JP3993724B2 - Sheet rolling method - Google Patents

Sheet rolling method Download PDF

Info

Publication number
JP3993724B2
JP3993724B2 JP32768399A JP32768399A JP3993724B2 JP 3993724 B2 JP3993724 B2 JP 3993724B2 JP 32768399 A JP32768399 A JP 32768399A JP 32768399 A JP32768399 A JP 32768399A JP 3993724 B2 JP3993724 B2 JP 3993724B2
Authority
JP
Japan
Prior art keywords
plate
rolling
incident angle
shape ratio
plate incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32768399A
Other languages
Japanese (ja)
Other versions
JP2001137924A (en
Inventor
康宏 東田
茂 小川
健二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32768399A priority Critical patent/JP3993724B2/en
Publication of JP2001137924A publication Critical patent/JP2001137924A/en
Application granted granted Critical
Publication of JP3993724B2 publication Critical patent/JP3993724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、板状の金属製品を圧延によって製造する圧延方法に関する。
【0002】
【従来の技術】
板材の圧延時に発生する反りは、圧延能率の低下、設備事故の発生、精整工程の増加など、製品の生産性に多大な影響を及ぼす。例えば、精整工程に関しては、レベラー、プレス等による反りの矯正が必要となり、極端な場合、不良部を切断しなければならないこともある。また、さらに大きな反りが発生した場合、板の衝突によって、圧延設備が破損することもある。この場合、板自体が製品価値を失うばかりでなく、生産停止、圧延設備の修理など多大の損害をもたらす。
【0003】
圧延反りが発生するメカニズムについては、必ずしも全て解明されている訳ではないが、一般に、下記の圧延条件が原因であると言われている。
1)上下のワークロールの径差
2)上下のワークロール周速の差
3)上下の、ワークロールと圧延材との摩擦係数の差
4)圧延材の上下の変形抵抗(上下温度差など)の差
5)幾何学条件
【0004】
したがって、上記の条件が全て上下対称であれば圧延反りは発生しないが、実際の板の製造においてはいずれかの条件が上下非対称となる場合が多く、その結果として反りが発生する。特に、摩擦係数と温度は上下対称にするのが困難であり、一般には主としてこの2つの原因で反りは発生すると考えられる。
この上下摩擦係数差および上下温度差で発生する反りを制御する方法の一つとして、幾何学条件を変化させる方法が考えられ、圧延材がロール間隙に入射する角度(板入射角α)により反りを制御する方法が、特開平5−23722号公報に示されている。
【0005】
【発明が解決しようとする課題】
前述の特開平5−23722号公報では、同一の板入射角αを付与した場合には、反り方向は一定であり、板入射側(上、下)と同じ側に反りが発生すると記述している。
しかしながら、後述するように、圧延条件(形状比Γ)によっては、同一の板入射角αを付与した場合においても発生する反り方向は異なる場合もあり、前述の特開平5−23722号公報を実施すれば、却って、反り量が増大することも起こりえる。
【0006】
本発明は、以上の点に鑑み、形状比Γに応じて板入射角αを変更することにより、低コストで効率よく、平坦な板状の金属製品を製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、かかる課題を解決するため、少なくとも上下にワークロール系を備えた圧延機により、板入射角αを付与する状態で板材を圧延する板圧延法において、形状比Γに基づいて、設定する板入射角αを算出して圧延を行うものである。
【0008】
すなわち、本発明の要旨とする処は、以下の通りである。
請求項1に係る発明は、少なくとも上下にワークロール系を備えた圧延機により、板入射角αを付与する状態で板材を圧延する板圧延法において、摩擦係数または温度を上下対称にするのが困難である場合で、同一の板入射角αで形状比Γを変化させて圧延した場合に発生する反りの方向が上下逆転する形状比Γを予め求めておき、形状比Γに基づいて、設定する板入射角αを算出し、前記Γ以外の形状比Γ及び前記算出した板入射角αで圧延を行うことを特徴とする板圧延方法。ただし、形状比Γは圧延材とワークロールとの接触投影弧長を入側と出側板厚の平均値で除した値とする。
【0009】
また、好ましくは、上記において形状比Γが、Γ<Γの場合には、板入射側(上、下)が、予測した反り側(上、下)と同じ側になるように板入射角αを制御し、Γ>Γの場合には、板入射側(上、下)が、予測した反り側(上、下)と逆側になるように板入射角αを制御して圧延を行うものである(請求項)。
【0010】
さらに好ましくは、少なくとも上下にワークロール系を備えた圧延機により、板入射角αを付与する状態で板材を圧延する板圧延法において、摩擦係数または温度を上下対称にするのが困難である場合で、同一の板入射角αで形状比Γを変化させて圧延した場合に発生する反りの方向が上下逆転する形状比Γ、およびΓに対する許容範囲の指標ΔΓを予め求めておき、形状比Γに基づいて、設定する板入射角αを算出し、Γ<Γ−ΔΓあるいは、Γ>Γ+ΔΓとなるような形状比Γ及び前記算出した板入射角αで圧延を行うものであり(請求項3)、より好ましくは、形状比Γが、Γ<Γ−ΔΓの場合には、板入射側(上、下)が、予測した反り側(上、下)と同じ側になるように板入射角αを制御し、Γ>Γ+ΔΓの場合には、板入射側(上、下)が、予測した反り側(上、下)と逆側になるように板入射角αを制御して圧延を行うものである(請求項4)。
【0011】
さらにより好ましくは、少なくとも上下にワークロール系を備えた圧延機により、板入射角αを付与する状態で板材を圧延する板圧延法において、摩擦係数または温度を上下対称にするのが困難である場合で、同一の板入射角αで形状比Γを変化させて圧延した場合に発生する反りの方向が上下逆転する形状比Γを予め求めておき、形状比Γに基づいて、設定する板入射角αを算出し、Γ<Γ−0.1あるいは、Γ>Γ+0.1となるような形状比Γ及び前記算出した板入射角αで圧延を行うものであり(請求項5)、より好ましくは、形状比Γが、Γ<Γ−0.1の場合には、板入射側(上、下)が、予測した反り側(上、下)と同じ側になるように板入射角αを制御し、Γ>Γ+0.1の場合には、板入射側(上、下)が、予測した反り側(上、下)と逆側になるように板入射角αを制御して圧延を行うものである(請求項6)。
【0012】
【発明の実施の形態】
以下、本発明を図面に基づいて詳細に説明する。図1に、本発明を圧延機に適用する一例を示す。ローラーテーブル4の上に設置された圧延材3は、上ワークロール1と下ワークロール2で所定の板厚に圧延される。上ロール系は、上ワークロール1と上バックアップロール5とから構成され、下ロール系は、下ワークロール2と下バックアップロール6とから構成される。なお、材料の先端が上下ロールに接した時点での材料下面3aがローラーテーブルと平行な面4aとのなす角度を板入射角αと定義する。ここで、αの正負の符号は、材料が上から下に向かってロールバイトに噛み込む場合を正、逆に材料が下から上に向かってロールバイトに噛み込む場合を負と定義する。図1の場合、αは負ということになる。
【0013】
図1に示す圧延機においてリバース圧延を行う場合に反りが生じると、前述したように、圧延の中断、大事故の発生等の大きな問題が生じる。この反りを制御する方法として、板入射角αを変化させ、幾何学的な上下差から反りを制御することが考えられるが、板入射角αを変化させて反り制御を実施するためには、板入射角αの付与によって発生する反り挙動を十分に把握する必要がある。
【0014】
板入射角αが反りに及ぼす影響に関しては、既に、特開平5−23722号公報に開示されており、同一の板入射角αを付与した場合には、反り方向は一定であり、板入射側(上、下)と同じ側に反りが発生すると記述されている(例えば、材料が上から下に向かってロールバイトに噛み込む場合には、常に、上方向に反りが発生するとしている)。しかしながら、圧延条件が異なれば、ロールバイト内の変形挙動も変化するために、条件によっては、同一の板入射角αを付与した場合においても発生する反り方向は異なる場合もありえると考えられる。
【0015】
そこで、発明者らは、板入射角αが反り発生挙動に及ぼす影響を詳細に調べた結果、圧延条件によっては、同一の板入射角αを付与した場合においても、発生する反り方向は異なる場合もあることを見出した。また、その挙動は、形状比Γによって、一律に整理できること、さらには、板厚、温度、速度、板入射角が変化しても、同一圧延機で圧延する限り、反り方向が上下逆転する形状比Γ0 は一定値を示すことを見出した。以下にその詳細を記す。なお、反り曲率κ* の定義は次の通りである。
反り曲率(規格化)κ* =R/ρ
R :ワークロール半径
ρ :反り曲率半径
κ* の符号
+ :上反り
− :下反り
【0016】
発明者らは、まず、下記の実験条件に基づき、板入射角α以外の条件を全て上下対称として、板入射角αを変化させた圧延実験を実施した。その結果を図2に示す。図2(a)は、α>0゜(材料が上から下に向かってロールバイトに噛み込む条件)とした場合の反り挙動であり、図2(b)は、α<0゜とした場合の反り挙動である。いずれのαの場合においても、形状比Γ<0.9の圧延条件では、板入射側(上、下)と同じ側に反りが発生するが、形状比Γ>0.9の圧延条件では、板入射側(上、下)と逆側に反りが発生することが分かる。すなわち、同一の板入射角αを付与した場合においても、形状比Γによって反り方向は逆転することになる。
【0017】
(実験条件)
ワークロール直径D (mm) : 800
入側板厚 H (mm) : 50,100
素材温度 t (℃) : 1,000
ロール周速度 V (m/min) : 100
板入射角 α (゜) : −6〜6
圧下率 r (%) : 0〜52
【0018】
そこで、発明者らは、板入射角αが反り発生に及ぼす挙動をさらに詳細に把握するために、ワークロール直径D、入側板厚H、材料温度t、ロール速度V、圧下率rおよび板入射角αを変化させ、別途、圧延実験を行った。表1に、その実験範囲を示す。なお、図2の実験条件の場合と同様、板入射角α以外の条件は、全て上下対称とした。その結果、表1の全ての条件において、図2の挙動と同様、ある形状比Γ0 以下では、板入射側(上、下)と同じ側に反りが発生し、その形状比Γ0 以上では、板入射側(上、下)と逆側に反りが発生することがを明らかになった。
【0019】
【表1】

Figure 0003993724
【0020】
次に、発明者らは、表1の実験におけるΓ0 の値を調べた。そのΓ0 の挙動を表2に示すが、板厚、温度、速度、板入射角αが変化しても、同一圧延機で圧延する限り、反り方向が上下逆転する形状比Γ0 は一定値を示すことが分かる。したがって、一度ある一定のαでΓを変化させてΓ0 を求めれば、圧延機が同一である限り、このΓ0 は、あらゆる条件に対して、反りが反転するΓとして用いることができることになる。
【0021】
【表2】
Figure 0003993724
【0022】
以上の結果から、発明者らは、予め一定の板入射角αの条件で、形状比Γを変化させた実験、あるいは有限要素法によるモデル計算等を行ってΓ0 を求めた上で、形状比ΓがΓ≠Γ0 となるように圧延すれば、板厚、温度、速度、板入射角が変化しても、板入射角αの設定のみで、反り制御が可能となることを見出した。そして、いずれの圧延条件においても、Γ<Γ0 の場合には、板入射側(上、下)が、予測した反り側(上、下)と同じ側になるように板入射角αを制御し、Γ>Γ0 の場合には、板入射側(上、下)が、予測した反り側(上、下)と逆側になるように板入射角αを制御すれば良いことも見出した。
【0023】
さらに、初期板厚H(例えばスラブ厚)から複数パスで最終板厚hまで圧延する場合においても、全パスの形状比ΓがΓ≠Γ0 となるように、パス間の圧下スケジュールを設定すれば、全てのパスで板入射角αによる制御が可能である。これは、形状比Γは、入側板厚、出側板厚、ワークロール直径のみで決定できるので、各パスの圧延荷重、圧延トルク、クラウン制御能力等を考慮して、圧延実行前に各パスの形状比Γを決めることができるからである。なお、この時に設定するパススケジュールの形状比Γは、反り制御の安定性の観点からは、Γ0 との差が大きい方が望ましい。しかしながら、Γ0 との差を大きくすると、パススケジュールの制約が強くなる。表2の結果によれば、全てのΓ0 が平均値のΓ0 ±0.1以内に含まれることから、その範囲をΓ0 ±ΔΓで表示すると、形状比ΓがΓ<Γ0 −ΔΓ、Γ0 +ΔΓ<Γ(ここで、ΔΓ=0.1)とすることが好ましい。ただし、Γ0 の許容範囲の指標であるΔΓは、反り制御の安定性への要求度などにも依存するので、適宜、必要な値を用いれば良い。
【0024】
各パスの圧下スケジュール決定後は、実際の圧延時に、板入射角αによる反り制御を実施すれば良い。付与すべき板入射角αに関しては、予め、反り曲率、圧延条件および板入射角αの関係を実験等で求めておき、その結果から算出すれば良い。板入射角αの値自体は、例えばローラーテーブル4を上下させること等で、変化させることができる。本制御手順をまとめて、図3にフローチャートの例を示す。
【0025】
なお、同じミルであっても、大幅に圧延条件が異なる場合には(例えば、材質が大きく異なる等)、Γ0 も変化する可能性もあるので、その場合は別途、その条件でΓ0 を求めておけば良い。
また、上記の説明では、リバース圧延を例に用いたが、各スタンドでのΓ0 を求めれば、タンデム圧延に用いることが可能なことはいうまでもない。
【0026】
【実施例】
ロール径1000mmのワークロール系を備えた圧延機を用いて、板厚150mm、板幅1760mmのスラブを板厚60mmまで圧延した。スラブの加熱条件は全て同一とした。
実施例では、まずは、この圧延機でのΓ0 を調べるために、板入射角α=4゜の圧延を実施した。その結果Γ0 =1.00であった。そこで、各パスの形状比ΓがΓ≠Γ0 =1.00となるように、パススケジュールを調整した上で、板入射角αによる反り制御を実施した。条件1(制御前)では、板入射角α=0゜として、全パスを圧延した。その結果を表3に示すが、全てのパスにおいて、上下温度差あるいは上下摩擦係数差が原因と推定される上反りが発生した。条件2 (制御後)では、各パスに対して、形状比Γに対応した板入射角αを設定することにより反り制御を行った。反りを解消する板入射角αは、予め実施しておいた圧延実験に基づく回帰式を用いて算出した。その結果、表3から分かるように、板入射角αよる反り制御は有効に作用し、いずれのパスにおいても圧延反りは極めて微少なものになった。
【0027】
一方、比較例でも、実施例と同じミルで5パスの圧延を行った。パススケジュールは特に形状比Γを考慮せずに設定した。条件1(制御前:α=0゜)では、表3に示すように、全てのパスで上反りが発生した。制御前の圧延では全パス上反りであったので、特開平5−23722号公報に基づき、条件2(制御後)では、全パスα=−2゜として、反り制御を実施した。
しかしながら、Γ≒Γ0 =1.00となった3パス目と4パス目では、板入射角αの効果はなく、そのパスでは、反りを低減することはできなかった。さらに、Γ>Γ0 となった5パス目では、逆効果の制御を実施したことになり、制御前よりも大きな反りが発生した。
【0028】
【表3】
Figure 0003993724
【0029】
【発明の効果】
以上のように、この発明に係る圧延方法によれば、反りの無い板を容易に製造できることを可能としたので、形状の優れた板状の金属製品を効率よく生産できる効果がある。
【図面の簡単な説明】
【図1】本発明を適用する圧延機の例を示す図。
【図2】板入射角αを付与した場合における、形状比Γと圧延反り方向との関係を示す図。
【図3】本発明の制御手順のフローチャートの例を示す図。
【符号の説明】
1 上ワークロール
2 下ワークロール
3 圧延材料
4 ローラーテーブル
5 上バックアップロール
6 下バックアップロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rolling method for producing a plate-shaped metal product by rolling.
[0002]
[Prior art]
The warpage that occurs during the rolling of the plate material greatly affects the productivity of the product, such as a reduction in rolling efficiency, occurrence of equipment accidents, and an increase in the finishing process. For example, in the refining process, it is necessary to correct the warp by a leveler, a press or the like, and in an extreme case, a defective part may have to be cut. Further, when a larger warp occurs, the rolling equipment may be damaged by the collision of the plates. In this case, the plate itself not only loses its product value, but also causes great damage such as production stoppage and repair of rolling equipment.
[0003]
Although not all of the mechanisms that cause rolling warpage have been elucidated, it is generally said that the following rolling conditions are the cause.
1) Diameter difference between upper and lower work rolls
2) Difference in peripheral speed between upper and lower work rolls
3) Difference in coefficient of friction between work roll and rolled material at the top and bottom
4) Difference in upper and lower deformation resistance (such as upper and lower temperature difference ) of rolled material
5) Geometric conditions [0004]
Therefore, if all of the above conditions are vertically symmetric, rolling warpage does not occur. However, in actual production of a plate, any of the conditions is often vertically asymmetric, resulting in warpage. In particular, it is difficult to make the friction coefficient and the temperature symmetric, and it is generally considered that warpage occurs mainly due to these two causes.
As a method for controlling the warpage caused by the difference in the upper and lower friction coefficient and the upper and lower temperature difference, a method of changing the geometric condition is conceivable, and the warpage depends on the angle at which the rolled material enters the roll gap (plate incident angle α). JP-A-5-23722 discloses a method for controlling the above.
[0005]
[Problems to be solved by the invention]
In the above-mentioned Japanese Patent Application Laid-Open No. 5-23722, it is described that when the same plate incident angle α is given, the warping direction is constant, and warpage occurs on the same side as the plate incident side (upper and lower). Yes.
However, as will be described later, depending on the rolling conditions (shape ratio Γ), the warp direction that occurs even when the same plate incident angle α is applied may differ, and the above-mentioned Japanese Patent Laid-Open No. 5-23722 is implemented. On the contrary, the amount of warpage may increase.
[0006]
In view of the above points, the present invention has an object to provide a method for manufacturing a flat plate-shaped metal product at low cost and efficiently by changing the plate incident angle α according to the shape ratio Γ. To do.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, the present invention is set based on the shape ratio Γ in a plate rolling method in which a plate material is rolled in a state in which a plate incident angle α is imparted by a rolling mill equipped with a work roll system at least up and down The plate incident angle α is calculated and rolled.
[0008]
That is, the subject matter of the present invention is as follows.
The invention according to claim 1 is that the friction coefficient or the temperature is made symmetrical in the plate rolling method in which the plate material is rolled in a state in which the plate incident angle α is given by a rolling mill having at least the upper and lower work roll systems. If it is difficult, the shape ratio Γ 0 in which the direction of warpage generated when rolling is performed while changing the shape ratio Γ at the same plate incident angle α is reversed in advance, and based on the shape ratio Γ, A plate rolling method characterized in that a plate incident angle α to be set is calculated, and rolling is performed at a shape ratio Γ other than Γ 0 and the calculated plate incident angle α . However, the shape ratio Γ is a value obtained by dividing the contact projected arc length between the rolled material and the work roll by the average value of the inlet and outlet plate thicknesses.
[0009]
Preferably, in the above, when the shape ratio Γ is Γ <Γ 0 , the plate incidence side (upper, lower) is on the same side as the predicted warpage side (upper, lower). If the angle α is controlled and Γ> Γ 0 , rolling is performed by controlling the plate incident angle α so that the plate incident side (up, down) is opposite to the predicted warp side (up, down). (Claim 2 ).
[0010]
More preferably, when it is difficult to make the friction coefficient or the temperature symmetrical in the plate rolling method in which the plate material is rolled in a state where the plate incident angle α is given by a rolling mill provided with at least the upper and lower work roll systems. Then, a shape ratio Γ 0 in which the direction of warpage generated when rolling is performed while changing the shape ratio Γ at the same plate incident angle α, and an allowable range index ΔΓ for Γ 0 are obtained in advance. The plate incidence angle α to be set is calculated based on the ratio Γ, and rolling is performed at the shape ratio Γ and the calculated plate incidence angle α such that Γ <Γ 0 −ΔΓ or Γ> Γ 0 + ΔΓ. Yes (Claim 3), more preferably, when the shape ratio Γ is Γ <Γ 0 −ΔΓ, the plate incident side (up, down) is on the same side as the predicted warp side (up, down). controls plate incidence angle α so that, in the case of Γ> Γ 0 + ΔΓ a plate entrance side ( , Below), predicted warp side (upper, and performs rolling by controlling the plate incidence angle α so that the opposite side down) (claim 4).
[0011]
Even more preferably, it is difficult to make the friction coefficient or the temperature symmetrical in the plate rolling method in which the plate material is rolled in a state in which the plate incident angle α is given by a rolling mill having at least the upper and lower work roll systems. In this case, a shape ratio Γ 0 in which the direction of warpage generated when rolling is performed while changing the shape ratio Γ at the same plate incident angle α is obtained in advance, and the plate to be set based on the shape ratio Γ The incident angle α is calculated, and rolling is performed at a shape ratio Γ such that Γ <Γ 0 −0.1 or Γ> Γ 0 +0.1 and the calculated plate incident angle α (Claim 5). More preferably, when the shape ratio Γ is Γ <Γ 0 −0.1, the plate incident side (up and down) is the same side as the predicted warp side (up and down). controls plate angle of incidence alpha, in the case of gamma> gamma 0 +0.1 a plate incident side (top, bottom) is predicted Ri side (top, bottom) and performs rolling by controlling the plate incidence angle α so that the opposite side (claim 6).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example in which the present invention is applied to a rolling mill. The rolled material 3 installed on the roller table 4 is rolled to a predetermined plate thickness by the upper work roll 1 and the lower work roll 2. The upper roll system includes an upper work roll 1 and an upper backup roll 5, and the lower roll system includes a lower work roll 2 and a lower backup roll 6. In addition, the angle which the material lower surface 3a when the front-end | tip of a material contact | connects an up-and-down roll and the surface 4a parallel to a roller table is defined as plate incident angle (alpha). Here, the sign of α is defined as positive when the material bites into the roll bite from top to bottom and conversely as negative when the material bites into the roll bite from bottom to top. In the case of FIG. 1, α is negative.
[0013]
If warping occurs when reverse rolling is performed in the rolling mill shown in FIG. 1, as described above, major problems such as interruption of rolling and occurrence of a major accident occur. As a method of controlling the warp, it is conceivable to change the plate incident angle α and control the warp from a geometrical difference between the top and bottom, but in order to control the warp by changing the plate incident angle α, It is necessary to sufficiently grasp the warping behavior that occurs due to the provision of the plate incident angle α.
[0014]
The influence of the plate incident angle α on the warp has already been disclosed in Japanese Patent Application Laid-Open No. 5-23722. When the same plate incident angle α is given, the warp direction is constant, and the plate incident side It is described that warpage occurs on the same side as (upper and lower) (for example, when a material bites into a roll bite from top to bottom, warpage always occurs in the upward direction). However, if the rolling conditions are different, the deformation behavior in the roll tool also changes. Therefore, depending on the conditions, it is considered that the warping direction that occurs even when the same plate incident angle α is applied may be different.
[0015]
Therefore, the inventors have investigated in detail the influence of the plate incident angle α on the warp generation behavior, and depending on the rolling conditions, even when the same plate incident angle α is given, the generated warp direction is different. I found that there is also. In addition, the behavior can be uniformly arranged by the shape ratio Γ, and even if the plate thickness, temperature, speed, and plate incident angle are changed, the shape in which the warping direction is reversed up and down as long as rolling is performed with the same rolling mill. It has been found that the ratio Γ 0 shows a constant value. The details are described below. The definition of the curvature of curvature κ * is as follows.
Warpage curvature (normalized) κ * = R / ρ
R: Work roll radius ρ: Sign of warping radius of curvature κ * +: Upper warping-: Lower warping
The inventors first performed a rolling experiment in which the plate incident angle α was changed based on the following experimental conditions with all the conditions other than the plate incident angle α being vertically symmetrical. The result is shown in FIG. Fig. 2 (a) shows the warping behavior when α> 0 ° (the condition that the material bites into the roll bite from top to bottom), and Fig. 2 (b) shows the case when α <0 °. This is the warpage behavior. In any case of α, warping occurs on the same side as the plate incident side (upper and lower) under the rolling condition of shape ratio Γ <0.9, but in the rolling condition of shape ratio Γ> 0.9, It can be seen that warpage occurs on the plate incident side (upper and lower) and the opposite side. That is, even when the same plate incident angle α is given, the warping direction is reversed by the shape ratio Γ.
[0017]
(Experimental conditions)
Work roll diameter D (mm): 800
Entry side thickness H (mm): 50,100
Material temperature t (° C.): 1,000
Roll peripheral speed V (m / min): 100
Plate incident angle α (°): -6 to 6
Reduction ratio r (%): 0 to 52
[0018]
Therefore, in order to understand in more detail the behavior of the plate incident angle α on the occurrence of warpage, the work roll diameter D, the entry side plate thickness H, the material temperature t, the roll speed V, the rolling reduction rate r, and the plate incidence. A rolling experiment was separately performed by changing the angle α. Table 1 shows the experimental range. As in the case of the experimental conditions in FIG. 2, all the conditions other than the plate incident angle α are vertically symmetrical. As a result, in all the conditions in Table 1, similar to the behavior of the Figure 2, in some shape ratio gamma 0 or less, the plate incident side (top, bottom) warpage occurs on the same side as, in its shape ratio gamma 0 or more It was revealed that warpage occurred on the plate incident side (upper and lower) and the opposite side.
[0019]
[Table 1]
Figure 0003993724
[0020]
Next, the inventors examined the value of Γ 0 in the experiment of Table 1. The behavior of Γ 0 is shown in Table 2. Even if the plate thickness, temperature, speed, and plate incident angle α change, the shape ratio Γ 0 in which the warping direction is reversed up and down is constant as long as rolling is performed in the same rolling mill. It can be seen that Therefore, once Γ is changed by a certain α to obtain Γ 0 , as long as the rolling mill is the same, this Γ 0 can be used as Γ in which the warp is reversed for all conditions. .
[0021]
[Table 2]
Figure 0003993724
[0022]
From the above results, the inventors obtained the Γ 0 after obtaining the Γ 0 by performing an experiment in which the shape ratio Γ was changed in advance under the condition of a constant plate incident angle α, or performing a model calculation by a finite element method or the like. It has been found that if the ratio Γ is rolled so that Γ ≠ Γ 0 , the warp can be controlled only by setting the plate incident angle α even if the plate thickness, temperature, speed, and plate incident angle change. . In any rolling condition, when Γ <Γ 0 , the plate incident angle α is controlled so that the plate incident side (up and down) is the same side as the predicted warp side (up and down). In addition, when Γ> Γ 0 , it was found that the plate incident angle α may be controlled so that the plate incident side (up and down) is opposite to the predicted warp side (up and down). .
[0023]
Furthermore, even when rolling from the initial sheet thickness H (for example, slab thickness) to the final sheet thickness h by multiple passes, the rolling reduction schedule between passes should be set so that the shape ratio Γ of all passes is Γ ≠ Γ 0. For example, the plate incident angle α can be controlled in all passes. This is because the shape ratio Γ can be determined only by the entry side plate thickness, the exit side plate thickness, and the work roll diameter. Therefore, considering the rolling load, rolling torque, crown control capability, etc. of each pass, This is because the shape ratio Γ can be determined. It is desirable that the shape ratio Γ of the path schedule set at this time has a larger difference from Γ 0 from the viewpoint of the stability of warpage control. However, if the difference from Γ 0 is increased, the restrictions on the path schedule become stronger. According to the results of Table 2, since all Γ 0 are included within the average value Γ 0 ± 0.1, when the range is represented by Γ 0 ± ΔΓ, the shape ratio Γ is Γ <Γ 0 −ΔΓ. , Γ 0 + ΔΓ <Γ (where ΔΓ = 0.1). However, ΔΓ, which is an index of the allowable range of Γ 0 , also depends on the degree of demand for the stability of warpage control, and therefore a necessary value may be used as appropriate.
[0024]
After determining the rolling schedule for each pass, warpage control by the plate incident angle α may be performed during actual rolling. With respect to the plate incident angle α to be applied, the relationship between the curvature of curvature, the rolling conditions, and the plate incident angle α is obtained in advance through experiments or the like, and may be calculated from the results. The value of the plate incident angle α itself can be changed by moving the roller table 4 up and down, for example. This control procedure is summarized and an example of a flowchart is shown in FIG.
[0025]
Even in the same mill, if significant rolling conditions are different (for example, the material is very different, etc.), since gamma 0 may possibly vary, separately case, the gamma 0 with the condition Find it.
In the above description, reverse rolling is used as an example. Needless to say, if Γ 0 at each stand is obtained, it can be used for tandem rolling.
[0026]
【Example】
Using a rolling mill equipped with a work roll system having a roll diameter of 1000 mm, a slab having a plate thickness of 150 mm and a plate width of 1760 mm was rolled to a plate thickness of 60 mm. All slab heating conditions were the same.
In the example, first, in order to investigate Γ 0 in this rolling mill, rolling with a plate incident angle α = 4 ° was performed. As a result, Γ 0 = 1.00. Therefore, the warp control by the plate incident angle α was performed after adjusting the path schedule so that the shape ratio Γ of each path was Γ ≠ Γ 0 = 1.00. In condition 1 (before control), all passes were rolled with a plate incident angle α = 0 °. The results are shown in Table 3. In all the passes, there was warpage estimated to be caused by the difference in vertical temperature or the difference in vertical friction coefficient. In condition 2 (after control), warpage control was performed by setting a plate incident angle α corresponding to the shape ratio Γ for each path. The plate incident angle α for eliminating the warp was calculated using a regression equation based on a rolling experiment performed in advance. As a result, as can be seen from Table 3, the warpage control by the plate incident angle α worked effectively, and the rolling warpage was extremely small in any pass.
[0027]
On the other hand, also in the comparative example, rolling of 5 passes was performed by the same mill as the example. The pass schedule was set without considering the shape ratio Γ. Under condition 1 (before control: α = 0 °), as shown in Table 3, warping occurred in all passes. In rolling before the control, the warp was warped on all the paths. Therefore, based on Japanese Patent Application Laid-Open No. 5-23722, the warp control was performed on condition 2 (after control) with all the paths α = −2 °.
However, in the third pass and the fourth pass where Γ≈Γ 0 = 1.00, there is no effect of the plate incident angle α, and the warp cannot be reduced in that pass. Further, in the fifth pass where Γ> Γ 0 , the reverse effect control was performed, and a larger warp than before the control occurred.
[0028]
[Table 3]
Figure 0003993724
[0029]
【The invention's effect】
As described above, according to the rolling method of the present invention, it is possible to easily produce a warp-free plate, and therefore, there is an effect that a plate-shaped metal product having an excellent shape can be efficiently produced.
[Brief description of the drawings]
FIG. 1 shows an example of a rolling mill to which the present invention is applied.
FIG. 2 is a diagram showing a relationship between a shape ratio Γ and a rolling warp direction when a plate incident angle α is given.
FIG. 3 is a diagram showing an example of a flowchart of a control procedure according to the present invention.
[Explanation of symbols]
1 Upper work roll 2 Lower work roll 3 Rolled material 4 Roller table 5 Upper backup roll 6 Lower backup roll

Claims (6)

少なくとも上下にワークロール系を備えた圧延機により、板入射角αを付与する状態で板材を圧延する板圧延法において、摩擦係数または温度を上下対称にするのが困難である場合で、同一の板入射角αで形状比Γを変化させて圧延した場合に発生する反りの方向が上下逆転する形状比Γを予め求めておき、形状比Γに基づいて、設定する板入射角αを算出し、前記Γ以外の形状比Γ及び前記算出した板入射角αで圧延を行うことを特徴とする板圧延方法。ただし、形状比Γは圧延材とワークロールとの接触投影弧長を入側と出側板厚の平均値で除した値。In the plate rolling method in which the plate material is rolled in a state where the plate incident angle α is given by a rolling mill equipped with a work roll system at least up and down, it is difficult to make the friction coefficient or temperature symmetrical in the vertical direction. A shape ratio Γ 0 in which the direction of warpage generated when rolling is performed while changing the shape ratio Γ at the plate incidence angle α is obtained in advance, and the set plate incidence angle α is calculated based on the shape ratio Γ. And rolling with a shape ratio Γ other than Γ 0 and the calculated plate incident angle α . However, the shape ratio Γ is a value obtained by dividing the contact projected arc length between the rolled material and the work roll by the average value of the inlet and outlet plate thicknesses. 形状比Γが、Γ<Γの場合には、板入射側(上、下)が、予測した反り側(上、下)と同じ側になるように板入射角αを制御し、Γ>Γの場合には、板入射側(上、下)が、予測した反り側(上、下)と逆側になるように板入射角αを制御することを特徴とする請求項1に記載の板圧延方法。When the shape ratio Γ is Γ <Γ 0 , the plate incident angle α is controlled so that the plate incident side (up and down) is the same side as the predicted warp side (up and down), and Γ> 2. In the case of Γ 0 , the plate incident angle α is controlled so that the plate incident side (up and down) is opposite to the predicted warp side (up and down). Plate rolling method. 少なくとも上下にワークロール系を備えた圧延機により、板入射角αを付与する状態で板材を圧延する板圧延法において、摩擦係数または温度を上下対称にするのが困難である場合で、同一の板入射角αで形状比Γを変化させて圧延した場合に発生する反りの方向が上下逆転する形状比Γ、およびΓに対する許容範囲の指標であるΔΓを予め求めておき、形状比Γに基づいて、設定する板入射角αを算出し、Γ<Γ−ΔΓあるいは、Γ>Γ+ΔΓとなるような形状比Γ及び前記算出した板入射角αで圧延を行うことを特徴とする圧延方法。In the plate rolling method in which the plate material is rolled in a state where the plate incident angle α is given by a rolling mill equipped with a work roll system at least up and down, it is difficult to make the friction coefficient or temperature symmetrical in the vertical direction. The shape ratio Γ 0 , in which the direction of warpage generated when rolling is performed while changing the shape ratio Γ at the plate incident angle α, and ΔΓ, which is an index of the allowable range for Γ 0 , are obtained in advance. The plate incident angle α to be set is calculated based on the above , and rolling is performed at a shape ratio Γ such that Γ <Γ 0 −ΔΓ or Γ> Γ 0 + ΔΓ and the calculated plate incident angle α. Sheet rolling method. 形状比Γが、Γ<Γ−ΔΓの場合には、板入射側(上、下)が、予測した反り側(上、下)と同じ側になるように板入射角αを制御し、Γ>Γ+ΔΓの場合には、板入射側(上、下)が、予測した反り側(上、下)と逆側になるように板入射角αを制御することを特徴とする請求項3に記載の板圧延方法。When the shape ratio Γ is Γ <Γ 0 −ΔΓ, the plate incident angle α is controlled so that the plate incident side (up and down) is the same side as the predicted warp side (up and down), When Γ> Γ 0 + ΔΓ, the plate incident angle α is controlled so that the plate incident side (up, down) is opposite to the predicted warp side (up, down). 3. The plate rolling method according to 3. 少なくとも上下にワークロール系を備えた圧延機により、板入射角αを付与する状態で板材を圧延する板圧延法において、摩擦係数または温度を上下対称にするのが困難である場合で、同一の板入射角αで形状比Γを変化させて圧延した場合に発生する反りの方向が上下逆転する形状比Γを予め求めておき、形状比Γに基づいて、設定する板入射角αを算出し、Γ<Γ−0.1あるいは、Γ>Γ+0.1となるような形状比Γ及び前記算出した板入射角αで圧延を行うことを特徴とする圧延方法。In the plate rolling method in which the plate material is rolled in a state where the plate incident angle α is given by a rolling mill equipped with a work roll system at least up and down, it is difficult to make the friction coefficient or temperature symmetrical in the vertical direction. A shape ratio Γ 0 in which the direction of warpage generated when rolling is performed while changing the shape ratio Γ at the plate incidence angle α is obtained in advance, and the set plate incidence angle α is calculated based on the shape ratio Γ. and, Γ <Γ 0 -0.1 or, gamma> plate rolling method and performing rolling at gamma 0 +0.1 become such a shape ratio gamma and the calculated plate incident angle alpha. 形状比Γが、Γ<Γ−0.1の場合には、板入射側(上、下)が、予測した反り側(上、下)と同じ側になるように板入射角αを制御し、Γ>Γ+0.1の場合には、板入射側(上、下)が、予測した反り側(上、下)と逆側になるように板入射角αを制御することを特徴とする請求項5に記載の板圧延方法。When the shape ratio Γ is Γ <Γ 0 −0.1, the plate incident angle α is controlled so that the plate incident side (upper and lower) is the same side as the predicted warp side (upper and lower). When Γ> Γ 0 +0.1, the plate incident angle α is controlled so that the plate incident side (up and down) is opposite to the predicted warp side (up and down). The plate rolling method according to claim 5.
JP32768399A 1999-11-18 1999-11-18 Sheet rolling method Expired - Fee Related JP3993724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32768399A JP3993724B2 (en) 1999-11-18 1999-11-18 Sheet rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32768399A JP3993724B2 (en) 1999-11-18 1999-11-18 Sheet rolling method

Publications (2)

Publication Number Publication Date
JP2001137924A JP2001137924A (en) 2001-05-22
JP3993724B2 true JP3993724B2 (en) 2007-10-17

Family

ID=18201820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32768399A Expired - Fee Related JP3993724B2 (en) 1999-11-18 1999-11-18 Sheet rolling method

Country Status (1)

Country Link
JP (1) JP3993724B2 (en)

Also Published As

Publication number Publication date
JP2001137924A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
CN110614273B (en) Method for rolling checkered plate by thin slab
JP6915737B2 (en) Manufacturing method of hat-shaped steel sheet pile
CN112007950A (en) Rolling method of bundle strip steel with tensile strength of 500MPa
JP5924320B2 (en) Method for reducing tip warpage of hot-rolled steel sheet in hot finish rolling
JP3993724B2 (en) Sheet rolling method
JP2008161883A (en) Warp control method of thick steel plate
JP3401429B2 (en) Plate rolling method
JP3540883B2 (en) Plate rolling method
JP2008254026A (en) Method of manufacturing high tensile strength metal strip having excellent press formability
JP3777046B2 (en) Sheet rolling method
CN110479761A (en) A kind of multi- pass rolling metal plate device and method
JP6089795B2 (en) Apparatus and method for manufacturing a differential thickness steel plate having a taper thickness difference in the plate width direction
JP3828767B2 (en) Sheet rolling method
JPS6076203A (en) Edger rolling method of sheet material
JP6747256B2 (en) Method for manufacturing H-section steel
JPH10180326A (en) Plate rolling method
JPH09271819A (en) Plate rolling method
JP2005021960A (en) Manufacturing method and manufacturing apparatus for steel plate
JP2010023054A (en) Method of hot-rolling aluminum base stock
CN118616485A (en) Technological method for inhibiting edge cracking and belt breakage in rolling of titanium alloy precise sheet
JP2009274111A (en) Method of manufacturing rolled material
JPS5813242B2 (en) Itazaino Atsuenhou
JP3728893B2 (en) Temper rolling method for metal sheet
JPH07164014A (en) Device and method for rolling plate
JP5214326B2 (en) Rolled material manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070727

R151 Written notification of patent or utility model registration

Ref document number: 3993724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees