JP3595369B2 - Method for producing austenitic stainless steel sheet with excellent surface quality - Google Patents

Method for producing austenitic stainless steel sheet with excellent surface quality Download PDF

Info

Publication number
JP3595369B2
JP3595369B2 JP8147395A JP8147395A JP3595369B2 JP 3595369 B2 JP3595369 B2 JP 3595369B2 JP 8147395 A JP8147395 A JP 8147395A JP 8147395 A JP8147395 A JP 8147395A JP 3595369 B2 JP3595369 B2 JP 3595369B2
Authority
JP
Japan
Prior art keywords
rolling
slab
hot rolling
equivalent
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8147395A
Other languages
Japanese (ja)
Other versions
JPH08277423A (en
Inventor
利行 末廣
慎一 寺岡
詠一朗 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8147395A priority Critical patent/JP3595369B2/en
Publication of JPH08277423A publication Critical patent/JPH08277423A/en
Application granted granted Critical
Publication of JP3595369B2 publication Critical patent/JP3595369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Control Of Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、鋳片と鋳型内壁面の間に相対速度差のない、所謂双ロール法等の同期式連続鋳造プロセスにおいて、表面品質の優れたオーステナイト系ステンレス鋼薄板の製造方法に関するものである。
【0002】
【従来の技術】
同期式連続鋳造プロセスとは、例えば「鉄と鋼」’85−A197〜A256に特集された論文に紹介されているような、双ロール法、双ベルト法、単ロール法等、鋳片と鋳型内壁面の間に相対速度差のない同期式連続鋳造プロセスである。これら同期式連続鋳造プロセスの一つである双ロール式連続鋳造法は、平行または傾斜配置した一対の同径あるいは異径冷却ドラムとその両端面をシールするサイド堰とによって構成された連続鋳造鋳型内に溶鋼を注入し、両冷却ドラムの周面上にそれぞれ凝固殻を生成させ、回転する両冷却ドラムの最接近位置(所謂「キッシングポイント」)付近で凝固殻同士を合体させて一体の薄帯状鋳片とする連続鋳造法である。
【0003】
例えば、双ロール式連続鋳造法により鋳造される薄帯状鋳片は、厚さ数mm(通常2〜5mm程度)であり、従来の熱間圧延を経ずに冷間圧延を行って薄板製品を製造することができる。そのため、振動鋳型等を用いる連続鋳造により厚さ100mm超の熱間圧延用スラブを鋳造し、これを熱間圧延してから冷間圧延する従来の製造方法(スラブ鋳造−熱間圧延プロセス)に比べて、生産効率およびコストが格段に有利となる。
【0004】
しかし、双ロール式連続鋳造法等により鋳造した薄帯状鋳片を熱間圧延を経ずに冷間圧延した製品には、種々の表面欠陥が発生する場合がある。
例えば、特開平2−19426号公報に述べられているように、冷間圧延後の表面に鋳片の粗大な結晶粒が原因するローピング(表面肌荒れ)が発生する。また、鋳造割れ等を安定的に防止するために冷却ドラム周面にディンプルを形成させた双ロール式連続鋳造法等で製造された製品には、特開平4−158957号公報に述べられているように、鋳造組織のδフェライト残存むらに対応する最終焼鈍後の粗粒・細粒組織が色調むらとなる光沢むらが発生する。
【0005】
これらの課題の内、ローピング対策として、特開平3−71902号公報に鋳片を圧延率(%)≧8.51×10−3×圧延温度(℃)+4.79を満たす条件で直接熱間圧延した後、焼鈍−冷間圧延−最終焼鈍を施すことによってローピングを防止することが提案されている。しかしながら、鋳造割れを防止する目的で冷却ドラム周面に配置されたディンプルが鋳片に転写され、熱間圧延時に凹部に倒れ込む疵、あるいは熱延ロールのヒートクラックによるロール肌荒れが鋳片表面へ転写された疵、さらには熱延ロールにビルドアップしたスケールの熱間圧延時の噛込み疵等が発生し、これらは形態の違いはあるものの冷延板製品に微小なヘゲ状疵となって残存し、表面品質を著しく損ねる。このように、熱間圧延を付加させた双ロール鋳造プロセスは、ローピングを改善する反面、冷延製品表面に疵が発生しやすくなると言う問題があった。
【0006】
また、光沢むら対策として、特開平4−158957号公報では冷却ドラム周面に設けたディンプルすべての隣接間隔を0.35mm以下とすることで、ディンプル凹凸に対応する不均一冷却を緩和して凝固組織を均一化するとともに、δ−Fecal.(%)を5〜9%に調整することで、凝固組織むら感受性を下げる方法が提案されている。しかし、所定のディンプルを加工するための方法が高価なフォトエッチ法等に限定され、安価なショットブラスト等の加工方法を用いることが出来ず、不慮のトラブルに備えて冷却ドラムの予備を多く持つことが必要となり、経済的でなく、品質的にもδ−Fecal.の成分規定のみでは安定した凝固組織を得ることができなかった。
【0007】
以上のように、従来技術には表面疵、ローピングおよび光沢むらの課題を同時に解決する手段について何ら開示されていない。
【0008】
【発明が解決しようとする課題】
本発明は、冷却ドラム周面にディンプルを形成させた双ロール法等の所謂同期式連続鋳造プロセスにおいて、特定の成分と鋳造後の熱間圧延と冷間圧延の合計圧延率を所要の条件範囲とすることによって、表面疵、ローピングおよび光沢むらを同時に改善した表面品質の優れたオーステナイト系ステンレス鋼薄板の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下の手段によって構成される。
ショットブラスト法によってランダムなディンプルを多数散在させた冷却ドラムの周面に同期して鋳片が移動する連続鋳造機により、オーステナイト系ステンレス鋼薄帯状鋳片を鋳造する製造方法において、重量%で、Cr+Mo+1.5Siで定義されるCr当量とNi+30(C+N)+0.5(Mn+Cu)で定義されるNi当量が下記(1)式を満足する成分組成とし、鋳造に続いて圧延率15%以下の1パス熱間圧延を行い、続いて水冷後600℃以下で巻き取って薄帯状鋳片とし、続いて該薄帯状鋳片をデスケーリングし、続いて前記熱間圧延における圧延率との累積圧下率が25〜40%となる圧延率で1パスの冷間圧延を行い、必要に応じて中間の焼鈍・冷間圧延を行い、続いて焼鈍・酸洗または光揮焼鈍を行うことを特徴とする表面品質の優れたオーステナイト系ステンレス鋼薄板の製造方法。
【0010】
Ni当量≦0.63×Cr当量−1.29 ………(1)
【0011】
【作用】
本発明者らはオーステナイト系ステンレス鋼を双ロール鋳造等によって鋳造して得た急冷凝固組織ままの鋳片を直接冷間圧延するときに発生するローピング現象を詳細に解析した。その結果、ローピングの程度は冷間圧延前の結晶粒径の大小に依存することを突き止めた。結晶粒径の大小の評価については、従来から便宜的に用いられている結晶粒の個数頻度の期待値として定義するD(=Σ2×SQR(3×S/2π)/n)が急冷凝固組織およびそれを圧延−熱処理した再結晶組織においては、それらの混粒状態を代表する指標値とは成りえないことが分かり、結晶粒の面積率(実際には体積率を考える必要があるが、体積を実測することは不可能であり、便宜上面積率をもって体積率とする)に対する期待値であるDave (=Σ2×SQR(3×S/2π)×S/S)を新たな指標値として定義した。
【0012】
当然のことながら、従来指標のDは結晶粒の個数頻度の期待値であるため、混粒組織では細粒側に平均値が現れる。しかしながら、ローピング現象は一つ一つの結晶粒、あるいは粗大粒と細粒コロニー(群)の存在に応じた板厚方向の変形差の総和が表面に現出する現象と理解され、等軸かつ細粒ほど板厚方向の累積変形差が平均化され、ローピングは良好となる。したがって、非常に粒径差の大きい混粒組織における平均結晶粒径の定義は面積率に対する期待値であるDave によって表現することが、組織の実態を表した指標となる。事実、本発明者らは、双ロール鋳造材を20〜40%の圧延率で熱間圧延した後の再結晶組織は現行CCスラブ−熱間圧延材ほど等軸粒ではなく、表層が細粒で中心部は粗粒傾向となることや、さらに、隣接する結晶粒とはかけ離れた粗大粒が出現することがあり、このような粗大粒は再結晶しても隣接する粒よりも大きいか、甚だしい場合は未再結晶として残存した混粒組織となり、ローピングの改善が不十分であることを観察している。
【0013】
以上から本発明者らは、等軸粒の場合はDに近い値になり、混粒の場合はその程度に応じてDからの乖離が大きくなり、ローピングに有害な粗大粒の影響が正しく反映できる指標値として平均粒径Dave を定義した。この定義で規定される再結晶粒径Dave を70μm以下に確保すれば、ローピングランク(1〜5ランクの官能評価)が2以下の合格レベルとすることができる(表2参照)。
【0014】
ローピングを防止するには、凝固組織をできるだけ等軸かつ細粒化することが必要であり、圧延−熱処理による再結晶を利用することが有効な方法である。熱間圧延による再結晶を利用するには、鋳片の初期粒径に対応した熱延率を確保する必要があり、本発明者らが検討した結果では、引き続く熱処理条件にも依存するが、約20〜40%の熱間圧延率を確保する必要がある。しかしながら、20%以上の熱間圧延を1パス圧延で行うと、鋳造割れを防止する目的で冷却ドラム周面に設けたディンプルの鋳片への転写部が熱間圧延時に倒れ込む疵、あるいは熱延ロールのヒートクラックによるロール肌荒れが鋳片表面へ転写された疵、さらには圧延ロールにビルドアップしたスケールの噛込み疵等が発生する問題があり、冷間圧延前のコイルグラインダー等の機械的研削を省略した場合に、表面疵のない冷延板を製造することが困難である。そこで、本発明では鋳造機に直結した熱間圧延機により軽度な熱間圧延を行い、デスケーリングに引き続いて軽度な冷間圧延を実施することで圧延疵の発生を防止し、その後の焼鈍によって再結晶組織を得ることでローピングを防止することを同時に達成する手段を主要件としている。
【0015】
熱間圧延による表面疵発生の機構については次のように考えられる。圧延油を用いない熱間圧延では表層の歪が圧延油を用いる冷間圧延よりも大きく、圧延率の影響がより大きくなると考えられる。図1に山田他;S61年塑性加工春期講演論文集、P235に発表されている剛塑性有限要素法による非対称圧延の解析モデルを用いて計算した板厚方向の相当歪(剪断歪+圧縮歪で表層ほど剪断歪が大きくなる)分布におよぼす圧延率の影響を示す(ここで、ロール径:φ650/375mm、下駆動、摩擦係数:上下とも0.3、入板厚:3.0mmである)。同図から、圧延率とともに表層/中心の相当歪の比は大きくなることがモデル計算から検証されている。
【0016】
本発明者らは、圧延によるこのような現象が、ディンプル転写部の倒れ込み疵、ロール肌荒れの転写・倒れ込み疵、さらにはスケール噛込み疵に影響しているとの考えから、特に、表層での相当歪、即ち剪断歪が大きい熱間圧延での圧延率の上限を明らかにした。その結果、上記熱間圧延疵の発生を完全に防止するには、熱圧延率を15%以下に制限する必要があることを見い出した。
【0017】
しかしながら、15%以下の熱延率ではその後の熱処理によって再結晶組織を得るための歪量としては十分でない。この対策として、本発明では熱間圧延後直ちに水冷して巻き取り、可能な限り熱間圧延時の加工歪を凍結維持し、さらに冷間圧延で加工歪を補填して再結晶に必要なエネルギーを確保した後、焼鈍によって完全な再結晶組織を得る方法を提案するものである。冷間圧延時の冷延率は熱間圧延時よりも上限の圧延率が大きくても圧延による倒れ込み現象は発生しにくいが、冷間での変形抵抗や圧延形状の安定化を考慮すると1パス圧延で25%以上が望ましく、また再結晶に必要な歪量を確保するには熱間圧延との累積圧延率で25〜40%確保されていれば十分である。なお、累積圧延率が40%以上ではローピングへの改善効果が飽和し、かつ熱間圧延と冷間圧延のそれぞれの上限圧延率からも40%が上限となる。
【0018】
次に、光沢むらについて述べる。双ロール法等の連続鋳造法において、冷却ドラム周面にディンプルをランダムに散在させる目的は、エヤーギャップによって緩冷された未だ剛性の低い状態にある部分(ディンプル中央部)を、冷却ドラムと直接接触することによって十分に冷却された剛性の高い部分(ディンプルエッジ部)が取り囲むことによって生じる熱応力をディンプルの分散によって小さくし、かつ凝固シェルの収縮に伴う割れが複数の剛性低下部にまたがって発生することを防止することである。しかしながら、このディンプルの形成によって生じる不均一冷却が表層の凝固組織の均一性の面からは悪影響し、ディンプル凹凸に対応した残留δフェライトのむらが発生する。この残留δフェライトむらの発生は、オーステナイト系ステンレス鋼特有の現象である。
【0019】
本発明者らは、ショットブラスト法によってディンプル間隔、大きさ等を規制することなくランダムな配置のディンプルを冷却ドラム周面に形成させたドラムを用いた双ロール鋳造機から、種々の成分に調整したオーステナイト系ステンレス鋼を鋳造し、鋳片の凝固組織および冷延後の光沢むらを評価した。
その結果を図2に示す。重量%で、Cr+Mo+1.5Siで定義されるCr当量とNi+30(C+N)+0.5(Mn+Cu)で定義されるNi当量の関係において、Ni当量≦0.63Cr当量−1.29を満足する成分限定によって、鋳片の凝固形態はFモード凝固となり、冷延板にも残存δフェライト起因の光沢むらはまったく発生しなかった。
【0020】
本発明者らは、δフェライト起因の光沢むらは、凝固時のδ+γ相の共晶組織で発生するバーミキュラーδよりもδ単相で完全凝固し、γに変態した場合に発生するアシュキュラー状δは凝固組織の残留フェライトむらが軽減されることを多くの双ロール鋳造剤の凝固組織観察から見い出しているが、従来知見からはディンプル間隔を小さくすることが必要であった。しかし、ショットディンプルの場合、ディンプル間隔が必ずしも必要十分条件ではないことが明らかになった。この理由は、図3に示すように、以下のように考えられる。
【0021】
フォトエッチ加工図3(a)のディンプルエッジはほぼ直角であることから表面張力によってディンプル中央部まで溶鋼が入らず、その部分のエアギャップ層が厚くなるのに対して、ショット加工で形成されたディンプル図3(b)はエッジの傾斜が緩やかなため、エッジ部の傾斜に沿って溶鋼がディンプル中央部まで入る結果、エアギャップ層が薄く、ディンプル中央部とディンプルとディンプルの間の部分の凝固冷速差が軽減される。さらに、ショットディンプルでは大きなディンプルの中に小さなディンプルが存在し、冷却ドラムとの直接接触が面から点へと変化する効果がディンプルの各部位における凝固冷速差を分散させる。これらの効果が、フォトエッチディンプルで言うところのディンプル間隔を狭くすることの作用を少なからず代替し、特定の成分を限定するのみで実質上製品の光沢むらが改善されるものとみられる。
【0022】
なお、巻取り温度を600℃以下に限定した理由は、鋭敏化による酸洗時のミクロブルーブ(結晶粒界に沿った腐食溝)が冷間圧延後に網目模様として残存し、冷延板表面の光沢が低下することを防止するためである。但し、コイルグラインダー等の機械的研削を実施すれば問題はないが、この工程を省略するためには、鋳造時あるいは中間焼鈍時の鋭敏化を防止する必要がある。
【0023】
本発明は、フォトエッチ加工法等によらず、ディンプル加工および補修等が容易であるショットブラスト法による冷却ドラムのディンプル形成とともに、成分を特定の範囲に限定することによってδフェライトの残存むらが緩和された良好な凝固組織が得られ、光沢むらが防止される。また、鋳造機に直結した熱間圧延機により軽度な熱間圧延を行い、直ちに水冷し、巻取り後デスケーリングし、引き続いて軽度な冷間圧延による補填を行って焼鈍することで、圧延疵を防止し、かつ十分な再結晶組織を得ることでローピングが防止される。
【0024】
【実施例】
表1および2に示すオーステナイト系ステンレス鋼を、ショットブラスト法によりランダムな配置のディンプルを冷却ドラム周面に形成させた双ロール鋳造機で、鋳造厚3〜5mm鋳造し、約1000〜1200℃の温度範囲で鋳造機後面に配置した2Hiの熱間圧延機により35%以下の1パス圧延を行い、直ちに水冷して600℃以下で巻取ることにより薄帯状鋳片を製造した。
【0025】
【表1】

Figure 0003595369
【0026】
【表2】
Figure 0003595369
【0027】
圧延率は途中ででミル圧下力を変化させること、および事前に冷却ドラムから圧延機の間に設置された保温カバーの断熱材を調整して鋳造速度との関連で圧延温度を変化させる組み合わせによって上記範囲に調整した。なお、圧延温度は圧延率の影響が小さいことから、チャージ間の平均値を採用して示した。その後、冷間圧延によって圧延率を補填し、焼鈍によって再結晶させ、冷間圧延を行い、最終焼鈍・酸洗仕上げと光輝焼鈍仕上げとした。
【0028】
品質評価として鋳片の凝固モード、熱間圧延と冷間圧延の累積圧延後の焼鈍によって得られた再結晶粒径Dave を中間指標として調査し、光輝焼鈍材のローピングと最終焼鈍、酸洗材の光沢むらおよび表面疵状況をそれぞれ官能評価した。その結果を表3および4に示す。
【0029】
【表3】
Figure 0003595369
【0030】
【表4】
Figure 0003595369
【0031】
本発明による製造方法(No. 1〜No. 13)によって得られたものは、ローピングランクが2以下でローピングは合格であった。また、光沢むらも表面疵の発生もない良好な表面品質を示した。
一方、比較例No. 14〜21は凝固モードがFで冷延板の光沢むらは良好であったが、累積圧延率が不足してローピングが不合格となったもの(比較例No. 14)や熱延率が15%超で実施したため、冷延板にヘゲ状の表面疵が散発し、ローピング自身は合格レベルであったが総合的な表面品質としては不合格となった(比較例No. 15〜21)。また、比較例No. 22は累積圧延率の不足および成分外れによってローピングと光沢むらが発生し、不合格となった。
【0032】
さらには、比較例No. 23〜25は全ての条件が本発明の範囲から外れたため、ローピング、光沢むらおよび表面疵ともに不合格であった。
なお、ローピング合格材は中間指標として定義した平均粒径Dave 値が70μm以下となっており、官能評価ランクを良い対応がみられる。
【0033】
【発明の効果】
以上説明したように、本発明によれば、スラブ鋳造−熱間圧延プロセスによる従来の製造方法と同等の表面品質のオーステナイト系ステンレス鋼薄帯状冷延鋼板を、安価にしてかつ短納期で製造することができる。
【図面の簡単な説明】
【図1】剛塑性有限要素法による非対称圧延の解析モデルで計算した板厚方向の相当歪分布におよぼす圧延率の影響を示した図である。
【図2】光沢むらの発生有無におよぼすCr当量とNi当量の関係を示した図である。
【図3】フォトエッチ(a)およびショットディンプル(b)形状により溶鋼の入込み状況を示す模式図である。[0001]
[Industrial applications]
The present invention relates to a method for producing an austenitic stainless steel sheet having excellent surface quality in a synchronous continuous casting process such as a so-called twin roll method in which there is no relative speed difference between a slab and a mold inner wall surface.
[0002]
[Prior art]
Synchronous continuous casting process refers to a slab and a mold such as a twin-roll method, a twin-belt method, a single-roll method, etc., as introduced in a paper featured in, for example, “Iron and Steel” '85 -A197 to A256. This is a synchronous continuous casting process with no relative speed difference between the inner wall surfaces. The twin-roll continuous casting method, which is one of these synchronous continuous casting processes, is a continuous casting mold composed of a pair of parallel or inclined cooling drums having the same or different diameters and side dams sealing both end surfaces thereof. Molten steel is injected into the cooling drums to form solidified shells on the peripheral surfaces of the two cooling drums, and the solidified shells are united near the closest position (the so-called "kissing point") of the rotating cooling drums to form an integral thin film. This is a continuous casting method using a strip-shaped slab.
[0003]
For example, a strip-shaped slab cast by a twin-roll continuous casting method has a thickness of several mm (usually about 2 to 5 mm), and is subjected to cold rolling without performing conventional hot rolling to produce a thin sheet product. Can be manufactured. Therefore, the conventional manufacturing method (slab casting-hot rolling process) in which a slab for hot rolling having a thickness of more than 100 mm is cast by continuous casting using a vibration mold or the like, and then hot-rolled and then cold-rolled. In comparison, production efficiency and cost are significantly more advantageous.
[0004]
However, various surface defects may occur in a product obtained by cold rolling a thin strip slab cast by a twin roll continuous casting method or the like without performing hot rolling.
For example, as described in JP-A-2-19426, roping (surface roughening) due to coarse crystal grains of a slab occurs on the surface after cold rolling. Japanese Patent Application Laid-Open No. 4-158957 discloses a product manufactured by a twin-roll continuous casting method in which dimples are formed on the peripheral surface of a cooling drum in order to stably prevent casting cracks and the like. As described above, unevenness in gloss, in which the coarse-grained and fine-grained structures after final annealing correspond to uneven color tone, corresponding to the residual unevenness of δ ferrite in the cast structure occurs.
[0005]
Among these problems, as a countermeasure against roping, Japanese Patent Application Laid-Open No. 3-71902 discloses that a slab is directly hot-pressed under the condition of a rolling ratio (%) ≧ 8.51 × 10 −3 × rolling temperature (° C.) + 4.79. It has been proposed to prevent roping by rolling, followed by annealing-cold rolling-final annealing. However, dimples arranged on the peripheral surface of the cooling drum are transferred to the slab for the purpose of preventing casting cracks, and flaws that fall into recesses during hot rolling, or roll surface roughness due to heat cracks of hot rolling rolls are transferred to the slab surface. Flaws, and furthermore, bite flaws and the like during hot rolling of scales that have been built up on hot rolling rolls, etc., and although these have a difference in form, they become small barbed flaws on cold rolled sheet products. It remains and significantly impairs the surface quality. As described above, the twin-roll casting process to which hot rolling is added has a problem that flaws are easily generated on the surface of a cold-rolled product, while roping is improved.
[0006]
As a countermeasure against uneven gloss, Japanese Patent Laid-Open No. 4-158957 discloses a method of reducing uneven cooling corresponding to dimple irregularities by setting the adjacent interval of all dimples provided on the cooling drum peripheral surface to 0.35 mm or less. While homogenizing the tissue, δ-Fe cal. A method of reducing the sensitivity to uneven coagulation tissue by adjusting (%) to 5 to 9% has been proposed. However, a method for processing a predetermined dimple is limited to an expensive photo-etching method or the like, an inexpensive processing method such as shot blasting cannot be used, and a large number of spare cooling drums are provided in preparation for an unexpected trouble. Δ-Fe cal. Is not economical and quality . A stable coagulated structure could not be obtained only by defining the components.
[0007]
As described above, the prior art does not disclose any means for simultaneously solving the problems of surface flaws, roping, and uneven gloss.
[0008]
[Problems to be solved by the invention]
The present invention relates to a so-called synchronous continuous casting process such as a twin-roll method in which dimples are formed on the peripheral surface of a cooling drum, in which a specific component and a total rolling rate of hot rolling and cold rolling after casting are set within a required condition range. Accordingly, it is an object of the present invention to provide a method for producing an austenitic stainless steel sheet having excellent surface quality, in which surface flaws, roping, and uneven glossiness are simultaneously improved.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is constituted by the following means.
By a continuous casting machine in which the slab moves in synchronization with the peripheral surface of the cooling drum in which a large number of random dimples are scattered by the shot blast method, in a manufacturing method of casting an austenitic stainless steel ribbon-shaped slab, by weight%, The Cr equivalent defined by Cr + Mo + 1.5Si and the Ni equivalent defined by Ni + 30 (C + N) +0.5 (Mn + Cu) have a component composition satisfying the following formula (1). Pass hot rolling, followed by water cooling and winding at 600 ° C. or less to form a ribbon-shaped slab, subsequently descaling the ribbon-shaped slab, and subsequently, the cumulative rolling reduction with the rolling reduction in the hot rolling. Is characterized by performing one-pass cold rolling at a rolling ratio of 25 to 40%, performing intermediate annealing / cold rolling as necessary, and subsequently performing annealing / pickling or light-volatilizing annealing. Excellent production method for austenitic stainless steel sheet surface quality.
[0010]
Ni equivalent ≦ 0.63 × Cr equivalent−1.29 (1)
[0011]
[Action]
The present inventors have analyzed in detail the roping phenomenon that occurs when a slab having a rapidly solidified structure obtained by casting austenitic stainless steel by twin roll casting or the like is directly cold-rolled. As a result, it was found that the degree of roping depends on the crystal grain size before cold rolling. Regarding the evaluation of the crystal grain size, D n (= Σ2 × SQR (3 × S i / 2π) / n) defined as an expected value of the number frequency of crystal grains conventionally used for convenience is quenched. It can be seen that the solidified structure and the recrystallized structure obtained by rolling and heat-treating the solidified structure cannot be an index value representative of the mixed particle state, and it is necessary to consider the area ratio of the crystal grains (actually, the volume ratio must be considered). However, it is impossible to actually measure the volume, and D ave (= Σ2 × SQR (3 × S i / 2π) × S i / S), which is an expected value for the area ratio is defined as the volume ratio for convenience, is newly added. Index value.
[0012]
Of course, since the D n of the conventional indicator is the expected value of the number frequency of the crystal grains, the average value appears to fine side in the mixed grain structure. However, the roping phenomenon is understood as a phenomenon in which the sum of the deformation differences in the plate thickness direction according to the existence of individual crystal grains or coarse grains and fine grain colonies (groups) appears on the surface, and is equiaxed and fine. As the grain size increases, the cumulative deformation difference in the thickness direction is averaged, and the roping becomes better. Therefore, the definition of the average crystal grain size in the mixed grain structure having a very large difference in grain size is expressed by Dave which is an expected value for the area ratio, which is an index representing the actual state of the structure. In fact, the present inventors have found that the recrystallized structure after hot rolling a twin roll cast material at a rolling reduction of 20 to 40% is not as equiaxed as the current CC slab-hot rolled material, and the surface layer is fine-grained. In the central part may have a tendency to coarse grains, and further, coarse grains far apart from adjacent crystal grains may appear, such coarse grains are larger than the adjacent grains even if recrystallized, When severe, a mixed grain structure remained as unrecrystallized, and it was observed that the improvement of roping was insufficient.
[0013]
The present inventors have found from the above becomes a value close to D n in the case of equiaxed grains, in the case of mixed grain deviation from D n increases according to the degree thereof, the influence of detrimental coarse grains roping The average particle size D ave was defined as an index value that can be correctly reflected. If the recrystallized grain size D ave defined by this definition is maintained at 70 μm or less, the roping rank (sensory evaluation of 1 to 5 ranks) can be set to an acceptable level of 2 or less (see Table 2).
[0014]
In order to prevent roping, it is necessary to make the solidified structure as equiaxed and as fine as possible, and it is an effective method to utilize recrystallization by rolling and heat treatment. In order to utilize the recrystallization by hot rolling, it is necessary to ensure a hot rolling reduction corresponding to the initial grain size of the slab, and the results of studies by the present inventors depend on the subsequent heat treatment conditions, It is necessary to secure a hot rolling reduction of about 20 to 40%. However, when hot rolling of 20% or more is performed by one-pass rolling, the transfer portion of the dimples provided on the cooling drum peripheral surface to the cast slab for preventing casting cracks may fall during hot rolling, or may be hot rolled. There is a problem that the roll surface roughness due to the heat crack of the roll is transferred to the surface of the slab, and there is a problem that the scale roll bite builds up on the rolling roll, etc., and mechanical grinding such as a coil grinder before cold rolling is performed. Is omitted, it is difficult to manufacture a cold-rolled sheet having no surface flaws. Therefore, in the present invention, light hot rolling is performed by a hot rolling mill directly connected to a casting machine, and the occurrence of rolling flaws is prevented by performing light cold rolling following descaling, followed by annealing. The main task is to prevent roping by obtaining a recrystallized structure.
[0015]
The mechanism of surface flaw generation by hot rolling is considered as follows. It is considered that the surface layer strain is larger in the hot rolling without using the rolling oil than in the cold rolling using the rolling oil, and the influence of the rolling ratio is larger. FIG. 1 shows Yamada et al .: Equivalent strain in the thickness direction (shear strain + compression strain) calculated using an analytical model of asymmetric rolling by the rigid-plastic finite element method published in S61 The effect of the rolling ratio on the distribution (the shear strain increases as the surface layer increases) is shown (where the roll diameter is φ650 / 375 mm, the lower drive, the friction coefficient is 0.3 for both the upper and lower sides, and the input plate thickness is 3.0 mm). . From the figure, it has been verified from the model calculation that the ratio of the surface layer / center equivalent strain increases with the rolling reduction.
[0016]
The present inventors believe that such a phenomenon due to rolling affects the falling flaw of the dimple transfer portion, the transfer / falling flaw of the roll surface roughening, and further, the scale biting flaw. The upper limit of the rolling reduction in hot rolling, which has a considerable strain, that is, a large shear strain, was clarified. As a result, they have found that it is necessary to limit the hot rolling rate to 15% or less in order to completely prevent the occurrence of the hot rolling flaws.
[0017]
However, if the hot rolling reduction is 15% or less, the amount of strain for obtaining a recrystallized structure by the subsequent heat treatment is not sufficient. As a countermeasure, in the present invention, the steel sheet is cooled with water immediately after hot rolling and wound up, the working strain during hot rolling is kept as frozen as possible, and the working strain is compensated by cold rolling to reduce the energy required for recrystallization. After securing the above, a method of obtaining a complete recrystallized structure by annealing is proposed. Even if the upper limit of the cold rolling ratio during cold rolling is larger than that during hot rolling, the collapse phenomenon due to rolling is unlikely to occur, but considering the deformation resistance in cold and the stabilization of the rolling shape, one pass is considered. 25% or more is desirable in rolling, and it is sufficient to secure 25 to 40% in the cumulative rolling ratio with hot rolling in order to secure the amount of strain required for recrystallization. When the cumulative rolling reduction is 40% or more, the effect of improving roping is saturated, and the upper limit of 40% is also the upper limit of each of the hot rolling and the cold rolling.
[0018]
Next, gloss unevenness will be described. In the continuous casting method such as the twin roll method, the purpose of randomly scattering dimples on the peripheral surface of the cooling drum is to directly cool the part (dimple central part), which has been cooled slowly by the air gap, in a low rigidity state, directly to the cooling drum. The thermal stress caused by surrounding the high-rigidity portion (dimple edge portion) that has been sufficiently cooled by contact is reduced by the dispersion of the dimple, and cracks caused by the shrinkage of the solidified shell are spread over a plurality of rigidity reduction portions. Is to prevent it from occurring. However, the non-uniform cooling caused by the formation of the dimples has an adverse effect on the uniformity of the solidification structure of the surface layer, and unevenness of the residual δ ferrite corresponding to the dimple irregularities occurs. This generation of residual δ ferrite unevenness is a phenomenon peculiar to austenitic stainless steel.
[0019]
The present inventors adjusted various components from a twin-roll caster using a drum in which dimples having a random arrangement were formed on the peripheral surface of a cooling drum without regulating dimple spacing, size, etc. by a shot blast method. The austenitic stainless steel thus cast was cast, and the solidified structure of the slab and the uneven gloss after cold rolling were evaluated.
The result is shown in FIG. In weight%, in a relation between Cr equivalent defined by Cr + Mo + 1.5Si and Ni equivalent defined by Ni + 30 (C + N) +0.5 (Mn + Cu), a component limitation satisfying Ni equivalent ≦ 0.63Cr equivalent−1.29. As a result, the solidified form of the slab became F-mode solidified, and no gloss unevenness caused by the remaining δ ferrite occurred in the cold rolled sheet.
[0020]
The present inventors have found that gloss unevenness due to δ ferrite is completely solidified in a single δ phase rather than vermicular δ generated in a eutectic structure of δ + γ phase at the time of solidification, and is an ash-like δ generated when transformed into γ. Has found from the observation of the solidification structure of many twin roll casting agents that the residual ferrite unevenness of the solidification structure is reduced, but it has been necessary to reduce the dimple interval from the conventional knowledge. However, in the case of shot dimples, it became clear that the dimple interval was not always a necessary and sufficient condition. The reason is considered as follows, as shown in FIG.
[0021]
Photoetching Since the dimple edge in FIG. 3A is substantially perpendicular, molten steel does not enter the center of the dimple due to surface tension, and the air gap layer at that portion becomes thicker. In FIG. 3 (b), since the slope of the edge is gentle, the molten steel enters the center of the dimple along the slope of the edge, resulting in a thin air gap layer and solidification of the center between the dimple and the portion between the dimples. The difference in cooling speed is reduced. Further, in shot dimples, small dimples are present in large dimples, and the effect of direct contact with the cooling drum changing from a surface to a point disperses the solidification cooling speed difference in each part of the dimple. It is considered that these effects substantially replace the effect of narrowing the dimple interval in the case of the photoetch dimple, and that the unevenness of gloss of the product is substantially improved only by limiting specific components.
[0022]
The reason why the winding temperature was limited to 600 ° C. or less was that micro-blue lobes (corrosion grooves along crystal grain boundaries) during pickling due to sensitization remained as a network pattern after cold rolling, and the surface of the cold-rolled sheet was reduced. This is to prevent the gloss of the glass from being reduced. However, there is no problem if mechanical grinding such as a coil grinder is performed, but in order to omit this step, it is necessary to prevent sensitization during casting or during intermediate annealing.
[0023]
The present invention reduces the unevenness of δ-ferrite by limiting the components to a specific range together with the formation of the dimples of the cooling drum by the shot blasting method, which facilitates dimple processing and repair, without depending on the photoetching method or the like. The obtained good solidified structure is obtained, and uneven gloss is prevented. In addition, mild hot rolling was performed by a hot rolling mill directly connected to the casting machine, immediately cooled with water, wound, descaled, and subsequently supplemented by mild cold rolling to perform annealing. And roping is prevented by obtaining a sufficient recrystallized structure.
[0024]
【Example】
The austenitic stainless steels shown in Tables 1 and 2 were cast by a twin-roll caster in which dimples of random arrangement were formed on the peripheral surface of a cooling drum by a shot blast method, and were cast at a casting thickness of 3 to 5 mm. One-pass rolling of 35% or less was performed by a 2Hi hot rolling mill disposed on the rear surface of the casting machine in a temperature range, and immediately after cooling with water, winding was performed at 600 ° C or less to produce a thin strip slab.
[0025]
[Table 1]
Figure 0003595369
[0026]
[Table 2]
Figure 0003595369
[0027]
The rolling rate is changed by changing the mill rolling force on the way, and by changing the rolling temperature in relation to the casting speed by adjusting the heat insulating material of the heat insulation cover installed between the cooling drum and the rolling mill in advance. It was adjusted to the above range. In addition, since the influence of the rolling rate is small, the rolling temperature is shown by using an average value between charges. Thereafter, the rolling ratio was compensated by cold rolling, recrystallization was performed by annealing, and cold rolling was performed to obtain a final annealing / pickling finish and a bright annealing finish.
[0028]
As a quality evaluation, the solidification mode of the slab, the recrystallized grain size D ave obtained by annealing after cumulative rolling of hot rolling and cold rolling are investigated as an intermediate index, and roping and final annealing of bright annealed material, pickling The material was evaluated organoleptically for uneven gloss and surface flaws. The results are shown in Tables 3 and 4.
[0029]
[Table 3]
Figure 0003595369
[0030]
[Table 4]
Figure 0003595369
[0031]
Those obtained by the production method (No. 1 to No. 13) according to the present invention had a roping rank of 2 or less and passed the roping. In addition, good surface quality without uneven gloss and surface flaws was exhibited.
On the other hand, in Comparative Example No. In Nos. 14 to 21, the solidification mode was F and the gloss unevenness of the cold-rolled sheet was good. However, the cumulative rolling reduction was insufficient and the roping was rejected (Comparative Example No. 14). %, The barb-like surface flaws sprinkled on the cold-rolled sheet, and the roping itself was at an acceptable level, but was rejected as the overall surface quality (Comparative Examples Nos. 15 to 21). . In Comparative Example No. Sample No. 22 was rejected because of insufficient rolling reduction and component deviation, resulting in roping and uneven gloss.
[0032]
Further, in Comparative Example No. Samples Nos. 23 to 25 all failed the roping, uneven gloss and surface flaws because all the conditions were out of the range of the present invention.
In addition, the average particle diameter D ave value defined as an intermediate index of the roping acceptable material is 70 μm or less, and a good correspondence in the sensory evaluation rank is seen.
[0033]
【The invention's effect】
As described above, according to the present invention, an austenitic stainless steel ribbon-shaped cold rolled steel sheet having a surface quality equivalent to that of a conventional production method by a slab casting-hot rolling process can be manufactured at a low cost and with a short delivery time. be able to.
[Brief description of the drawings]
FIG. 1 is a diagram showing the effect of the rolling reduction on the equivalent strain distribution in the thickness direction calculated by an analytical model of asymmetric rolling by the rigid-plastic finite element method.
FIG. 2 is a diagram showing the relationship between Cr equivalent and Ni equivalent with respect to the occurrence of uneven gloss.
FIG. 3 is a schematic diagram showing a situation of molten steel entering by shapes of a photoetch (a) and a shot dimple (b).

Claims (1)

ショットブラスト法によってランダムなディンプルを多数散在させた冷却ドラムの周面に同期して鋳片が移動する連続鋳造機により、オーステナイト系ステンレス鋼薄帯状鋳片を鋳造する製造方法において、重量%で、Cr+Mo+1.5Siで定義されるCr当量とNi+30(C+N)+0.5(Mn+Cu)で定義されるNi当量が下記(1)式を満足する成分組成とし、鋳造に続いて圧延率15%以下の1パス熱間圧延を行い、続いて水冷後600℃以下で巻き取って薄帯状鋳片とし、続いて該薄帯状鋳片をデスケーリングし、続いて前記熱間圧延における圧延率との累積圧下率が25〜40%となる圧延率で1パスの冷間圧延を行い、必要に応じて中間の焼鈍・冷間圧延を行い、続いて焼鈍・酸洗または光輝焼鈍を行うことを特徴とする表面品質の優れたオーステナイト系ステンレス鋼薄板の製造方法。
Ni当量≦0.63×Cr当量−1.29 ………(1)
By a continuous casting machine in which the slab moves in synchronization with the peripheral surface of the cooling drum in which a large number of random dimples are scattered by the shot blast method, in a manufacturing method of casting an austenitic stainless steel ribbon-shaped slab, by weight%, The Cr equivalent defined by Cr + Mo + 1.5Si and the Ni equivalent defined by Ni + 30 (C + N) +0.5 (Mn + Cu) have a component composition satisfying the following formula (1). Pass hot rolling, followed by water cooling and winding at 600 ° C. or less to form a ribbon-shaped slab, subsequently descaling the ribbon-shaped slab, and subsequently, the cumulative rolling reduction with the rolling reduction in the hot rolling. Is characterized by performing one-pass cold rolling at a rolling rate of 25 to 40%, performing intermediate annealing / cold rolling as necessary, and subsequently performing annealing / pickling or bright annealing. Excellent production method for austenitic stainless steel sheet surface quality.
Ni equivalent ≦ 0.63 × Cr equivalent−1.29 (1)
JP8147395A 1995-04-06 1995-04-06 Method for producing austenitic stainless steel sheet with excellent surface quality Expired - Fee Related JP3595369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8147395A JP3595369B2 (en) 1995-04-06 1995-04-06 Method for producing austenitic stainless steel sheet with excellent surface quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8147395A JP3595369B2 (en) 1995-04-06 1995-04-06 Method for producing austenitic stainless steel sheet with excellent surface quality

Publications (2)

Publication Number Publication Date
JPH08277423A JPH08277423A (en) 1996-10-22
JP3595369B2 true JP3595369B2 (en) 2004-12-02

Family

ID=13747379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8147395A Expired - Fee Related JP3595369B2 (en) 1995-04-06 1995-04-06 Method for producing austenitic stainless steel sheet with excellent surface quality

Country Status (1)

Country Link
JP (1) JP3595369B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295197B1 (en) 2008-05-27 2012-12-19 Nippon Steel & Sumikin Stainless Steel Corporation Flux-cored wire for welding of duplex stainless steel which enables the miniaturization of solidified crystal particles
WO2010151071A2 (en) * 2009-06-26 2010-12-29 현대제철 주식회사 Method for predicting surface quality of thin slab hot rolled coil and method for producing thin slab hot rolled coil using same
CN103966521B (en) * 2013-01-25 2016-08-24 宝山钢铁股份有限公司 A kind of short route produces the method for atmospheric corrosion resistance Thin Strip Steel
CN110669986B (en) * 2019-10-17 2021-09-07 浦项(张家港)不锈钢股份有限公司 310S stainless steel preparation method and 310S stainless steel

Also Published As

Publication number Publication date
JPH08277423A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
JP3595369B2 (en) Method for producing austenitic stainless steel sheet with excellent surface quality
JP3373078B2 (en) Method of producing austenitic stainless steel ribbon-shaped slab with excellent cold-rolled surface quality and slab
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
JPH082484B2 (en) Austenitic stainless steel strip-shaped slab with excellent surface quality, thin plate manufacturing method, and strip-shaped slab
JPH08165523A (en) Production of austenitic stainless steel thin cast slab excellent in cold-rolled surface quality
JP3417714B2 (en) Method for producing thin cast slab of austenitic stainless steel with low residual δ ferrite
JPH0565263B2 (en)
JP2814112B2 (en) Method for producing austenitic stainless steel strip with excellent ductility
WO1990011849A1 (en) Method of producing rollable metal sheet based on quench-solidified thin cast sheet
JPH0559447A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JP2532314B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JP4025566B2 (en) Method for producing austenitic stainless steel strip slab
JPH0730405B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JP2983376B2 (en) Manufacturing method of austenitic stainless steel cold rolled sheet with excellent surface quality
JP7460894B2 (en) HOT-ROLLED STEEL SHEET MANUFACTURING METHOD AND HOT-ROLLED STEEL SHEET MANUFACTURING APPARATUS
JPH0788534B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JP2002001495A (en) Manufacturing method for austenitic stainless steel sheet iron excellent in surface quality and thin casting slab
JPS6016281B2 (en) Method for improving ridging of ferritic stainless steel manufactured by continuous casting method
JPH0735551B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0796684B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JPS58176010A (en) Cold rolling method for controlling shape
JP3090177B2 (en) Method for producing thin cast slab of Cr-Ni stainless steel and cold rolled thin plate
JP2003225742A (en) Method for casting austenitic stainless steel excellent in surface characteristic and its cast slab
JPH04304315A (en) Method for preventing generation of edge flaw in hot-rolled steel sheet for grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees