JPS58176010A - Cold rolling method for controlling shape - Google Patents

Cold rolling method for controlling shape

Info

Publication number
JPS58176010A
JPS58176010A JP57057545A JP5754582A JPS58176010A JP S58176010 A JPS58176010 A JP S58176010A JP 57057545 A JP57057545 A JP 57057545A JP 5754582 A JP5754582 A JP 5754582A JP S58176010 A JPS58176010 A JP S58176010A
Authority
JP
Japan
Prior art keywords
shape
roll
hardness
work roll
rolling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57057545A
Other languages
Japanese (ja)
Inventor
Nobuo Sakamoto
信夫 坂本
Kunio Nishimura
西村 邦雄
Kazunaga Misonoo
御園生 一長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP57057545A priority Critical patent/JPS58176010A/en
Publication of JPS58176010A publication Critical patent/JPS58176010A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Abstract

PURPOSE:To obtain a cold rolled metallic plate free from malformation from a hot rolled metallic plate which does not contain a rimmed layer, by enlarging the diameter of a work roll at the corresponding position by a prescribed quantity, and increasing the rolling pressure at the part near the plate ends, where the hardness is increased. CONSTITUTION:The diameters of a work roll 2 at its both ends, which are the positions corresponding to the hardness increased parts of a metallic plate having the parts of increased hardness near its both ends, are made larger by 1-100mum than the diameters of the work roll 2 at the position corresponding to the starting point of hardness increasing, near the roll center. Then the metallic plate having the hardness increased parts is cold rolled. Thus the elongation at the plate ends is made larger than that of other part, and quater buckling is reduced, accordingly a cold rolled metallic plate excellent in shape and free from malformation is obtained from a hot rolled metallic plate which does not contain a rimmed layer.

Description

【発明の詳細な説明】 本発明は形状制御冷間圧延法に関し、より詳しくは冷間
圧廷金属帯板の両端部付近に生ずるポケット状形状不良
(以下サイドパ・Vクルと呼ぶ。)を修正もしくは防止
可能な形状制御冷間圧延法ζ−関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shape-controlled cold rolling method, and more specifically to correcting pocket-like shape defects (hereinafter referred to as side pucks and V-curls) that occur near both ends of a cold-rolled metal strip. Or it relates to a preventable shape-controlled cold rolling method ζ.

従来冷間圧延金属帯板(以下冷延板ということがある。Conventional cold-rolled metal strips (hereinafter sometimes referred to as cold-rolled plates).

)の形状不良には■耳伸び、■中伸び。) For poor shape, ■ear elongation, ■middle elongation.

■■と■が共存する複合伸び、■クォータバックル等が
あり、これらの形状不艮乞完全に修正して平坦な金属帯
板を得る事は仲々に困難であった。
There are compound elongations where ■■ and ■ coexist, ■quarter buckles, etc., and it has been difficult to completely modify these shapes to obtain a flat metal strip.

就中最近の低炭素冷延銅板の素材として連続鋳造工程を
経て製造される熱延銅帯(以下連鋳材と呼ぶ)が用いら
れ始めた事に伴ない連鋳材に特有の形状不良である上記
■クォータバックルが間融となって来た。その原因は次
の様に考えられる。
In particular, as hot-rolled copper strips manufactured through a continuous casting process (hereinafter referred to as continuous casting materials) have recently begun to be used as raw materials for low-carbon cold-rolled copper sheets, the shape defects peculiar to continuous casting materials have begun to occur. ■The quarter buckle mentioned above has become melted. The reason may be as follows.

すなわち、従来のリムド鋼、キャップド鋼等のインゴツ
ト材は表面に程度の差はあるがリム層!有し、このリム
層は不純物が少ないから中央部よりも軟かい。これは熱
延鋼帯とした場合鋼帯端縁部が中央部よりも軟かいとい
う傾向となって現われる。そしてこの傾向が熱延工程に
おいて鋼帯端縁部の冷却速度が中央部のそれよりも大き
いために生ずる硬度上昇を補償し、結果的に熱延鋼帯の
巾方向硬度分布に著るしい不拘−!生じさせず、寧ろな
お端縁部の硬度は中央部より低いという性向を与える原
因となってい虻。
In other words, conventional ingot materials such as rimmed steel and capped steel have a rim layer on the surface to varying degrees! This rim layer has fewer impurities and is therefore softer than the center. This appears as a tendency for the edges of the steel strip to be softer than the center when it is a hot-rolled steel strip. This tendency compensates for the increase in hardness that occurs because the cooling rate of the edge of the steel strip is faster than that of the center during the hot rolling process, and as a result, there is a significant inconsistency in the hardness distribution in the width direction of the hot rolled steel strip. -! Rather than causing this, the hardness of the edges tends to be lower than that of the center.

ところがキルド鋼にはリムド鋼、キャップド鋼の如きリ
ム層が殆んどなく、あっても極めて少ないので上EO)
硬度補償類IQIヵ、ヶ<:ルヶつア熱、エッ1ユおけ
る冷却速度の巾方向不均一の影響をまともに受ける結果
、熱線鋼帯端縁部近傍の硬度が中央部の硬度よりも一般
に高くなる。この性質はキルド鋼一般に特有のもので、
キルド鋼連鋳材にのみ特有の性質ではないが9本発明で
は使用量の多いギルド鋼連鋳材を主対象とした。第1図
は、インゴツト材であるリムド鋼及びキャップド鋼とキ
ルド鋼連鋳材でなる熱延鋼帯の幅方向硬度分布実測値を
示すグラフである。本図において、曲線A、B。
However, killed steel has almost no rim layer like rimmed steel and capped steel, and even if it does have it, it is extremely rare.
As a result of being affected by the widthwise non-uniformity of the cooling rate in the hardness compensation type IQI, the hardness in the vicinity of the edge of the hot wire steel strip is higher than the hardness in the center. generally higher. This property is unique to killed steel in general.
Although this property is not unique to killed continuous cast steel materials, the present invention mainly targets continuous cast guild steel materials, which are used in large quantities. FIG. 1 is a graph showing measured values of the hardness distribution in the width direction of a hot rolled steel strip made of rimmed steel and capped steel, which are ingot materials, and killed steel continuously cast material. In this figure, curves A and B.

Cは夫々リムド鋼、キャップド鋼、連鋳アルミギルド鋼
の硬度分布を表わしている。曲線A、Bはいづれも端縁
部で硬度が急に下がっているのに対し、曲線Cの場合、
端縁部からの約100u程度内側から端縁部にかけて硬
度が逆に上昇している事が判る。
C represents the hardness distribution of rimmed steel, capped steel, and continuously cast aluminum guild steel, respectively. In contrast to curves A and B, where the hardness suddenly decreases at the edge, in the case of curve C,
It can be seen that the hardness conversely increases from about 100 μ inside the edge to the edge.

従って曲線A、Hに示すインゴツト材では耳伸びが特に
発生しやすいが、曲線Cの連鋳材では逆になる。すなわ
ち、キルド鋼連鋳材を従来のリムド鋼及びキャップド鋼
と同じ条件で冷間圧延作業すると耳伸びは殆んど発生せ
ず、寧ろ中伸び、クォータバックルが多発してしまう事
になる。これら  ゛の形状不良のうち、中伸びはワー
クロールクラウンを凹方向に制御すれば比較的量率に修
正できるが、クォータバックルは反対に顕著となる傾向
がある。故にこのクォータバックkをいかに少なくする
かがキルド鋼連鋳材の冷間圧延時の形状制御において最
も重要な問題となる。
Therefore, while the ingot materials shown by curves A and H are particularly susceptible to edge elongation, the continuous casting material shown by curve C is opposite. That is, if a continuous cast killed steel material is cold rolled under the same conditions as conventional rimmed steel and capped steel, almost no edge elongation will occur, but instead, middle elongation and quarterbuckles will occur frequently. Among these shape defects, medium elongation can be corrected at a comparatively high volume rate by controlling the work roll crown in a concave direction, but quarterbuckle tends to become more pronounced. Therefore, how to reduce this quarterback k is the most important issue in shape control during cold rolling of continuous cast killed steel materials.

このクォータバックルの発生原因に関して以下に述べる
The cause of this quarterbuckle occurrence will be described below.

一般にクォータバックルはワークロールの−+ −マ化
7クラウンによって生じると言われる。丁なわち、冷間
圧廷時−鋼帯に接する事のできない坂道外の部分のロー
ルフェースは、銅帯の塑性変形熱及び鋼帯とワークロー
ル間の摩擦による発熱とをその表面から直接受は取る板
道内のロールフェースと異なり、表面からは加熱されな
いので比較的温間が低く膨らまない。そして特に鋼帯端
縁部ではワークロールの温度低下勾配が大きいから、鋼
帯端縁部近傍でサーマルクラウンが大きく変化するが、
全体としてはワーク口、−ルのサーマルクラウン(膨出
)はロール軸方向に沿いロール中央部よりロール端に向
って小さくなる。
It is generally said that a quarterbuckle is produced by −+ −marization of 7 crowns on a work roll. In other words, during cold rolling, the part of the roll face outside the slope that cannot come into contact with the steel strip directly receives the plastic deformation heat of the copper strip and the heat generated by the friction between the steel strip and the work roll from its surface. Unlike the roll face in a plank road, it is not heated from the surface, so the temperature is relatively low and it does not swell. Since the temperature drop gradient of the work roll is particularly large at the edge of the steel strip, the thermal crown changes greatly near the edge of the steel strip.
Overall, the thermal crown (bulge) of the work opening and the roll becomes smaller from the center of the roll toward the ends of the roll along the roll axis direction.

そしてこのサーマルクラウンはワークロールを冷間圧延
機に組み込んだ後、圧延量が増すに従って成長する。
This thermal crown grows as the amount of rolling increases after the work roll is installed in a cold rolling mill.

クォータバックルは前述の鋼帯端縁部近傍のサーマルク
ラウン変化が著るしい部分で発生するものと考えられ、
その程度はサーマルクラウンの成長に伴なって更に大き
くなると考えられていた。
It is thought that quarterbuckles occur in areas where the thermal crown change is significant near the edge of the steel strip mentioned above.
It was thought that the extent of this increase would further increase as the thermal crown grows.

この原理によればリムド鋼乃至キャップド鋼は端縁部の
硬度が低くかつ変形抵抗が小さいのでクォータバックル
はキルド鋼連鋳材に比して発生し鰺いと思われた。
According to this principle, rimmed steel and capped steel have low hardness and deformation resistance at their edges, so quarterbuckles occur more than in continuous cast killed steel, which was thought to be a problem.

またキルド鋼連鋳材にあってもijJ記の様にサーマル
クラウンが成長するにつれてクォータバックルの発生程
闇は顕著になるものと思われた。
Furthermore, even in the case of continuous cast steel materials, it was thought that as the thermal crown grows, the darkness becomes more noticeable as quarterbuckles occur, as shown in ijj.

ところが、実際の商用圧延機による圧延結果では上記の
予想が一部裏切られ、被圧延材がギルド鋼連鋳材の場合
、ワークロール組替直後のサーマルクラウン未成長の段
階からクォータバックルが明らかに発生する現象が観察
されたのである。
However, actual rolling results using a commercial rolling mill partially contradicted the above expectations; when the material to be rolled was continuously cast guild steel, quarterbuckles became apparent immediately after the work rolls were changed, even before the thermal crown had grown. The phenomenon that occurred was observed.

従って、この現象に基づいて考察すると、キルド鋼連鋳
材におけるクォータバックル発生原理はす−マルクラウ
ンの成長に起因せず、むしろ第1図で示した様に両端縁
部付近硬度が中央部のそれより2も大きい事に依ると考
えた方が自然と思われた。
Therefore, considering this phenomenon, the principle of quarterbuckle generation in continuous cast killed steel material is not due to the growth of a round crown, but rather, as shown in Figure 1, the hardness near both edges is higher than that in the center. It seemed more natural to think that it depends on the fact that 2 is larger than that.

そこで本発明者等はキルド鋼連鋳材の冷延後形状に及ぼ
す巾方向硬度分布の影響についていわゆる分割モデルを
用いて理論計算を試みた。
Therefore, the present inventors attempted a theoretical calculation using a so-called split model regarding the influence of the widthwise hardness distribution on the shape of a continuously cast killed steel material after cold rolling.

丁なわちこの計算に用いたモデルはいわゆる分割モデル
を基礎としており、計算式中の銅帯の幅方向変形抵抗分
布は板幅方向にスリットした銅帯を個々に引張り試験し
、その結果から求めた値を使用している。
In other words, the model used for this calculation is based on a so-called split model, and the distribution of deformation resistance in the width direction of the copper strip in the calculation formula is calculated from the results of tensile testing of individual copper strips slit in the width direction of the strip. The value is used.

第2図は、第1図に示す硬度分布を持つギルド鋼連鋳材
、すなわち端縁部付近で硬度上昇を伴う熱延鋼帯を5基
連続圧延機で冷間圧延した場合の形状計算結果(伸び率
差の巾方向分布)を示すグラフである。第2図の曲線E
、F、Gは最終スタンドのワークロールのロール、ネッ
、りに付与する増加曲げ力をそれぞれ50ton、 2
5%(2)、 Qt翰に変更I、た場合の゛板形状計算
結果を示す。また、第1表はその時の計算条件をまとめ
た表である。
Figure 2 shows the shape calculation results when a continuously cast guild steel material with the hardness distribution shown in Figure 1, that is, a hot rolled steel strip with hardness increasing near the edges, is cold rolled using five continuous rolling mills. It is a graph showing (width direction distribution of elongation rate difference). Curve E in Figure 2
, F, and G are the increased bending forces applied to the roll, net, and rim of the final stand work roll, respectively, 50 tons, 2
5% (2), the calculation result of the plate shape is shown when the Qt wire is changed to I. Further, Table 1 is a table summarizing the calculation conditions at that time.

クォータバックルは端縁部から100I31程度内側の
点、丁なわち硬度上昇開始点を中心に銅帯両サイドで発
生し、その傾向は全体のワーブロールクラウンを凹方向
にする程、すなわちロールをコンベラ久スにする程顕著
となる。また、第3図はキルド鋼連鋳材を実際に冷間圧
延した時の形状を圧延機出側に設けた形状検出器で測定
した例を示すグラフである。なお、図中横軸は板幅方向
における位置、縦軸は形状検出器の出力値を表わテ。
Quarterbuckles occur on both sides of the copper strip around a point about 100I31 inside from the edge, which is the point where the hardness starts to increase, and the tendency is to make the overall warb roll crown concave, that is, the further the roll is conveyed. It becomes more noticeable as the time passes. Moreover, FIG. 3 is a graph showing an example in which the shape of a continuously cast killed steel material is measured by a shape detector installed on the exit side of the rolling mill when it is actually cold rolled. In the figure, the horizontal axis represents the position in the board width direction, and the vertical axis represents the output value of the shape detector.

第3図によれば、ワークロール組替直後から、端縁部か
ら100m、内側の点ン中心に第2図で示したクォータ
バックルが発生していることが認められる。なお、第3
図の曲線Hは最終スタンドのワークロール組替直後の形
状、曲線工はロール組替後ホットコイルを17本圧延し
た後の形状を示す。
According to FIG. 3, it is recognized that the quarterbuckle shown in FIG. 2 has been generated at the center of the inner dot, 100 m from the edge, immediately after the work rolls were rearranged. In addition, the third
The curve H in the figure shows the shape immediately after the work rolls on the final stand are rearranged, and the curved line shows the shape after rolling 17 hot coils after the rolls are rearranged.

また、この傾向は端縁部付近で硬度上昇を伴なわないリ
ムド鋼(含キャップド鋼)では見られないから、キルド
鋼連鋳材のクォータバックルは従来   1gわれてい
たようにサーマルクラクンの成長に伴って発生するもの
ではなく、端縁部付近で硬度上昇を伴うキルド鋼特有の
性質であることがわかった。以下、キルド鋼特有のこの
クォータバックルを、サーマルクラクンの成長に伴い発
生する従来のクォータバックルと区別してサイドバック
ルと呼ぶ事にする。
Furthermore, this tendency is not observed in rimmed steel (including capped steel), which does not have an increase in hardness near the edge, so quarterbuckles made of continuous cast killed steel are not thermally cracked, as was conventionally 1g. It was found that this does not occur as a result of growth, but is a property unique to killed steel, with an increase in hardness near the edges. Hereinafter, this quarterbuckle unique to killed steel will be referred to as a side buckle to distinguish it from the conventional quarterbuckle that occurs with the growth of thermal cracks.

′!#1表 そこで、本発明者等はこのサイドバックルを減少させる
ための最適手段を見つけるため、諸種の実験並びに考察
を行なった。
′! Table #1 Therefore, the present inventors conducted various experiments and studies in order to find the optimal means for reducing this side buckle.

まづ、サイドバックルの発生する部位のワークロールを
局部的に冷却(スボツ・トクーリング)してロール径を
小さくするというロールクラウン制御を行なつ起とした
形状シュミレーション計算を打なってみたところ、第4
図のような結果を得た。
First, we performed shape simulation calculations based on roll crown control, which involves locally cooling the work roll in the area where side buckling occurs to reduce the roll diameter. Fourth
The results shown in the figure were obtained.

丁なわち第4図はスポットグーリングした場合(曲線J
)と、しない場合(曲線K)の形状の違いを示すグラフ
である。なお、計算の基礎条件は第1表と同じである。
In other words, Figure 4 shows the case of spot googling (curve J
) is a graph showing the difference in shape between curve K and curve K. The basic conditions for calculation are the same as in Table 1.

′i!!J2図と同じく、図中横軸は板中中心からの距
離、縦軸は伸び率差を示している。
'i! ! As in Figure J2, the horizontal axis in the figure shows the distance from the center of the plate, and the vertical axis shows the elongation rate difference.

第4図中の曲線Jは、サイドバックル発生部を中心とし
て幅2001m、直径で最大直径μmの7字形のくぼみ
をスポットクーリングによりワークロールに付けた場合
の形状シュミレーション結果であるが、この様なロール
クラウン制御を行なってもサイドバックルは銅帯の中央
部に移動するだけで消滅しないことが判る。すなわちサ
イドバックルの発生した部位のワークロールを冷却する
という従来のスポットグーリングではキルド鋼連鋳材の
サイドバックルを修正する事は困難であることが判明し
た。
Curve J in Figure 4 is the shape simulation result when a figure-7 depression with a width of 2001 m and a maximum diameter of μm is formed on the work roll by spot cooling, centered on the side buckle generation area. It can be seen that even if roll crown control is performed, the side buckles only move to the center of the copper band and do not disappear. In other words, it has been found that it is difficult to correct side buckles in continuous cast killed steel materials using conventional spot gooling, which involves cooling the work roll in the area where side buckles have occurred.

そこで他の手段として、鋼帯端縁部付近の硬度上昇部、
すなわち変形抵抗の高い部分に対する圧練圧力を高めて
、この部分の銅帯の伸びを他の部分の伸びよりも大きく
する様1:ワークロールク、ラウンを制都Tる方法を考
えた。第5図はキルド鋼連鋳材の幅方向硬度分布パター
ン(曲線L)とこれを圧延する場合のワークロールのイ
ニシャルクラウン(曲線M)とのロール軸方向C二おけ
る位置関係を表わすグラフである。第5図中、横軸はロ
ール軸方向におけ−る位tを表わし、縦軸は曲線いにつ
いてはワークロールのイニシャルクラウンを、曲線しに
ついては板の硬度を表わす。この場合、曲線しの銅帯の
硬度上昇開始点に曲線8で表わされるワークロールのテ
ーパ開始点を一致させている。ワークロールのテーバ開
始点と銅帯の端縁部間の距n&をXとし、またその距離
Xの間C二変化するワークロール径差なyで表わしてい
る。
Therefore, as another means, the hardness increased area near the edge of the steel strip,
That is, we considered a method in which the rolling pressure is increased in areas with high deformation resistance so that the elongation of the copper strip in this area is greater than that in other areas.1: Work rolls and rounds are restricted. Fig. 5 is a graph showing the positional relationship in the roll axis direction C2 between the width direction hardness distribution pattern (curve L) of the continuous cast killed steel material and the initial crown (curve M) of the work roll when rolling this. . In FIG. 5, the horizontal axis represents the position t in the roll axis direction, and the vertical axis represents the initial crown of the work roll for curved rolls and the hardness of the plate for curved rolls. In this case, the taper start point of the work roll represented by curve 8 is made to coincide with the hardness increase start point of the curved copper strip. The distance n& between the taper start point of the work roll and the edge of the copper strip is defined as X, and the work roll diameter difference that changes during the distance X is expressed as y.

第6図は、第5図の”s 7の値をと下ロール共C二そ
れぞれ100鵡、20μmとしたワークロール・を第1
表に示す圧延機の最終、E >ンドよ二組み込んで、第
1図のCなる硬度分布を持つキルド鋼連鋳材を圧延する
場合の形状シュミレーション結果を示すグラフである。
Figure 6 shows the first work roll with the values of s7 and lower roll C2 in Figure 5 being 100 mm and 20 μm, respectively.
2 is a graph showing shape simulation results when a continuous cast killed steel material having a hardness distribution C in FIG. 1 is rolled using the final rolling mill shown in the table.

gI!116図でみると鋼帯の端縁部でやや耳伸びが大
きくなるもののサイド/り・ンクルはほぼ完全に消滅し
ていることが判る。丁なわち端縁部に硬貫上昇を伴うキ
ルド鋼連鋳材C二発生するサイドバックルは、この硬度
上昇部に対応する部位のワークロール径を硬度開始点に
対応する部位のワークロール径よりも大きくするという
ロールクラウン制御により始めて修正6■能となる。な
お、このyの値は、鋼帯の硬度を昇量及び上Fワークロ
ールのうちの片方または両方のクラウンを制御するかど
うかで異なるが、1〜100μmσ)範囲が適当である
。y−r′なわちロールクラウンは14m以下では効果
が現われず、−万100μmを超えると耳伸びの発生が
顕著になって実用的でない。従って付与するロールクラ
ウン制御量は1乃至100μmの範囲とした。
gI! Looking at Figure 116, it can be seen that although the edge elongation becomes a little large at the edge of the steel strip, the side/rips/inkles have almost completely disappeared. In other words, the side buckle that occurs in killed steel continuous cast material C2 with hard penetration rising at the edge is determined by changing the work roll diameter of the part corresponding to this hardness rising part from the work roll diameter of the part corresponding to the hardness starting point. Modified 6■ ability can only be achieved by roll crown control that increases the size of the ball. The value of y varies depending on whether the hardness of the steel strip is increased and the crown of one or both of the upper F work rolls is controlled, but a range of 1 to 100 μmσ) is appropriate. yr', that is, the roll crown is not effective at a length of less than 14 m, and if it exceeds -100 μm, the occurrence of edge elongation becomes noticeable and is not practical. Therefore, the amount of roll crown control to be applied was set in the range of 1 to 100 μm.

本発明者等はこのようにキルド鋼連鋳材の硬度上昇部位
に対応してワークロールのクラウンを制御する事により
サイドバックルを°効率的に修正し得る事を見出し、本
発明に到達した。
The inventors of the present invention have thus discovered that the side buckle can be efficiently corrected by controlling the crown of the work roll in accordance with the hardness-increasing portion of the continuously cast killed steel material, and have arrived at the present invention.

本発明の目的は、リム層を有しない熱延金属帯板、例え
ばキルド鋼熱延鋼帯等を冷間圧#、Tる際発生するクオ
ーダバックル状の形状不良を防止もしくは修正して形状
の良い冷廷板を製造する形状制御冷間圧延法を提供する
にある。
An object of the present invention is to prevent or correct the defective shape of a quarter buckle that occurs when hot-rolled metal strips without a rim layer, such as killed hot-rolled steel strips, are subjected to cold pressing. The purpose of this invention is to provide a shape-controlled cold rolling method for manufacturing good cold rolled plates.

本発明により、板端付近に硬度上昇部を有する金属帯板
の形状制御冷間圧延法において、金職帯板硬度上昇部の
対応位置におけるワークロール径を金属帯板中央寄りの
硬度上昇開始点対応位置のワークロール径よりもl乃至
1004mの範囲で大きくするロールクラウン制御を行
なう率を特徴とする形状制御冷間圧延法が提供される。
According to the present invention, in the shape control cold rolling method of a metal strip having a hardness increasing portion near the edge of the sheet, the work roll diameter at the corresponding position of the metal strip hardness increasing portion is changed to the hardness increase starting point near the center of the metal strip. A shape-controlled cold rolling method is provided that is characterized by a roll crown control rate that increases the diameter of the work roll at the corresponding position by 1 to 1004 m.

以下に実施例を用いて本発明の詳細な説明する。The present invention will be described in detail below using Examples.

第7図は上ワークロール2の両端を第5図に示fx、y
の値がそれぞれ100wg、 40 /’In となる
ように先太リテーバ研削し、゛5基連続冷間圧廷機の最
終スタンドに組み込んでキルド鋼連鋳材1を圧延してい
る状態を表わ丁断面図である。また第8図はその場合の
圧延機出側に設けた形状検出器による形状測定例を示す
が1本実施例によりキルド鋼連鋳材の圧延にも拘らず第
3図の比較例に見られるサイドバックルは完全に消滅し
、冷延後の形状は非常に安定したものと71っている。
Fig. 7 shows both ends of the upper work roll 2 in Fig. 5, fx, y.
This figure shows the condition in which the tip retainer is ground so that the values of FIG. In addition, Fig. 8 shows an example of shape measurement using a shape detector installed on the exit side of the rolling machine in this case, but it can be seen in the comparative example of Fig. 3 even though killed continuous cast steel material was rolled according to this example. The side buckles completely disappeared, and the shape after cold rolling was said to be very stable71.

なおii1%8図において端縁部のごく近傍に発生した
浅い耳伸びはyの値を大きくし過ぎたために生じている
。このyの値を小さく丁れば、サイトノくツクルは若干
残留Tるものの耳伸びはめ止できる。本実施例では第5
図に示すようにワークロールのロールフェースを直線的
ζ二先太すテーパ研削したロールを使用したが、帯鋼の
高硬度部に対応する部位のワークロール径が硬度上昇開
始点対応位置ークロール径よりも大きくする方向であれ
ば、硬度上昇部す対応する部位のワークロールフェース
を曲線的に研削しても良い。例えばgJ5図Q〕ように
ワークロールのロール端部テーバを単純な直線テーパと
せず、第9図のような山形曲線Pとすることが出来る。
Note that in Figure ii1%8, the shallow elongation that occurs very close to the edge is caused by making the value of y too large. If the value of y is set to a small value, the extension of the edge can be prevented, although some residual T will remain in the site knot. In this example, the fifth
As shown in the figure, a taper-ground roll with a straight ζ2 taper roll face was used. If the direction is to increase the hardness, the work roll face at a portion corresponding to the hardness increasing portion may be ground in a curved manner. For example, the roll end taper of the work roll can be made into a chevron curve P as shown in FIG. 9, instead of a simple linear taper as shown in FIG.

この様に丁れば、サイドバックルを効果的に防止しつつ
、一方で耳伸びの発生も抑制する事力玉出来る。なお、
第9図の曲線Nは銅帯の板幅方向硬度分布である。
By folding it in this way, you can effectively prevent side buckling while also suppressing the occurrence of selvage stretching. In addition,
Curve N in FIG. 9 is the hardness distribution in the width direction of the copper strip.

次に示す他の実施例は、上記機能を異なる板幅の金属帯
板に対しても適用できるように改良したものである。
In another embodiment shown below, the above function is improved so that it can be applied to metal strips of different widths.

すなわち、通常の4段圧延機を改造し、上下ワークロー
ルをいずれも軸方向移動可能とすると共に各ワークロー
ル自体を片端ロールフェースに先太リテーパを付けたも
のとし、金属帯板をそれらの先太リテーバで両側から挾
むように対称に配置するのである。かく丁れば機中の異
なる金属帯板に対して本発明を容易に適用する拳が出来
る。
In other words, a conventional 4-high rolling mill was modified so that both the upper and lower work rolls could be moved in the axial direction, and each work roll itself had a tapered end on one end of the roll face. They are placed symmetrically so that they are sandwiched from both sides by thick retainers. This will allow you to easily apply the present invention to different metal strips in the machine.

以下にこの実施例につき史に具体的な実施態様を述べる
Below, specific embodiments of this embodiment will be described.

第10図は本発明実施例に用いる装置の断面図である。FIG. 10 is a sectional view of an apparatus used in an embodiment of the present invention.

上下の先太リテーパ付ワークロールが矢印方向に移動可
能なことは先述のとおりである。
As described above, the upper and lower thick tapered work rolls are movable in the direction of the arrow.

ここで第10図中の上下ワ、−り、ロールの片側を第5
図に示す”+  Yの値がそれぞれ1100a、40μ
In となるように先太り研削を施し、5基連続冷間圧
Mfiの妓終スタンドに組み込んでキルド鋼連鋳材を圧
延した場合のワークロールの軸方向移動が冷延後形状に
与える影響について述べる。第11図はワークロールの
軸移動によりXを50mJt。
Now, move one side of the upper and lower wires and rolls in Figure 10 to the fifth
The values of “+Y” shown in the figure are 1100a and 40μ, respectively.
Regarding the influence of the axial movement of the work rolls on the shape after cold rolling when a killed steel continuous cast material is rolled by grinding with a thick tip so that it becomes In and is assembled into a final stand with 5 continuous cold pressure Mfi. state In Figure 11, X is 50 mJt due to the axis movement of the work roll.

100m、150mと変化させた場合の圧延機出側に設
けた形状検出器による形状測定例の変化をン]り丁グラ
フであるー、第11図の曲線Q、R,isはXをそれぞ
れ50m、  100tpx、  150wxに設定し
た場合の形状測定例であり、Xの値を増丁につれて形状
は耳伸び方向に移行する。しかしながらワークロールの
軸方向移動によりXを適当な憧(この例ではIを100
aul)に保てば、板幅の異なるキルド鋼連鋳材のサイ
ドバックルも十分防止できる事が判明した。
The curves Q, R, and is in Figure 11 are graphs showing the changes in the shape measured by the shape detector installed on the exit side of the rolling mill when changing the shape to 100m and 150m. , 100 tpx, and 150 wx. As the value of X increases, the shape shifts in the direction of edge elongation. However, due to the axial movement of the work roll, X can be adjusted to an appropriate value (in this example, I is 100
It has been found that side buckling of continuous cast killed steel materials with different plate widths can be sufficiently prevented if the plate width is maintained at

更に他の実施例として、ワークロールに対し、軸方向に
おける加熱・冷却機構を用いてロールクラウン制御する
場合について述べる。加熱・冷却機構の要部はロールに
加熱・冷却媒体を噴射するノズルである。これらのノズ
ルばロール軸方向に夫々独立して移動することも出来る
As yet another embodiment, a case will be described in which a work roll is subjected to roll crown control using a heating/cooling mechanism in the axial direction. The main part of the heating/cooling mechanism is a nozzle that injects heating/cooling medium onto the roll. These nozzles can also move independently in the roll axis direction.

この実施例は、板端の硬度上昇部g二相対するワークロ
ールの熱ひずみをその硬度上昇開始部の熱ひずみよりも
たえず大きくなるように制御しようとするものである。
This embodiment attempts to control the thermal strain of the opposing work rolls so that the thermal strain at the hardness increasing portion (g) at the end of the plate is constantly greater than the thermal strain at the hardness increasing portion.

第12図および1J13図は、この発明の実施態様を示
す図である。2.3は夫々上下ワークロールな示す。ロ
ール冷却のためのクーラントヘッダー10と水切用コブ
ルガード9にパケット8が製雪されている。12.13
はこの発明の目的の下で特l二設けたそれぞれ加熱媒体
用ノズル、冷却媒体用ノズルで、熱の流出入を防ぐため
に、ワークロール側以外は遮へいされた遮へい箱11内
に設けられている。また遮へい箱11はアーム16と一
体で構成され、台形ネジ14の回転によりロール軸方向
に移動可能な機構とする。またがイドシャツ)15が遮
へい箱11の上下動を押えている。第14図は、この装
、tを5基連続冷間圧延機の最終スタンドC二用いてキ
ルド鋼連鋳材を圧練した場合の圧延機出側に設けた形状
検出滲出カバターンの変化を示すグラフである。
FIG. 12 and FIG. 1J13 are diagrams showing embodiments of the present invention. 2.3 shows the upper and lower work rolls, respectively. A packet 8 is made of snow on a coolant header 10 for cooling the rolls and a cobble guard 9 for draining. 12.13
are a heating medium nozzle and a cooling medium nozzle, respectively, specially provided for the purpose of this invention, and are provided in a shielding box 11 that is shielded except for the work roll side in order to prevent heat from flowing in and out. . Further, the shielding box 11 is constructed integrally with the arm 16, and has a mechanism that can be moved in the roll axis direction by rotation of the trapezoidal screw 14. The vertical movement of the shielding box 11 is restrained by the shielding box 11. Figure 14 shows the changes in the shape detection exudation cover turn provided on the exit side of the rolling mill when a continuous cast of killed steel is rolled using this equipment and the final stand C2 of a five-set continuous cold rolling mill. It is a graph.

なお、その時の本装置の条件は第2表のとおりである。Note that the conditions of this apparatus at that time are as shown in Table 2.

第14図の曲線Uは本装置を使用する前の形状比カバタ
ーン(比較例)である。この場合、板の硬度上昇開始部
を中心としたサイドバックルが顕著に表われている。曲
線Vは加熱媒体で端縁部近傍を30分加熱した後の形状
比カバターン(本発明実施例)である。
Curve U in FIG. 14 is the shape ratio cover turn (comparative example) before using this device. In this case, side buckles centering around the part where the hardness of the plate starts to increase are clearly visible. Curve V is the shape ratio cover turn (embodiment of the present invention) after heating the vicinity of the edge portion for 30 minutes with a heating medium.

これよりサイドバックルが格段に減少することがわかる
It can be seen from this that the side buckles are significantly reduced.

なお、商用ミルであれば、しばしばキルド鋼連鋳材の次
にインゴツト材であるリムド鋼、キャップド鋼が圧延さ
れる事もあるので、その場合の対策として上記加熱した
ロール部分に冷却媒体である水?噴射してロールカーブ
を調整してみた結果(30分加熱+30分冷却)を第1
4図の曲線Tに示す。これを見るとギルド鋼連鋳材に対
しサイドバックルが顕著となり、ロールクラウン制卸が
目的どおり可能なことが示されている。
In addition, in commercial mills, rimmed steel and capped steel, which are ingots, are often rolled next to continuous casting of killed steel, so as a countermeasure in that case, cooling medium is applied to the heated roll part. Some water? The results of spraying and adjusting the roll curve (30 minutes heating + 30 minutes cooling) are the first results.
This is shown by curve T in Figure 4. Looking at this, the side buckles are noticeable compared to the continuously cast guild steel material, indicating that roll crown control can be achieved as intended.

なお、冷却のみで本発明を実施することは困難であるが
、ロール軸方向に部位を分けて冷却と加熱を併用するこ
とは充分に可能である。
Although it is difficult to carry out the present invention by cooling alone, it is quite possible to divide the roll into sections in the axial direction of the roll and use both cooling and heating.

加えて前述のテーパ付ワークロール、更に軸方向に移動
するテーパ付ワークロールと、これらの加熱・冷却方式
との組合せも行なうことが出来る。
In addition, it is also possible to combine the above-mentioned tapered work roll, a tapered work roll that moves in the axial direction, and these heating/cooling methods.

なお、第2図の曲線G、第4図の曲線J、K及び第6図
の曲線の両端部の形状(伸び率差)は、その部分の計算
形状数値が非常に大きくなったため本グラフ内で表示不
可能となり、従って他の部分と区別するために二点鎖線
で表わしたものである。
Note that the shapes (elongation rate differences) at both ends of curve G in Figure 2, curves J and K in Figure 4, and curves in Figure 6 are not included in this graph because the calculated shape values for those portions are extremely large. Therefore, it is shown with a chain double-dashed line to distinguish it from other parts.

ところで、本発明の背景は連続鋳造工程を経て製造され
たギルド鋼熱延鋼帯を素材とする冷間圧廷上の問題点の
発見にあるカミ一本発明は鋼に限らす(斯の非鉄金属で
も、リムwIAを有しない熱延金属帯板であルば同様に
過用し得るものである。
By the way, the background of the present invention lies in the discovery of problems in cold rolling using guild steel hot-rolled steel strip manufactured through a continuous casting process. Metal can be similarly overused as long as it is a hot-rolled metal strip without a rim wIA.

以と詳述した本発明を実施することにより、リム層な有
しない熱延金属帯板からクォータバックル状不良形状の
ない形状のよい冷延金属帯板を製造することが出来る。
By carrying out the invention described in detail below, it is possible to produce a cold-rolled metal strip with a good shape and no quarterbuckle-like defects from a hot-rolled metal strip without a rim layer.

−[なわち、従来防止困難であったクォータバックル状
の不良形状を防止乃至修正することが出来る。
- [In other words, it is possible to prevent or correct the quarterbuckle-like defective shape, which has been difficult to prevent in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱延帯鋼の板幅方向硬度分布実測値を表わすグ
ラフ、第2図はギルド鋼連鋳材圧延時の形状計算値を示
すグラフ、s3図はキルド鋼連鋳材圧延時の圧延機出側
における板形状の形状検出器による測定結果を示すグラ
フ、第4図はスポットグーリングをした場合と、しない
場合の形状計算結果の違いを示すグラフ、第5図はギル
ド鋼連鋳材の板幅方向硬度分布パターンとこれを圧延す
る時のワークロールのイニシャルクラウンとのロール軸
方向における位置関係を示すグラフ、第6図は本発明を
実施した場合の圧延機出側における板形状計算結果を示
すグラフ、第7図は圧延中の  □板とワークロールの
関係を示す断面図、!J8図は本発明を実施した場合の
圧延機出側における板形状の形状検出器による測定結果
を示すグラフ、第9図は本発明におけるワークロールの
イニシャルクラクンの1例を示すグラフ、第10図は本
発明に用いる4段圧延機の正面図、第11図は本発明を
実施した場合の圧延機出側における板形状の形状検出器
による測定結果を示すグラフ、第12図及び第13図は
本発明の実施例を示すそれぞれ側面図及び正面図、第1
4図は本発明を実施した場合の圧延機出側における板形
状の形状検出器による測定結果を示すグラフである。 1・・・・・−被圧廷板、   2.3・・・・・・上
、下ワークロール、4.5・・・・・・h、 −Fバッ
クアップロール、6.7・・・・・・上、下スピンドル
、 8・・・・−・パケット、9・・・・・・・・・・
・コブルガード、   10・・・・・・クーラントヘ
ッダー、11・・・・・・・・・遮へい箱、    1
2・・−・・・加熱媒体用ノズル。 13・・・・・・・・−冷却媒体用ノズル、  14・
・・・−・台形ネジ、15・・・・・・・・・ガイドシ
ャフト、  16・・・、中アーム。 才20 才3目 勢。 技 才4図 4 才5I27 t’rr;h       才81 才9図         才10図 才11f!U 才/2ffl
Figure 1 is a graph showing the measured value of the hardness distribution in the width direction of hot-rolled steel strip, Figure 2 is a graph showing the calculated shape value during rolling of continuous cast guild steel, and Figure s3 is a graph showing the calculated value of the shape during rolling of continuous cast guild steel. A graph showing the measurement results of the sheet shape on the exit side of the rolling mill using a shape detector. Figure 4 is a graph showing the difference in shape calculation results with and without spot googling. Figure 5 is a graph showing the results of continuous casting of guild steel. A graph showing the positional relationship in the roll axis direction between the hardness distribution pattern in the board width direction of the material and the initial crown of the work roll when rolling this. Figure 6 shows the board shape on the exit side of the rolling machine when the present invention is implemented. A graph showing the calculation results, and Figure 7 is a cross-sectional view showing the relationship between the □ plate and work roll during rolling. Figure J8 is a graph showing the measurement results of the plate shape by a shape detector on the exit side of the rolling mill when the present invention is implemented, Figure 9 is a graph showing an example of the initial crack of the work roll in the present invention, and Figure 10 is a graph showing an example of the initial crack of the work roll in the present invention. The figure is a front view of a four-high rolling mill used in the present invention, FIG. 11 is a graph showing the measurement results of the plate shape on the exit side of the rolling mill using a shape detector when the present invention is implemented, and FIGS. 12 and 13 1A and 1B are a side view and a front view, respectively, showing an embodiment of the present invention.
FIG. 4 is a graph showing the results of measurement by a shape detector of the plate shape on the exit side of the rolling mill when the present invention is implemented. 1...-Pressure board, 2.3...Upper and lower work rolls, 4.5...h, -F backup roll, 6.7...・・Upper and lower spindles, 8・・・・−・Packet, 9・・・・・・・・・・
・Cobble guard, 10... Coolant header, 11... Shielding box, 1
2.---Heating medium nozzle. 13・・・・・・・・Cooling medium nozzle, 14・
...-... Trapezoidal screw, 15... Guide shaft, 16... Middle arm. 20 years old, about 3 years old. Skill 4 figure 4 age 5I27 t'rr;h age 81 age 9 figure age 10 figure age 11f! U/2ffl

Claims (1)

【特許請求の範囲】 (1)  板端付近に硬度上昇部を有する金属帯板の形
状制御冷間圧延法において、金属帯板硬度上昇部の対応
位置におけるワークロール径を金属帯板中央寄りの硬度
上昇開始点対応位置のワークロール径よりも1乃至10
0QIの範囲で太さ<するロールクラウン制御を行なう
事を特徴とする形状制御冷間圧延法。 (2ロールクラウン制御がワークロールの軸方向におけ
る加熱・冷却機構を用いるロールクラウン制御である特
許請求の範囲第1項記載の形状制御冷間圧延法。 (J ロールクラウンmsが、ロールフェースの片端も
しくは両端に端部鑑−近、づくに従って径大化するテー
パななすイニシャルクラウンを有するワークロールを用
いるロールクラウン制御である特許請求の範囲第1項乃
至第2項のいづれか一項に記載の形状制御冷間圧延法。 (4)  加熱・冷却機構がワークロール軸方向に夫々
独立移動可能である特許請求の範囲第2項記載の形状制
御冷間圧延法。 (9ロールクラウン制御がワークロールの軸方向移動で
ある特許請求の範囲第3項記載の形状制御圧延法。
[Claims] (1) In the shape control cold rolling method of a metal strip having a hardness increasing portion near the edge of the sheet, the work roll diameter at a position corresponding to the hardness increasing portion of the metal strip is set closer to the center of the metal strip. 1 to 10 times larger than the work roll diameter at the position corresponding to the hardness increase start point.
A shape-controlled cold rolling method characterized by controlling the roll crown so that the thickness is less than 0QI. (The shape-controlled cold rolling method according to claim 1, wherein the two-roll crown control is a roll crown control using a heating/cooling mechanism in the axial direction of the work roll. Alternatively, the shape according to any one of claims 1 to 2 is a roll crown control using a work roll having a tapered initial crown whose diameter increases as the end portions get closer to each other at both ends. Controlled cold rolling method. (4) Shape controlled cold rolling method according to claim 2, wherein the heating and cooling mechanisms are movable independently in the axial direction of the work rolls. The shape control rolling method according to claim 3, wherein the rolling method is axial movement.
JP57057545A 1982-04-06 1982-04-06 Cold rolling method for controlling shape Pending JPS58176010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57057545A JPS58176010A (en) 1982-04-06 1982-04-06 Cold rolling method for controlling shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57057545A JPS58176010A (en) 1982-04-06 1982-04-06 Cold rolling method for controlling shape

Publications (1)

Publication Number Publication Date
JPS58176010A true JPS58176010A (en) 1983-10-15

Family

ID=13058735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57057545A Pending JPS58176010A (en) 1982-04-06 1982-04-06 Cold rolling method for controlling shape

Country Status (1)

Country Link
JP (1) JPS58176010A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635814A (en) * 1986-06-27 1988-01-11 Hitachi Ltd Rolling mill
JP2014008520A (en) * 2012-06-29 2014-01-20 Nippon Steel & Sumitomo Metal Cold rolling method of metal plate and method of manufacturing metal plate
JP2016064442A (en) * 2014-09-26 2016-04-28 Jfeスチール株式会社 Method for manufacturing cold-rolled steel sheet and rolling machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635814A (en) * 1986-06-27 1988-01-11 Hitachi Ltd Rolling mill
JP2014008520A (en) * 2012-06-29 2014-01-20 Nippon Steel & Sumitomo Metal Cold rolling method of metal plate and method of manufacturing metal plate
JP2016064442A (en) * 2014-09-26 2016-04-28 Jfeスチール株式会社 Method for manufacturing cold-rolled steel sheet and rolling machine

Similar Documents

Publication Publication Date Title
JP2015511533A (en) Method for producing hot rolled silicon steel
CN109967528A (en) A method of prevent hot-strip SPHC high temperature coiling from scratching
GB2042389A (en) Method for automatically controlling width of slab during hot rough-rolling
JPS58176010A (en) Cold rolling method for controlling shape
KR930011960B1 (en) Method of rapidly and uniformly widthwise cooling stainless steel strip in continuous casting
JP3373078B2 (en) Method of producing austenitic stainless steel ribbon-shaped slab with excellent cold-rolled surface quality and slab
US5030296A (en) Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
JP3595369B2 (en) Method for producing austenitic stainless steel sheet with excellent surface quality
JP3417714B2 (en) Method for producing thin cast slab of austenitic stainless steel with low residual δ ferrite
JPH08165523A (en) Production of austenitic stainless steel thin cast slab excellent in cold-rolled surface quality
JP3298730B2 (en) Manufacturing method of austenitic stainless steel sheet with few surface defects
US4422884A (en) Method of treating a continuously cast strand formed of stainless steel
JPH0559447A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JP3475785B2 (en) Hot rolling method and apparatus for thin steel sheet
JP2532314B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JPH0465742B2 (en)
JPH0348250B2 (en)
JP3221561B2 (en) Manufacturing method of stainless steel sheet
JPH0966303A (en) Production of hot rolled steel sheet excellent in surface condition
KR100940688B1 (en) Method for Preventing Coil Break on Low Carbon Steel
JPS63171255A (en) Non-solidified rolling method
JPH06592A (en) Method for casting nb-containing ferritic stainless steel by twin roll continuous casting method
JP2825986B2 (en) Method for producing thin hot rolled steel sheet with excellent surface properties
KR101518629B1 (en) Hot rolling method for preventing sticking
JPH10193068A (en) Production of cr-ni base stainless steel and apparatus therefor