ではないが、一般
に、下記の圧延条件が原因であると言われている。
Although the mechanism of rolling warpage is not completely understood, it is generally said that the following rolling conditions are the cause.

【0004】上下のワークロールの径差 上下のワークロール周速の差 上下の、ワークロールと圧延材との摩擦係数の差 圧延材の上下の変形抵抗(上下温度差など)の差 幾何学条件 したがって、上記の条件が全て上下対称であれば圧延反
りは発生しないが、実際の板の製造においてはいずれか
の条件が上下非対称となる場合が多く、その結果として
反りが発生する。特に、摩擦係数と温度は上下対称にす
るのが困難であり、一般には主としてこの2つの原因で
反りは発生すると考えられる。
Diameter difference between upper and lower work rolls Difference in peripheral speed between upper and lower work rolls Difference in friction coefficient between work rolls and rolled material above and below Difference in geometrical deformation resistance (vertical temperature difference, etc.) above and below rolled material Therefore, if all of the above conditions are vertically symmetrical, rolling warpage will not occur, but in the actual manufacture of the plate, any of the conditions will often become vertically asymmetric, resulting in warpage. In particular, it is difficult to make the friction coefficient and temperature symmetrical in the vertical direction, and generally, it is considered that the warpage occurs mainly due to these two causes.

【0005】この上下摩擦係数差および上下温度差で発
生する反りを制御する方法の一つとして、圧延中に上下
ワークロール周速差(異周速率)を付与する方法があ
る。異周速率と反りの関係が形状比Γ(圧延材とワーク
ロールとの接触投影弧長を入側と出側板厚の平均値で除
した値)と関連することは、既に知られており、形状比
Γを考慮した上で、上下ワークロールの周速差(異周速
圧延)を用いることにより圧延反りを制御する方法が、
特開昭63−132708号公報に示されている。
As one of the methods for controlling the warpage caused by the difference between the upper and lower friction coefficients and the difference between the upper and lower temperatures, there is a method of giving a difference in peripheral speed of different work rolls (different peripheral speed ratio) during rolling. It is already known that the relationship between the different peripheral speed rate and the warp is related to the shape ratio Γ (the value obtained by dividing the contact projection arc length of the rolled material and the work roll by the average value of the inlet side and outlet side plate thickness), A method of controlling the rolling warp by using the peripheral speed difference between the upper and lower work rolls (different peripheral speed rolling) after considering the shape ratio Γ is
It is disclosed in JP-A-63-132708.

【0006】特開昭63−132708号公報には、パ
ススケジュール、観察される前パスの反り量に基づき、
上下ワークロールの回転数制御(異周速圧延)、下ワー
クロールのピックアップ量、上下のインパクトドロップ
量、厚板の上下面温度差の内、最適な1または2以上の
組み合わせを選択し、前パスの反り量が次パスにも継続
するとして、その反り量を解消する制御量を付与する方
法が示されている。
In Japanese Patent Laid-Open No. 63-132708, based on the pass schedule and the amount of warp of the previous pass observed,
Select the optimum combination of 1 or 2 among the upper and lower work roll rotation speed control (different peripheral speed rolling), the lower work roll pickup amount, the upper and lower impact drop amount, and the upper and lower surface temperature difference of the thick plate. Assuming that the amount of warp of a pass continues to the next pass, a method of giving a control amount that eliminates the amount of warp is shown.

【0007】[0007]

【発明が解決しようとする課題】特開昭63−1327
08号公報に開示された方法は、形状比Γ(特開昭63
−132708号公報では、ld/hmと記されてい
る。ここで、ldは圧延材とワークロールとの接触投影
弧長であり、hmは入側と出側板厚の平均値で除した値
である)が所定値A1、A2に対してA1<Γ<A2の場合
には、異周速圧延による反り制御の効果が小さいとし
て、各パスの形状比ΓがΓ<A1、A2<Γの場合にのみ
異周速圧延で反りを制御し、A1<Γ<A2の場合には板
厚の上下温度差あるいはピックアップ量によって反りを
制御するものである。
[Problems to be Solved by the Invention] JP-A-63-1327
The method disclosed in Japanese Patent Application Laid-Open No. 08-2008 has a shape ratio Γ
In JP-132708, it is described as ld / hm. Here, ld is the contact projection arc length of the rolled material and the work rolls, hm A 1 is a value obtained by dividing the average value of the thickness at delivery side of the inlet side) is for a given value A 1, A 2 In the case of <Γ <A 2 , it is assumed that the effect of warpage control by different peripheral speed rolling is small, and the warp in different peripheral speed rolling occurs only when the shape ratio Γ of each pass is Γ <A 1 and A 2 <Γ. When A 1 <Γ <A 2 , the warpage is controlled by the difference between the upper and lower temperatures of the plate thickness or the pickup amount.

【0008】しかしながら、特開昭63−132708
号に開示された方法では、上下温度差を付与する設備や
ピックアップ量を調整する設備が無い場合、すなわち、
下ロール固定で、上ロールの上下によりロールギャップ
を調整する場合には、A1<Γ<A2のパススケジュール
では反りの制御ができないことになる。また、所定値A
1、A2に関しても、定量的な開示が無く、求める方法の
記載もないために、A1、A2を特定できないという欠点
があった。
However, JP-A-63-132708
In the method disclosed in No. 6, when there is no equipment for imparting a vertical temperature difference or equipment for adjusting the pickup amount, that is,
When the lower roll is fixed and the roll gap is adjusted by moving the upper roll up and down, the warp cannot be controlled by the pass schedule of A 1 <Γ <A 2 . Also, the predetermined value A
Regarding 1 and A 2 as well, there is a drawback that A 1 and A 2 cannot be specified because there is no quantitative disclosure and there is no description of a method for obtaining them.

【0009】本発明は、以上の点に鑑み、異周速圧延の
みで、圧延反りの小さい板状の金属製品を製造する方法
を提供することを目的とする。
In view of the above points, an object of the present invention is to provide a method for producing a plate-shaped metal product having a small rolling warp only by rolling at different peripheral speeds.

【0010】[0010]

【課題を解決するための手段】本発明は、かかる課題を
解決するため、少なくとも上下にワークロール系を備え
た圧延機により異周速で板を圧延する板圧延方法におい
て、同一異周速率で形状比Γを変化させて圧延した場合
に発生する反りの方向が上下逆転する形状比Γ0を予め
求めておき、Γ0以外の形状比Γで圧延するものであ
る。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a plate rolling method in which a plate is rolled at different peripheral speeds by a rolling mill equipped with at least upper and lower work roll systems at the same different peripheral speed. A shape ratio Γ 0 in which the direction of warpage that occurs when rolling is performed by changing the shape ratio Γ is inverted is previously obtained, and rolling is performed at a shape ratio Γ other than Γ 0 .

【0011】すなわち、本発明の要旨とする処は、以下
の通りである。
That is, the gist of the present invention is as follows.

【0012】板材を圧延機により異周速で圧延する板圧
延方法において、同一異周速率で形状比Γを変化させて
圧延した場合に発生する反りの方向が上下逆転する形状
比Γ0を予め求めておき、Γ0以外の形状比Γで圧延を行
うことを特徴とする板圧延方法である。なお、形状比Γ
は圧延材とワークロールとの接触投影弧長を入側と出側
板厚の平均値で除した値とする。
In the plate rolling method of rolling a plate material at different peripheral speeds by a rolling mill, the shape ratio Γ 0 in which the direction of the warp that occurs when the shape ratio Γ is changed at the same different peripheral speed and is rolled up and down is reversed beforehand. This is a plate rolling method characterized in that rolling is performed with a shape ratio Γ other than Γ 0 . The shape ratio Γ
Is the value obtained by dividing the contact projection arc length between the rolled material and the work roll by the average value of the inlet and outlet plate thicknesses.

【0013】また、好ましくは、形状比Γが、Γ<Γ0
−0.1、Γ0+0.1<Γとなるように圧延を行うも
のである。更に、必要に応じて、圧延する際の圧下率及
びワークロール半径のいずれか一方あるいは、両方を変
更することにより、所定の形状比Γを設定することによ
って圧延を行うものである。
Preferably, the shape ratio Γ is Γ <Γ 0
Rolling is performed so that −0.1 and Γ 0 +0.1 <Γ. Further, if necessary, by changing either one or both of the rolling reduction and the work roll radius at the time of rolling, a predetermined shape ratio Γ is set to perform rolling.

【0014】[0014]

【発明の実施の形態】以下、本発明を図面に基づいて詳
細に説明する。図1に、本発明を適用する圧延機の一例
を示す。上下のワークロール1、2を有する圧延機7の
前後には、ローラーテーブル4、4が設けられている。
ローラーテーブル4の上に図示されている圧延材3は、
上ワークロール1と下ワークロール2で所定の板厚に圧
延される。上ロール系は、上ワークロール1と上バック
アップロール5とから構成され、下ロール系は、下ワー
クロール2と下バックアップロール6とから構成され
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to the drawings. FIG. 1 shows an example of a rolling mill to which the present invention is applied. Roller tables 4 and 4 are provided in front of and behind the rolling mill 7 having the upper and lower work rolls 1 and 2.
The rolled material 3 illustrated on the roller table 4 is
The upper work roll 1 and the lower work roll 2 roll to a predetermined plate thickness. The upper roll system includes an upper work roll 1 and an upper backup roll 5, and the lower roll system includes a lower work roll 2 and a lower backup roll 6.

【0015】図1に示す圧延機においてリバース圧延を
行う場合に反りが生じると、前述したように、圧延の中
断、大事故の発生等の大きな問題が生じる。この反りを
制御する方法のとして、異周速圧延が考えられるが、異
周速圧延による反り制御を実施するためには、異周速圧
延によって発生する反り挙動を十分に把握する必要があ
る。
When the rolling mill shown in FIG. 1 is warped during reverse rolling, as described above, major problems such as interruption of rolling and occurrence of a major accident occur. Different peripheral speed rolling can be considered as a method of controlling the warp, but in order to perform the warp control by the different peripheral speed rolling, it is necessary to sufficiently grasp the warp behavior generated by the different peripheral speed rolling.

【0016】異周速圧延が反りに及ぼす影響に関して
は、特開昭63−132708号公報および特開昭63
−248506号公報に開示され、異周速圧延において
は、同一の異周速率の設定においても、反り方向が逆転
する場合があることが記載されている。しかしながら、
特開昭63−132708号公報では定量的な開示は全
く無く、特開昭63−248506号公報においても、
限定された条件での結果を示しているに過ぎない。した
がって、圧延条件が変化した場合の反り挙動について
は、これまで全く不明であった。
Regarding the influence of the different peripheral speed rolling on the warpage, JP-A-63-132708 and JP-A-63-63708.
It is disclosed in Japanese Patent Publication No. 248506, and in the different peripheral speed rolling, even if the same different peripheral speed ratio is set, the warp direction may be reversed. However,
There is no quantitative disclosure in JP-A-63-132708, and even in JP-A-63-248506.
It only shows the results under limited conditions. Therefore, the warp behavior when the rolling conditions change has been completely unknown until now.

【0017】そこで、発明者らは、異周速圧延が反り発
生挙動に及ぼす影響を詳細に調べた結果、板厚、温度、
速度、異周速率が変化しても、同一圧延機で圧延する限
り、反り方向が上下逆転する形状比Γ0は一定値を示す
ことを見出した。以下にその詳細を記す。なお、異周速
率χおよび反り曲率κ*の定義は表1の通りである。
Therefore, the inventors have made detailed investigations on the influence of the different peripheral speed rolling on the warp occurrence behavior, and as a result,
It has been found that the shape ratio Γ 0 in which the warp direction is inverted up and down shows a constant value as long as the rolling is performed by the same rolling mill even if the speed and the different peripheral speed ratio are changed. The details are given below. The definitions of the different peripheral velocity ratio χ and the warp curvature κ * are as shown in Table 1.

【0018】[0018]

【表1】 表2の実験条件に基づき、異周速圧延時に発生する反り
挙動を発明者らが実験で調べた一例を図2に示す。図2
(a)は、下ワークロールを高速とした場合の反り挙動
であり、図2(b)は、上ワークロールを高速とした場
合の反り挙動である。上下いずれのワークロールが高速
の場合においても、異周速率χの絶対値がある限界値χ
0(この場合は、χ0=10%)以下の場合には反り方向
が形状比Γ=1.8で逆転するが、χの絶対値がχ0
上の値(例えば15%)に達するとかなり挙動が変化す
ることが分かる。
[Table 1] FIG. 2 shows an example in which the inventors have experimentally investigated the warp behavior that occurs during rolling at different peripheral speeds based on the experimental conditions in Table 2. Figure 2
FIG. 2A shows the warp behavior when the lower work roll is at high speed, and FIG. 2B is the warp behavior when the upper work roll is at high speed. Even if both upper and lower work rolls are at high speed, the absolute value of the different peripheral speed ratio χ is a certain limit value χ
When 0 (in this case, χ 0 = 10%) or less, the warp direction reverses at the shape ratio Γ = 1.8, but when the absolute value of χ reaches a value of χ 0 or more (for example, 15%). It can be seen that the behavior changes considerably.

【0019】[0019]

【表2】 そこで、発明者らは、異周速圧延時における反り発生挙
動をさらに詳細に把握するために、ワークロール直径
D、入側板厚H、材料温度t、ロール速度V、異周速率
χ、圧下率rを変化させ、圧延実験を行った。表3に、
その実験範囲を示す。なお、ロール周速以外の条件は、
全て上下対称とした。
[Table 2] Therefore, in order to understand the warp occurrence behavior during different peripheral speed rolling in more detail, the inventors have worked roll diameter D, inlet side plate thickness H, material temperature t, roll speed V, different peripheral speed ratio χ, reduction ratio. A rolling experiment was conducted by changing r. In Table 3,
The experimental range is shown. In addition, conditions other than roll peripheral speed,
All were vertically symmetrical.

【0020】[0020]

【表3】 その結果、異周速率χの絶対値がχ0(この場合、条件
1ではχ0=11%、条件2ではχ0=12%であった)
以下であれば、表3の全ての条件において、図2のχ=
3〜10%および−3〜−10%の条件の挙動と同様、
ある形状比Γ0以下では低速側に反りが発生し、その形
状比Γ0以上では、高速側に反りが発生することを見出
した。
[Table 3] As a result, the absolute value of the different circumferential velocity χ is χ 0 (in this case, χ 0 = 11% under condition 1 and χ 0 = 12% under condition 2).
If the following is satisfied, χ = of FIG.
Similar to the behavior under the conditions of 3 to 10% and -3 to -10%,
It has been found that the warp occurs on the low speed side when the shape ratio is Γ 0 or less, and the warp occurs on the high speed side when the shape ratio is Γ 0 or more.

【0021】次に、発明者らは、表3の異周速率χの絶
対値がχ0以下の場合の、Γ0の値を調べた。そのΓ0
挙動を表4に示すが、板厚、温度、速度、異周速率が変
化しても、同一圧延機で圧延する限り、反り方向が上下
逆転する形状比Γ0は一定値を示すことが分かる。すな
わち、当該パスの形状比がΓ0となる圧下条件では異周
速圧延を行っても反りは発生せず、異周速率の絶対値が
χ0以内のいかなる異周速率で圧延しても反りの制御が
できないことになる。
Next, the inventors examined the value of Γ 0 when the absolute value of the different peripheral velocity ratio χ in Table 3 is χ 0 or less. The behavior of Γ 0 is shown in Table 4, and even if the plate thickness, temperature, speed, and different peripheral speed ratio change, the shape ratio Γ 0 in which the warp direction is reversed up and down as long as rolling is performed by the same rolling mill has a constant value. You can see that. That is, under the rolling conditions where the shape ratio of the pass is Γ 0 , warping does not occur even if different peripheral speed rolling is performed, and warp occurs at any different peripheral speed ratio within which the absolute value of the different peripheral speed ratio is within χ 0. Will not be controllable.

【0022】[0022]

【表4】 以上の結果から、発明者らは、予め一定の異周速率で、
形状比を変化させた実験、あるいは、有限要素法等によ
るモデル計算、を行ってΓ0を求めた上で、いずれのパ
スのΓにおいてもΓ≠Γ0となるように圧延すれば、板
厚、温度、速度、一定範囲内での異周速率が変化して
も、異周速圧延のみで、反り制御が可能となることを見
出した。すなわち、|χ|<χ0では、χを含めたいず
れの圧延条件でも同一のΓ0で反り方向が逆転するの
で、一度だけある一定のχでΓを変化させてΓ0を求め
れば、このΓ0は、圧延機が同一である限り、|χ|<
χ0のχを含めたあらゆる条件に対して、反りが反転す
るΓとして、用いることができる。
[Table 4] From the above results, the inventors previously set a constant different peripheral velocity,
If Γ 0 is obtained by performing experiments with varying shape ratios or model calculations by the finite element method, etc., and then rolling so that Γ ≠ Γ 0 in any of the passes, the sheet thickness It was found that the warp can be controlled only by rolling at different peripheral speeds even if the temperature, speed, and different peripheral speed ratio within a certain range change. That, | chi | In <chi 0, since warping direction is reversed at the same gamma 0 at any of the rolling conditions including the chi, by obtaining the gamma 0 by changing the gamma in certain that once chi, this Γ 0 is │χ│ <as long as the rolling mills are the same.
It can be used as Γ where the warp is inverted under all conditions including χ 0 and χ.

【0023】なお、χ0に関しては、表2、3の広範囲
な条件においてχ0≒10%であることから、一般的な
操業条件では、χ0≒10%と考えて良い。また、通常
の摩擦係数あるいは上下温度差起因等の反りを制御する
場合には、|χ|<10%のχで十分と考えられる。し
たがって、通常は、χ0の値を求める必要は無い。まれ
な場合として、|χ|=10%で制御能力が不足する場
合も考えられるが、少なくとも|χ|=10%で制御す
れば、反りは大幅に小さくなる。それでも、所望の反り
より大きい場合には、上記の表2で示したように、その
圧延条件でのχ0を求めればよい。
Regarding χ 0 , since χ 0 ≈10% under a wide range of conditions shown in Tables 2 and 3, it can be considered that χ 0 ≈10% under general operating conditions. Further, in the case of controlling the normal friction coefficient or the warpage due to the difference between the upper and lower temperatures, it is considered that χ of | χ | <10% is sufficient. Therefore, normally, it is not necessary to obtain the value of χ 0 . In rare cases, the control capability may be insufficient at | χ | = 10%, but if the control is performed at least at | χ | = 10%, the warpage is significantly reduced. If the warp is still larger than the desired warp, however, χ 0 under the rolling conditions may be calculated as shown in Table 2 above.

【0024】以上の結果から、異周速圧延を用いて反り
を制御するためには、初期板厚H(例えばスラブ厚)か
ら複数パスで最終板厚hまで圧延する場合に、全パスの
形状比ΓがΓ≠Γ0となるように、パス間の圧下スケジ
ュールを設定すれば、全てのパスで異周速による制御が
有効に実施できることが分かる。式(1)で示すよう
に、形状比Γは、入側板厚、出側板厚、ワークロール半
径のみで決まる。
From the above results, in order to control the warpage using different peripheral speed rolling, when rolling from the initial plate thickness H (for example, slab thickness) to the final plate thickness h in multiple passes, the shape of all passes By setting the rolling schedule between the passes so that the ratio Γ is Γ ≠ Γ 0 , it can be seen that the control by the different peripheral speeds can be effectively performed in all the passes. As shown in the equation (1), the shape ratio Γ is determined only by the entrance side plate thickness, the exit side plate thickness, and the work roll radius.

【0025】 形状比Γ=接触投影弧長/(入側板厚と出側板厚の平均値)・・・(1) =Ld/hm ただし、接触投影弧長Ld=[R・Δh{1−Δh/
(4・R)}]0.5 入側板厚と出側板厚の平均値hm=(H+h)/2 ここで、R :ワークロール半径 Δh:圧下量(=H−h) したがって、各パスの圧延荷重、圧延トルク、クラウン
制御能力等を考慮して、各パスの圧下率あるいはロール
径の一方又は両方を変更すれば、圧延実行前に各パスに
おける所定の形状比Γを決めることができる。
Shape ratio Γ = contact projection arc length / (average value of entrance side plate thickness and exit side plate thickness) (1) = Ld / hm However, contact projection arc length Ld = [R · Δh {1-Δh /
(4 · R)}] 0.5 Average value of inlet plate thickness and outlet plate thickness hm = (H + h) / 2 where R: Work roll radius Δh: Reduction amount (= H−h) Therefore, rolling load of each pass By changing one or both of the rolling reduction and the roll diameter of each pass in consideration of the rolling torque, the crown control capability, etc., the predetermined shape ratio Γ in each pass can be determined before the rolling is performed.

【0026】圧下率の変更は、出側板厚の変更で可能で
あり、ロール径の変更は、例えばロール半径の異なる2
スタンド以上のミルで圧延している場合、パスに応じ
て、圧延するスタンドを変更することで可能である。無
論、圧下率とロール径の両者を変更して、所定のΓを設
定しても良い。
The reduction rate can be changed by changing the delivery side plate thickness, and the roll diameter can be changed, for example, by changing the roll radius.
When rolling with a mill having more than the stand, it is possible to change the stand to be rolled according to the pass. Of course, both the rolling reduction and the roll diameter may be changed to set a predetermined Γ.

【0027】なお、設定するパススケジュールの形状比
Γは、反り制御の安定性の観点からは、Γ0との差があ
る程度以上ある方が望ましい。しかしながら、Γ0との
差を大きくすると、パススケジュールの制約が強くな
る。表4の結果によれば、全てのΓ0が平均値のΓ0±
0.1以内に含まれることから、その範囲をΓ0±ΔΓ0
で表示すると、形状比ΓがΓ<Γ0−ΔΓ0、Γ0+ΔΓ0
<Γ(ただし、ΔΓ0=0.1)とすることが好まし
い。
It is desirable that the shape ratio Γ of the set path schedule has a difference to a certain extent or more from Γ 0 from the viewpoint of stability of warp control. However, if the difference from Γ 0 is increased, the constraint on the path schedule becomes stronger. According to the results in Table 4, all Γ 0 are average values Γ 0 ±
Since it is included within 0.1, the range is Γ 0 ± ΔΓ 0
, The shape ratio Γ is Γ <Γ 0 −ΔΓ 0 , Γ 0 + ΔΓ 0
It is preferable that <Γ (where ΔΓ 0 = 0.1).

【0028】また、同じミルであっても、大幅に圧延条
件が異なる場合には(例えば、材質が大きく異なる
等)、Γ0も変化する場合があるので、その場合は別
途、その条件でΓ0を求めておけば良い。各パスの圧下
スケジュール決定後は、実際の圧延時に、異周速圧延に
よる反り制御を実施すれば良い。
Further, even if the mill is the same, if the rolling conditions are significantly different (for example, the materials are significantly different), Γ 0 may also change. In that case, separately, Γ 0 Just ask for 0 . After the reduction schedule for each pass is determined, warp control by different peripheral speed rolling may be performed during actual rolling.

【0029】反り曲率の予測、およびその反りを解消す
るための付与すべき異周速率の求め方に関しては、例え
ば、特開平07−132308号公報に開示されている
ように、材料が噛込んだ瞬間の圧延データ、例えば、上
下ロールのトルク、荷重、上下ロール速度等を用いて、
圧延材の上下温度差、圧延材とワークロールの上下摩擦
係数差を計算し、その結果を基に反り曲率を予測し、付
与すべき異周速率を算出する方法を用いれば良い。ま
た、各パスの反りが、それまでの実績(例えば、テーブ
ル、グラフ)あるいは前パスの反りからで予測できる場
合には、反りの予測にはそのテーブル値等を用い、反り
を解消するための付与すべき異周速率のみを特開平07
−132308号公報に開示されている方法で計算すれ
ば良い。さらに、圧延条件および異周速率と反りとの関
係を予め、実験あるいは有限要素法等で求めておき、そ
の結果を基に(例えば、テーブル化、グラフ化)、付与
すべき異周速率を求めても良い。以上をまとめ、図3に
制御手順のフローチャートの例を示す。
Regarding the prediction of the warp curvature and the method of obtaining the different peripheral speed ratio to be applied to eliminate the warp, for example, as disclosed in Japanese Patent Application Laid-Open No. 07-132308, the material is caught. Instantaneous rolling data, for example, using the torque of the upper and lower rolls, load, the upper and lower roll speed,
A method of calculating the vertical temperature difference of the rolled material and the vertical friction coefficient difference between the rolled material and the work roll, predicting the warp curvature based on the results, and calculating the different peripheral speed ratio to be applied may be used. If the warp of each path can be predicted from the past results (for example, table or graph) or the warp of the previous path, the table value or the like is used to predict the warp to eliminate the warp. Only the different peripheral speed ratio to be given is disclosed in
The calculation may be performed by the method disclosed in Japanese Unexamined Patent Publication No. 132308. Furthermore, the rolling condition and the relationship between the different peripheral speed ratio and the warp are obtained in advance by an experiment or the finite element method, and the different peripheral speed ratio to be given is calculated based on the result (eg, tabulation or graphing). May be. Summarizing the above, FIG. 3 shows an example of a flowchart of the control procedure.

【0030】なお、上記では、リバース圧延を例に用い
たが、各スタンドでのΓ0を求めれば、タンデム圧延に
用いることが可能なことはいうまでもない。
In the above description, reverse rolling was used as an example, but it goes without saying that it can be used for tandem rolling if Γ 0 at each stand is obtained.

【0031】[0031]

【実施例】ロール半径500mmのワークロール系を備
えた圧延機を用いて、板厚160mm、板幅1760m
mのスラブを板厚20mmまで圧延した。スラブの加熱
条件は全て同一とした。
[Example] Using a rolling mill equipped with a work roll system having a roll radius of 500 mm, a plate thickness of 160 mm and a plate width of 1760 m
The slab of m was rolled to a plate thickness of 20 mm. The heating conditions for the slabs were all the same.

【0032】実施例1では、まずは、この圧延機でのΓ
0を調べるために、異周速率χ=4%の圧延を実施し
た。その結果Γ0=1.70であった.そこで、各パス
の形状比ΓがΓ≠Γ0=1.70となるように、パスス
ケジュールを調整した上で、反り制御実験を実施した。
条件1(制御前)では、上下同周速(χ=0%)で全パ
ス圧延した。その結果を表5に示すが、全てのパスにお
いて、上下温度差あるいは上下摩擦係数差が原因と推定
される下反りが発生した。条件2(制御後)では、各パ
スに対して異周速圧延による反り制御を実施した。反り
量の予測およびその反りを解消する異周速率の算出は、
上記で示した特開平07−132308号公報に開示さ
れている方法を用いた。その結果、全パスにおいて、異
周速圧延による反り制御は有効に作用し、いずれのパス
でも反りは極めて微少なものになった。
In the first embodiment, first, Γ in this rolling mill is
In order to check 0 , rolling was carried out at a different peripheral speed rate χ = 4%. As a result, Γ 0 = 1.70. Therefore, the warpage control experiment was performed after adjusting the path schedule so that the shape ratio Γ of each path was Γ ≠ Γ 0 = 1.70.
Under condition 1 (before control), all passes were rolled at the same vertical speed (χ = 0%). The results are shown in Table 5, and in all the passes, the warpage that is estimated to be caused by the difference in the vertical temperature or the difference in the vertical friction coefficient occurred. Under condition 2 (after control), warpage control was performed by different peripheral speed rolling for each pass. Forecasting the amount of warp and calculating the peripheral speed ratio to eliminate the warp
The method disclosed in JP-A-07-132308 described above was used. As a result, the warpage control by the different peripheral speed rolling worked effectively in all the passes, and the warpage became extremely small in any of the passes.

【0033】実施例2では、2スタンドの圧延機を用い
て圧延を実施した。1スタンド目は、上記の圧延機を用
い、2スタンド目はロール半径600mmの圧延機を用
いた。調査の結果、2スタンド目の圧延機の場合もΓ0
=1.70であった。各パスの圧下率は、比較のために
下記の比較例と同一とした上で、各パスの形状比ΓがΓ
≠Γ0=1.70となるように、1〜5パスは1スタン
ド目の圧延機でリバース圧延し、6〜9パスは2スタン
ド目の圧延機でリバース圧延した。実施例1の場合と同
様、条件1(制御前)では、上下同周速(χ=0%)で
全パス圧延した。その結果も表5に示すが、全てのパス
において、上下温度差あるいは上下摩擦係数差が原因と
推定される下反りが発生した。条件2(制御後)では、
各パスに対して異周速圧延による反り制御を実施した。
反り量の予測およびその反りを解消する異周速率の算出
は、実施例1と同様の方法で実施した。その結果、全パ
スにおいて、異周速圧延による反り制御は有効に作用
し、いずれのパスでも反りは極めて微小なものになっ
た。
In Example 2, rolling was performed using a two-stand rolling mill. The above-mentioned rolling mill was used for the first stand, and the rolling mill having a roll radius of 600 mm was used for the second stand. As a result of the investigation, in the case of the second stand rolling mill, Γ 0
Was 1.70. For the purpose of comparison, the rolling reduction of each pass is the same as that of the following comparative example, and the shape ratio Γ of each pass is Γ
1 to 5 passes were reverse-rolled by the first stand rolling mill, and 6 to 9 passes were reverse-rolled by the second stand rolling mill so that ≠ Γ 0 = 1.70. As in the case of Example 1, under condition 1 (before control), all pass rolling was performed at the same vertical speed (χ = 0%). The results are also shown in Table 5, and in all passes, the warpage that is estimated to be caused by the temperature difference between the upper and lower sides or the difference in the vertical friction coefficient occurred. In condition 2 (after control),
Warp control by different peripheral speed rolling was performed for each pass.
The prediction of the warp amount and the calculation of the different peripheral speed ratio for eliminating the warp were performed by the same method as in the first embodiment. As a result, the warpage control by the different peripheral speed rolling worked effectively in all the passes, and the warpage was extremely small in any of the passes.

【0034】一方、比較例でも、実施例1と同じミルで
9パスで圧延を行った。パススケジュールは特に形状比
は考慮せずに設定した。条件1(制御前:上下同周速、
χ=0%)では、表5に示すように、全てのパスで下反
りが発生した。条件2(制御後:異周速、χ≠0%)で
は、実施例と同様、各パスに対して異周速圧延による反
り制御を実施した。しかしながら、Γ≒Γ0=1.70
となった6パス目と7パス目では、制御不能となった。
計算上は、−175.2%および106.6%と算出さ
れたが、実際にこの様な大きな異周速率での圧延は不可
能であった。さらに、確認実験として、χ=±20、±
15、±10、±5、±3%の各異周速率で圧延を試み
たが、制御の効果は全く無く、いずれの場合も表5の注
4)、注5)に示すように、制御しない場合と同様の反
り曲率を示した。
On the other hand, also in the comparative example, rolling was performed in the same mill as in Example 1 in 9 passes. The pass schedule was set without considering the shape ratio. Condition 1 (Before control: Same circumferential speed above and below
(χ = 0%), as shown in Table 5, warp occurred in all passes. Under condition 2 (after control: different peripheral speed, χ ≠ 0%), warp control by different peripheral speed rolling was performed for each pass as in the example. However, Γ≈Γ 0 = 1.70
In the 6th pass and the 7th pass which became, it became impossible to control.
The calculated values were −175.2% and 106.6%, but rolling at such a large different peripheral speed ratio was actually impossible. Furthermore, as a confirmation experiment, χ = ± 20, ±
Rolling was attempted at different peripheral speed ratios of 15, ± 10, ± 5, ± 3%, but there was no control effect, and in any case, as shown in Note 4) and Note 5) of Table 5, The warp curvature was the same as that of the case without.

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【発明の効果】以上のように、この発明によれば、反り
の無い板を容易に製造できることを可能としたので、形
状の優れた板状の金属製品を効率よく生産できる効果が
ある。
As described above, according to the present invention, since it is possible to easily manufacture a plate without warpage, there is an effect that a plate-shaped metal product having an excellent shape can be efficiently produced.

【0037】[0037]

【図面の簡単な説明】[Brief description of drawings]

【0038】[0038]

【図1】本発明を適用する圧延機の例を示す図である。FIG. 1 is a diagram showing an example of a rolling mill to which the present invention is applied.

【0039】[0039]

【図2】異周速圧延における、形状比と反り反り方向と
の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a shape ratio and a warp direction in different peripheral speed rolling.

【0040】[0040]

【図3】本発明の制御手順のフローチャートの例を示す
図である。
FIG. 3 is a diagram showing an example of a flowchart of a control procedure of the present invention.

【0041】[0041]

【符号の説明】[Explanation of symbols]

1 上ワークロール 2 下ワークロール 3 圧延材料 4 ローラーテーブル 5 上バックアップロール 6 下バックアップロール 1 Top work roll 2 Lower work roll 3 Rolled material 4 roller table 5 Top backup roll 6 Lower backup roll

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−47812(JP,A) 特開 平9−206810(JP,A) 特開 平9−271819(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21B 37/00 - 37/78 B21B 1/00 - 1/26 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-11-47812 (JP, A) JP-A-9-206810 (JP, A) JP-A-9-271819 (JP, A) (58) Field (Int.Cl. 7 , DB name) B21B 37/00-37/78 B21B 1/00-1/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも上下にワークロール系を備え
た圧延機により異周速で板材を圧延する板圧延方法にお
いて、同一異周速率で形状比Γを変化させて圧延した場
合に発生する反りの方向が上下逆転する形状比Γ0を予
め求めておき、Γ0以外の形状比Γで圧延を行うことを
特徴とする板圧延方法。なお、形状比Γは圧延材とワー
クロールとの接触投影弧長を入側と出側板厚の平均値で
除した値とする。
1. A plate rolling method in which a plate material is rolled at different peripheral speeds by a rolling mill having at least upper and lower work roll systems, which causes warpage that occurs when the shape ratio Γ is changed at the same different peripheral speed ratio. A plate rolling method characterized in that a shape ratio Γ 0 in which directions are reversed upside down is obtained in advance, and rolling is performed at a shape ratio Γ other than Γ 0 . The shape ratio Γ is a value obtained by dividing the contact projection arc length between the rolled material and the work roll by the average value of the inlet and outlet plate thicknesses.
【請求項2】 形状比Γが、Γ<Γ0−0.1、Γ0
0.1<Γとなるように圧延を行うことを特徴とする請
求項1に記載の板圧延方法。
2. The shape ratio Γ is Γ <Γ 0 −0.1, Γ 0 +
The plate rolling method according to claim 1, wherein rolling is performed so that 0.1 <Γ.
【請求項3】 圧延する際の圧下率及びワークロール半
径のいずれか一方あるいは、両方を変更することによ
り、所定の形状比Γを設定することを特徴とする請求項
1または2に記載の板圧延方法。
3. The plate according to claim 1, wherein a predetermined shape ratio Γ is set by changing one or both of a rolling reduction and a work roll radius at the time of rolling. Rolling method.
JP08956398A 1997-10-06 1998-03-19 Plate rolling method Expired - Fee Related JP3401429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08956398A JP3401429B2 (en) 1997-10-06 1998-03-19 Plate rolling method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28759197 1997-10-06
JP9-287591 1997-10-06
JP08956398A JP3401429B2 (en) 1997-10-06 1998-03-19 Plate rolling method

Publications (2)

Publication Number Publication Date
JPH11169931A JPH11169931A (en) 1999-06-29
JP3401429B2 true JP3401429B2 (en) 2003-04-28

Family

ID=26430984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08956398A Expired - Fee Related JP3401429B2 (en) 1997-10-06 1998-03-19 Plate rolling method

Country Status (1)

Country Link
JP (1) JP3401429B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262763B2 (en) * 2009-01-29 2013-08-14 Jfeスチール株式会社 Method for controlling tip warpage of rolled material
JP2010260069A (en) * 2009-04-30 2010-11-18 Nippon Steel Corp Metal plate rolling method
JP7140073B2 (en) * 2019-08-23 2022-09-21 Jfeスチール株式会社 LEARNING MODEL GENERATION METHOD, DATABASE CONSTRUCTION METHOD, MILL SETUP SETTING METHOD, ROLLED MATERIAL MANUFACTURING METHOD, PROCESSING TARGET MANUFACTURING METHOD, AND LEARNING MODEL GENERATING DEVICE
JP2021079415A (en) * 2019-11-20 2021-05-27 Jfeスチール株式会社 Setting value computing device, rolling machine operation information computing device, rolling equipment, steel strip manufacturing method, setting value computing method, and process model server

Also Published As

Publication number Publication date
JPH11169931A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
US4261190A (en) Flatness control in hot strip mill
JP3254067B2 (en) Control method of sheet crown in endless rolling
JP3401429B2 (en) Plate rolling method
WO1993024252A1 (en) Method of cold rolling metal strip material
JP3411163B2 (en) Determination of Rolling Order of Steel Sheet in Hot Rolling Continuous Process
JPH08215728A (en) Method and device for controlling edge drop of metallic strip in tandem cold rolling mill
JP3993724B2 (en) Sheet rolling method
JP2004090079A (en) Edge drop controller for rolling mill
JP3156568B2 (en) Cold rolling method
JPH09271819A (en) Plate rolling method
JP2004034039A (en) Temper rolling method of steel sheet
JP2005021960A (en) Manufacturing method and manufacturing apparatus for steel plate
JP2004001031A (en) Method for cold-rolling metal plate
JPH07164001A (en) Method and device for rolling steel sheet
JP6747256B2 (en) Method for manufacturing H-section steel
JPS63168201A (en) Universal roughing mill for h-shape steel
JPH06254601A (en) Method for rolling unequal angle steel
JPS6032522B2 (en) Plate crown reduction method
JPH10180326A (en) Plate rolling method
JP3294139B2 (en) Hot rolling equipment and hot rolling method
JPH02112801A (en) Universal rolling method and rolling machine for flanged shape steel
JPH0899107A (en) Continuous hot rolling method of slab
JPH0777642B2 (en) A method for preventing edge cracking in cold rolling of difficult-to-process materials
JP2000015315A (en) Method for controlling position of work roll and device therefor
JPS6238705A (en) Hot finish rolling method for austenitic stainless steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees