JPH082484B2 - Austenitic stainless steel strip-shaped slab with excellent surface quality, thin plate manufacturing method, and strip-shaped slab - Google Patents

Austenitic stainless steel strip-shaped slab with excellent surface quality, thin plate manufacturing method, and strip-shaped slab

Info

Publication number
JPH082484B2
JPH082484B2 JP2279097A JP27909790A JPH082484B2 JP H082484 B2 JPH082484 B2 JP H082484B2 JP 2279097 A JP2279097 A JP 2279097A JP 27909790 A JP27909790 A JP 27909790A JP H082484 B2 JPH082484 B2 JP H082484B2
Authority
JP
Japan
Prior art keywords
strip
slab
stainless steel
austenitic stainless
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2279097A
Other languages
Japanese (ja)
Other versions
JPH04158957A (en
Inventor
利行 末広
全紀 上田
功 水地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2279097A priority Critical patent/JPH082484B2/en
Priority to DE69102388T priority patent/DE69102388T2/en
Priority to ES91117741T priority patent/ES2056553T3/en
Priority to EP91117741A priority patent/EP0481481B1/en
Priority to KR1019910018401A priority patent/KR950014485B1/en
Publication of JPH04158957A publication Critical patent/JPH04158957A/en
Publication of JPH082484B2 publication Critical patent/JPH082484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/0651Casting wheels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳片と鋳型内壁面の間に相対速度差のな
い、いわゆる同期式連続鋳造プロセスによる製品厚さに
近い厚さの鋳片、その製造および該鋳片の冷間圧延によ
るオーステナイト系ステンレス鋼薄板の製造に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a slab having a thickness close to the product thickness obtained by a so-called synchronous continuous casting process in which there is no relative speed difference between the slab and the inner wall surface of the mold. , Its production and cold rolling of the slab to produce an austenitic stainless steel sheet.

〔従来の技術〕[Conventional technology]

連続鋳造法を用いてステンレス鋼薄板を製造する従来
の方法は、鋳型を鋳造方向に振動させながら厚さ100mm
以上の鋳片に鋳造し、得られた鋳片の表面手入れを行
い、加熱炉において1000℃以上に加熱した後、粗圧延機
および仕上圧延機列からなるホットストリップミルによ
り熱間圧延を施して厚さ数mmのホットストリップとし、
さらに、必要に応じて焼鈍した後、デスケーリングし冷
間圧延して最終焼鈍を行うものであった。
The conventional method of producing a stainless steel thin plate using the continuous casting method is to make the thickness of 100 mm while vibrating the mold in the casting direction.
Casting to the above slab, performing surface maintenance of the obtained slab, after heating to 1000 ℃ or more in a heating furnace, hot rolling is performed by a hot strip mill consisting of a rough rolling machine and a finishing rolling mill train. A hot strip with a thickness of several mm,
Further, after annealing as necessary, descaling and cold rolling were performed for final annealing.

このような従来のプロセスにおいては、厚さ100mm以
上の鋳片を熱間圧延するために、長大なホットストリッ
プミルを必要とし、鋳片の加熱と圧延のために多大のエ
ネルギーを使用するという問題があった。
In such a conventional process, in order to hot-roll a slab with a thickness of 100 mm or more, a long hot strip mill is required, and a problem of using a large amount of energy for heating and rolling the slab was there.

この問題に対して、近年ホットストリップと同等かあ
るいはそれに近い厚さの鋳片を連続鋳造によって製造す
るプロセスの研究が進められている。たとえば、「鉄と
鋼」‘85−A197〜‘85−A256に特集された論文に紹介さ
れているような、双ロール法、双ベルト法等、鋳片と鋳
型内壁面に相対速度差のない同期式連続鋳造プロセスが
知られている。
In response to this problem, research on a process for producing a slab having a thickness equal to or close to that of a hot strip by continuous casting has been advanced in recent years. For example, there is no relative velocity difference between the cast slab and the inner wall of the mold, such as the twin roll method, the twin belt method, etc., as introduced in the paper featuring "Iron and Steel"'85 -A197 to '85 -A256. Synchronous continuous casting processes are known.

これら同期式連続鋳造プロセスを経てステンレス鋼薄
板製品を製造するには、鋳片厚み/薄板製品厚みの値が
小さいため、高品位の薄板製品表面を得るには、鋳片の
表面性状を安定して高水準に維持することが重要な課題
である。
When manufacturing stainless steel sheet products through these synchronous continuous casting processes, the value of cast piece thickness / sheet product thickness is small, so to obtain a high quality sheet product surface, the surface texture of the cast piece should be stable. And maintaining a high standard is an important issue.

すなわち、これらの薄板鋳片連続鋳造プロセスは、従
来の連続鋳造設備によって製造されるスラブの場合と異
なり、以降の工程で圧延される度合いを小さくしても高
品位の薄板表面を得ることができる薄帯状鋳片を製造す
ることを目標として開発されたものである。そのため、
薄帯状鋳片に表面割れ等があると、これが製品表面欠陥
となり、商品価値を著しく損なうことになり、目的を達
成することができない。
That is, unlike the case of the slab manufactured by the conventional continuous casting equipment, these thin plate slab continuous casting processes can obtain a high-quality thin plate surface even if the degree of rolling in the subsequent steps is reduced. It was developed with the goal of producing thin strip slabs. for that reason,
If the thin strip-shaped slab has surface cracks or the like, it becomes a product surface defect, which significantly impairs the commercial value, and the object cannot be achieved.

そこで、薄帯状鋳片を表面に割れ等の欠陥が発生する
のを防止することを目的として、冷却ドラムの周面に所
定の大きさ、深さを有する窪み(ディンプル)を複数形
成させて鋳造する方法がある(特願昭62−240479号、特
願昭62−240481号および特願昭63−202962号)。
Therefore, in order to prevent the occurrence of defects such as cracks on the surface of the strip-shaped cast piece, casting is performed by forming a plurality of depressions (dimples) having a predetermined size and depth on the peripheral surface of the cooling drum. (Japanese Patent Application Nos. 62-240479, 62-240481 and 63-202962).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記の方法では割れ等の表面欠陥は防止されるもの
の、冷却ドラム周面に窪みを設けて鋳造を行うと、この
窪みによって生じるエアギャップにより鋳片表面に急冷
部と緩冷部が生じ、その結果、これらの部分においてδ
フェライト残存量が異なり、鋳片表面には所謂凝固組織
むらを生じる。この凝固組織むらは冷間圧延後の薄板製
品の表面に光沢むらとして顕在化する。
Although surface defects such as cracks are prevented by the above method, when a casting is performed by providing a depression on the peripheral surface of the cooling drum, a quenching portion and a slow cooling portion are generated on the cast piece surface due to the air gap generated by the depression, As a result, in these parts δ
The amount of remaining ferrite differs, and so-called uneven solidification structure occurs on the surface of the cast piece. This solidification structure unevenness becomes apparent as uneven gloss on the surface of the thin plate product after cold rolling.

この凝固組織むらは第1図に示すように、δフェライ
トが緩冷部では多く、急冷部では少ないことに起因して
いる。このような凝固組織むらを有する鋳片を冷間圧延
した後、最終焼鈍を施すと、δフェライトの多い部分で
は再結晶粒の成長が阻害され細粒組織となり、δフェラ
イトの少ない部分では再結晶粒が成長して相対的に粗い
組織となり、結晶粒の大きさに違いが生じる。これが、
製品表面の光沢むらとして顕在化する。
As shown in FIG. 1, this uneven solidification structure is caused by the large amount of δ-ferrite in the slow-cooled portion and the small amount in the quenched portion. After cold rolling a slab having such uneven solidification structure, when the final annealing is performed, the growth of recrystallized grains is inhibited in a portion where a large amount of δ ferrite is present and a fine grain structure is obtained, and recrystallization occurs in a portion where a small amount of δ ferrite is present. Grains grow to have a relatively coarse structure, and the size of crystal grains varies. This is,
It appears as uneven gloss on the product surface.

本発明は、大きさ、形状および配置がランダムな窪み
(ディンプル)を設けた鋳型壁面に鋳片が同期して移動
する連続鋳造機によって薄帯状鋳片を鋳造し、これを冷
間圧延してステンレス薄板製品を製造する方法におい
て、鋳片の割れ防止のために鋳型壁面に設けた窪み(デ
ィンプル)によって生じる薄帯状鋳片のδフェライト残
存の多・少によって生じる鋳片の凝固組織むらを制御す
ることによって凝固組織むらに起因して発生する薄板製
品の光沢むらの防止を目的とする。
The present invention casts a strip-shaped slab by a continuous casting machine in which the slab moves in synchronization with a mold wall surface provided with random depressions (dimples) having a size, shape, and arrangement, and cold-rolling it. In the method of manufacturing stainless steel sheet products, control the unevenness of solidification structure of the slab caused by the large or small amount of δ ferrite remaining in the thin strip slab, which is caused by the dimples formed on the wall surface of the mold to prevent the slab from cracking. By doing so, it is intended to prevent uneven gloss of the thin plate product caused by uneven solidification structure.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、3(Cr+1.5Si+Mo)−2.8(Ni+0.5Mn
+0.5Cu)−84(C+N)−19.8で定義されるδ−Fe
caL.(%)を5〜9%とし、冷却速度の速い鋳片表層部
もδ凝固組織になりやすい高δフェライト成分組成の溶
鋼を、直径が0.1〜1.2mm、深さが50〜100μmの範囲に
ある円形あるいは長円形の開口部を持つディンプルを多
数散在させ、かつ、すべての隣接ディンプルエッジ間距
離が0.35mm以下となるように配置した冷却ドラムによ
り、初期の凝固冷速を均一な緩冷却にして連続鋳造する
ことにより鋳片表面部分を凝固組織むらのないδ凝固組
織とすることによって達成される。
The above purpose is 3 (Cr + 1.5Si + Mo) -2.8 (Ni + 0.5Mn
+ 0.5Cu) -84 (C + N) -19.8 defined by -19.8
The caL. (%) is set to 5 to 9%, and molten steel with a high δ ferrite component composition, which tends to form a δ solidification structure even in the surface layer of the slab with a fast cooling rate, has a diameter of 0.1 to 1.2 mm and a depth of 50 to 100 μm. A large number of dimples with circular or oval openings within the range are scattered, and the cooling drums are arranged so that the distance between all adjacent dimple edges is 0.35 mm or less. This is achieved by cooling and continuously casting the slab surface portion to a δ solidification structure with no solidification structure unevenness.

〔作 用〕[Work]

第2図はFe−Cr−Ni三元系の平衡状態図におけるCr
eq.+Nieq.≒30%相当部の断面状態図を文献(Transact
ion of JWRI Vol.14,No.1,1985,p125)から引用したも
のである。Creq.とNieq.は次の通りで、成分から計算さ
れる。
Figure 2 shows Cr in the equilibrium diagram of the Fe-Cr-Ni ternary system.
eq. + Ni eq. ≈ 30% Cross-sectional state diagram of the equivalent part (Transact
Ion of JWRI Vol.14, No.1,1985, p125). Cr eq. And Ni eq. Are as follows and calculated from the components.

Creq.=Cr(%)+1.5Si(%)+Mo(%)+Nb(%) Nieq.=Ni(%)+0.5Mn(%)+0.5Cu(%) +30{C(%)+N(%)} Creq.の小さい領域では完全γ凝固(ゾーンI)であ
るが、Creq.が大きくなるにつれて初晶γ→δ+γ凝固
(ゾーンII)、初晶δ→δ+γ凝固(ゾーンIII)、完
全δ凝固(ゾーンIV)へと凝固形態が変化することが予
想される。
Cr eq. = Cr (%) + 1.5Si (%) + Mo (%) + Nb (%) Ni eq. = Ni (%) + 0.5Mn (%) + 0.5Cu (%) + 30 {C (%) + N ( %)} Complete γ solidification (Zone I) in the region where Cr eq. Is small, but as Cr eq. Increases, primary γ → δ + γ solidification (Zone II), primary δ → δ + γ solidification (Zone III), It is expected that the coagulation morphology will change to complete delta coagulation (Zone IV).

多くの成分系で実験した結果、3(Cr+1.5Si+Mo)
−2.8(Ni+0.5Mn+0.5Cu)−84(C+N)−19.8で定
義されるδ−FecaL.(%)を−2%以下および5%以上
の範囲でコントロールすると、完全γ凝固組織(ゾーン
I)および初晶δ→δ+γ凝固組織(ゾーンIII)、完
全δ凝固組織(ゾーンIV)が得られることが判明した。
第3図(a),(b),(c),(d)の金属組織写真
はδ−FecaL.(%)を変えた成分系で鋳造した鋳片の断
面組織を示す。図から明らかなように、δ−Fe
caL.(%)が−2.3%(ゾーンI)のものは完全γ凝固
組織であり、δフェライトの多・少に起因する凝固組織
むらはみられない。δ−FecaL.(%)が2.3%のもので
は初晶γ→δ+γ凝固組織(ゾーンII)であり、窪み
(ディンプル)に起因する緩冷部と急冷部のδフェライ
トの残存状態に明らかな違いがみられ、凝固組織むらが
顕著である。また、δ−FecaL.(%)が6.3%のもので
は初晶δ→δ+γ凝固組織(ゾーンIII)であり、表層
から約150μm深さまではδ凝固組織、それ以上の深さ
ではδ+γ凝固組織が観察される。表層のδ凝固組織は
緩・急冷部によらず均一であり、凝固組織むらは認めら
れない。更に、δ−FecaL.(%)が8.8%のものでは板
厚中心まで完全δ凝固組織(ゾーンIV)が得られてい
る。
As a result of experiments with many component systems, 3 (Cr + 1.5Si + Mo)
-2.8 (Ni + 0.5Mn + 0.5Cu) -84 (C + N) -19.8 defined as δ-Fe caL. (%) Within the range of -2% or less and 5% or more, complete γ solidification structure (zone I). ) And primary crystals δ → δ + γ solidification structure (zone III) and complete δ solidification structure (zone IV).
The metallographic photographs of FIGS. 3 (a), (b), (c), and (d) show the cross-sectional textures of cast slabs cast with a component system in which δ-Fe caL. (%) Is changed. As is clear from the figure, δ-Fe
Those with caL. (%) of -2.3% (zone I) have a complete γ solidification structure, and no solidification structure unevenness due to the large or small amount of δ ferrite is observed. When δ-Fe caL. (%) is 2.3%, it is a primary crystal γ → δ + γ solidification structure (zone II), which is apparent in the residual state of δ ferrite in the slow-cooled part and the quenched part due to depressions (dimples). Differences are seen and the unevenness of the coagulation structure is remarkable. When δ-Fe caL. (%) Is 6.3%, it is a primary crystal δ → δ + γ solidification structure (zone III). It is a δ solidification structure at a depth of about 150 μm from the surface layer, and a δ + γ solidification structure at a depth higher than that. Is observed. The δ solidification structure in the surface layer is uniform regardless of the slow-quenched portion, and no solidification structure unevenness is observed. Further, when δ-Fe caL. (%) Is 8.8%, a complete δ solidified structure (zone IV) is obtained up to the center of the plate thickness.

このように、Fe−Cr−Ni系における成分組成の選択が
鋳片の凝固組織に大きな影響を有しており、δ−FecaL.
(%)を−2%以下(完全γ凝固)および5%以上(初
晶δ→δ+γ凝固、完全δ凝固)にコントロールするこ
とにより比較的凝固組織むらの少ない鋳片が得られるこ
とが明らかになった。しかし、δ−FecaL.(%)を−2
%以下を得るには、C,N,NiなどのNieq.元素を増加させ
る必要があり、Cは耐食性を損なう危険性があり、Nは
軟質化に対しては不利である。また、Niの添加はコスト
の点から制約を受けることから18−8系の実用鋼として
は望ましくない。さらに、高δフェライト成分側では薄
板製品のプレス加工時に発生する時効割れ特性等の低下
が懸念されることから、上限を9%とし、適性なδ−Fe
caL.(%)範囲は5〜9%が望ましいと判断される。
Thus, the selection of the composition of components in the Fe-Cr-Ni system has a great influence on the solidification structure of the slab, δ-Fe caL.
By controlling the (%) to -2% or less (complete γ solidification) and 5% or more (primary crystal δ → δ + γ solidification, complete δ solidification), it is clear that a slab with relatively few solidification microstructures can be obtained. became. However, δ-Fe caL. (%) Is -2
%, It is necessary to increase Ni eq. Elements such as C, N and Ni, C has a risk of impairing corrosion resistance, and N is disadvantageous for softening. In addition, since the addition of Ni is restricted from the viewpoint of cost, it is not desirable as a practical steel of 18-8 series. Furthermore, on the high δ ferrite component side, there is a concern that deterioration such as age cracking characteristics that occurs during press working of thin plate products may occur, so the upper limit was set to 9%, and a suitable δ-Fe
It is judged that the caL. (%) range is preferably 5 to 9%.

次に、本発明の冷却ドラムは、その表面に多数の円形
あるいは長円形の窪みが形成されている。この冷却ドラ
ムの表面で初期凝固シェルが形成されたとき、この窪み
は互いに連続しない独立したエアギャップを形成する。
そのため、エアギャップによって凝固シェルの緩冷却さ
れた部分と冷却ドラム面に接して急冷却された部分が生
じることになり、緩冷部に比べ急冷部はδフェライト量
が減少し、これらの領域内でδフェライトの多・少によ
る凝固組織むらが発生する。このような初期の凝固シェ
ルの冷却不均一が原因で生じる凝固組織むらを軽減する
には、割れとの関係も考慮しながら冷却ドラムに形成す
る窪みの大きさ、深さを適性にし、且つ窪みの間隔を狭
くすることで解決された。
Next, the cooling drum of the present invention has a large number of circular or oval depressions formed on its surface. When the initially solidified shell is formed on the surface of the cooling drum, the depressions form independent air gaps that are not continuous with each other.
Therefore, the air gap causes a part of the solidified shell that is slowly cooled and a part that is rapidly cooled in contact with the cooling drum surface, and the amount of δ ferrite in the rapidly cooled part decreases compared to the slowly cooled part. Thus, uneven solidification structure occurs due to the large or small amount of δ ferrite. In order to reduce the unevenness of the solidification structure caused by such uneven cooling of the initial solidified shell, the size and depth of the depression formed in the cooling drum should be optimized while considering the relationship with the crack, and It was solved by narrowing the space between.

第4図は冷却ドラム表面の隣接する窪みのエッジ間距
離と凝固組織の関係を示したものであるが、該図より窪
みのエッジ間距離が0.35mm以下になるとそのエッジ間の
面に接して凝固したシェルに観察される凝固組織はδフ
ェライトが均一である通常のδ+γ組織であるのに対
し、窪みのエッジ間距離が0.35mm超以上では通常のδ+
γ組織とともにδフェライトの少ない凝固組織(γ組織
と呼ぶ)が観察された。この理由は、第5図に示すよう
に凝固初期においては先ず窪みのエッジ部に溶鋼が接し
て冷却されるため、隣接する窪み間隔の狭い場合では窪
みと窪みの間の凝固シェルは厚くなるが、窪み間隔の広
い領域ではこの影響が窪み間隔全域に及ばないためその
部分の凝固シェルに局部的な凝固遅れが発生する(第5
図−b)。その部分のシェルは薄く、強度が小さくなる
ために溶鋼静圧で押されて冷却ドラム面に密着し(第5
図−c)、その部分が著しく急冷されてδフェライトの
成長が抑制され、その後の熱拡散によってδフェライト
が消失しやすく、その他の緩冷部に比べてδフェライト
が少なくなり鋳片表面に多・少を伴う凝固組織むらを生
成する(第5図−d)と推定される。
Fig. 4 shows the relationship between the distance between the edges of adjacent dents on the surface of the cooling drum and the solidification structure. From the figure, when the distance between the edges of the dents becomes 0.35 mm or less, the surface between the edges is in contact. The solidification structure observed in the solidified shell is a normal δ + γ structure in which δ ferrite is uniform, whereas when the distance between the edges of the cavities exceeds 0.35 mm, the normal δ +
A solidified structure with a small amount of δ ferrite (referred to as a γ structure) was observed together with a γ structure. The reason for this is that, as shown in FIG. 5, in the initial stage of solidification, the molten steel first contacts the edges of the depressions and is cooled, so when the gap between adjacent depressions is narrow, the solidification shell between the depressions becomes thicker. In a region with a wide depression interval, this effect does not extend over the entire depression interval, so that a local coagulation delay occurs in the solidification shell in that portion (fifth part).
Figure-b). Since the shell at that portion is thin and its strength becomes small, it is pressed by the static pressure of molten steel and adheres to the surface of the cooling drum (No. 5).
Fig. C), that part is rapidly cooled rapidly, the growth of δ ferrite is suppressed, and δ ferrite is likely to disappear due to the subsequent thermal diffusion, and δ ferrite is less than in other slowly cooled parts, and the slab surface has a large amount. -It is presumed that coagulated tissue unevenness with a small amount is generated (Fig. 5-d).

窪み開口部の直径が0.1mm以下ではエアギャップによ
る緩冷却効果が少ないばかりか、窪み加工や汚れ等のブ
ラシクリーニングが困難である。他方、窪み開口部の直
径が1.2mmを超えると、窪み自体が微小割れの起点にな
り易くなり好ましくない。
If the diameter of the opening of the recess is 0.1 mm or less, not only the effect of gentle cooling due to the air gap is small, but also brush processing such as recess processing and dirt is difficult. On the other hand, if the diameter of the opening of the recess exceeds 1.2 mm, the recess itself becomes a starting point for microcracks, which is not preferable.

窪み深さが50μm未満になると冷却ドラム全体の緩冷
却効果が十分でなく、また100μmを超えると鋳片に転
写される凸ディンプルが高くなり冷間圧延前にコイルグ
ラインダーによる研削等の処理が必要となり、生産性が
低下する。
If the pit depth is less than 50 μm, the effect of slow cooling of the entire cooling drum is not sufficient, and if it exceeds 100 μm, the convex dimples transferred to the slab become high, and processing such as grinding with a coil grinder is required before cold rolling. Therefore, productivity is reduced.

窪み深さに対する鋳片に転写された凸ディンプルの突
起高さの比(窪み充填率)は80〜100%である。
The ratio of the protrusion height of the convex dimples transferred to the cast piece to the recess depth (recess filling rate) is 80 to 100%.

従って、本発明にかかる鋳片表面の突起の形状は直径
が1.0〜1.2mm高さが50〜100μmの円形あるいは長円形
であり、かかる突起が0.35mm以下の隣接する突起最低縁
部間距離で多数散在している。
Therefore, the shape of the projections on the surface of the cast slab according to the present invention is a circle or an ellipse having a diameter of 1.0 to 1.2 mm and a height of 50 to 100 μm, and the projection has a minimum distance between adjacent projections of 0.35 mm or less. Many are scattered.

以上に述べたように、本発明は鋳造する溶鋼成分を高
δフェライト側にコントロールし、且つ初期の凝固シェ
ルを均一に緩冷却できるように冷却ドラム面に窪みを設
けることによって、凝固組織むらの少ない薄帯状鋳片を
製造し、これによって冷間圧延後の薄板製品の光沢むら
を防止することができる。
As described above, the present invention controls the molten steel component to be cast on the high δ ferrite side, and by providing the depressions on the cooling drum surface so that the initial solidified shell can be uniformly and slowly cooled, uneven solidification structure It is possible to produce a small number of strip-shaped slabs, thereby preventing uneven gloss of the thin plate product after cold rolling.

〔実施例〕〔Example〕

第1表に示す各種δ−FecaL.(%)のオーステナイト
系ステンレス溶鋼を冷却ドラムに窪みをランダム、ある
いは均一に配置した双ロール連続鋳造機により鋳造して
薄帯状鋳片を得た。この鋳片の表面を約100μm研磨し
た後、硝酸電解エッチにより凝固組織を現出させ組織む
らの観察を行った。また、該鋳片をデスケーリングし、
50〜90%の冷間圧延をして1050〜1200℃の焼鈍を行い、
ソルト処理後硝酸−弗酸の混酸により酸洗して仕上げた
薄板表面の光沢むら発生状況を観察した。さらに、得ら
れた薄板を80mmφの円板に加工し、32mmφ(絞り比=2.
5)に円筒絞りして48h後の時効割れ有無をチェックし
た。その結果を第2表に示す。
Austenitic stainless steel melts of various δ-Fe caL. (%) Shown in Table 1 were cast by a twin roll continuous casting machine in which depressions were randomly or uniformly arranged on a cooling drum to obtain strip-shaped cast pieces. After polishing the surface of this slab for about 100 μm, a solidified structure was revealed by nitric acid electrolytic etching, and the unevenness of the structure was observed. Also, descaling the slab,
50-90% cold rolling and 1050-1200 ℃ annealing,
After the salt treatment, the occurrence of uneven gloss on the surface of the thin plate finished by pickling with a mixed acid of nitric acid-hydrofluoric acid was observed. Furthermore, the obtained thin plate was processed into a disk of 80 mmφ and 32 mmφ (drawing ratio = 2.
Cylindrical drawing was performed to 5) and the presence of aging cracks was checked after 48 hours. Table 2 shows the results.

第2表に示すように、本発明による製造方法(No.1〜
No.6)によって得られた鋳片の凝固組織むらおよび薄板
製品の光沢むらはなく良好であった。一方、比較例No.7
とNo.8によって得られたものは適性δフェライト成分で
あるが、ディンプルの間隔が広いために均一な凝固が行
われず、凝固組織むらおよび光沢むらが発生した。ま
た、比較例No.9とNo.10によって得られたものはδフェ
ライト成分が適正でないために、凝固組織むらおよび光
沢むらが発生した。さらに、比較例No.11によって得ら
れたものは、凝固組織むらおよび光沢むらは良好であっ
たが、δ−FecaL.>9%以上の高δフェライト成分であ
ったため、時効割れ性が発生した。
As shown in Table 2, the manufacturing method according to the present invention (No. 1 to
No. 6) showed no unevenness in the solidification structure of the slab and uneven gloss of the thin plate product, which was good. On the other hand, Comparative Example No. 7
The samples obtained from No. 8 and No. 8 are suitable δ-ferrite components, but due to the wide spacing of the dimples, uniform solidification was not performed, and uneven solidification structure and uneven gloss occurred. Further, in the samples obtained in Comparative Examples No. 9 and No. 10, unevenness in solidification structure and uneven gloss occurred because the δ ferrite component was not appropriate. Further, the product obtained in Comparative Example No. 11 had good solidification structure unevenness and gloss unevenness, but δ-Fe caL. > 9% or more of high δ ferrite component, so that age cracking occurred. did.

本発明例No.3と比較例No.9について、鋳片の凝固組織
むらおよび薄板製品の光沢むらの状況を例示する。第6
図(a)は本発明例No.4の鋳片の凝固組織むらおよび薄
板製品の光沢むらの表面組織写真を示したもので、いず
れのむらも全く認められない。第6図(b)は比較例N
o.9の鋳片の凝固組織むらを示したもので、鋳造後の組
織はδフェライトの多・少により、また薄板製品の光沢
むらは再結晶粒の大・小により生じていることが判る。
比較例においては、鋳造後のδフェライトの多・少が薄
板製品の再結晶粒の成長を阻止することによって粒径差
を生じて光沢むらが発生しているが、本発明例において
は鋳造後のδフェライト量に差がないため、薄板製品に
光沢むらを生じることはない。
With respect to Inventive Example No. 3 and Comparative Example No. 9, the situation of uneven solidification structure of cast pieces and uneven gloss of thin plate products will be illustrated. Sixth
FIG. (A) shows a photograph of the surface texture of the solidification structure unevenness of the slab of the invention sample No. 4 and the uneven glossiness of the thin plate product, and no unevenness is observed at all. FIG. 6 (b) shows Comparative Example N
It shows that the solidification structure unevenness of the slab of o.9 shows that the structure after casting is caused by the amount of δ ferrite, and the unevenness of the gloss of the thin plate product is caused by the size of the recrystallized grains. .
In the comparative example, a large amount of δ-ferrite after casting prevents the growth of recrystallized grains of the thin plate product, resulting in a difference in grain size, resulting in uneven gloss. Since there is no difference in the amount of δ-ferrite, uneven gloss does not occur in the thin plate product.

〔発明の効果〕 以上説明したように本発明によれば薄帯状鋳片鋳造
時、鋳片表面に組織むらが生じないのでその後冷間圧延
を経て製造される薄板製品の表面には光沢むらの発生が
なく、表面品質の優れたステンレス薄板を得ることがで
きる。
[Effects of the Invention] As described above, according to the present invention, when casting a strip-shaped cast product, uneven texture does not occur on the surface of the cast product, so that the surface of the thin plate product produced through cold rolling thereafter has uneven gloss. It is possible to obtain a stainless steel thin plate that does not generate and has excellent surface quality.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷却ドラム周面に窪み(ディンプル)を設けて
鋳造した場合に生じやすい急令部と緩冷部に相当する鋳
片表面の金属組織写真であり、 第2図はFe−Cr−Ni三元系平衡状態図におけるCreq.+N
ieq.≒30%相当部の断面状態図であり、 第3図(a),(b),(c),(d)はδ−Fe
caL.(%)を種々変化させた成分系の溶鋼を双ロール鋳
造して得た鋳片の断面組織を比較して示す金属組織写真
であり、 第4図は冷却ドラムの窪みエッジ間距離と凝固組織の関
係を示した図であり、 第5図はδフェライトの少ない凝固組織が生成する機構
を模式的に示した図であり、 第6図(a),(b)は本発明例No.3と比較例No.9の鋳
片および製品板の組織むらを示す金属組織写真である。
Fig. 1 is a photograph of the metallographic structure of the surface of the slab, which is likely to occur when casting with dimples on the peripheral surface of the cooling drum, and which is likely to occur when casting. Fig. 2 shows Fe-Cr- Cr eq. + N in the equilibrium diagram of the ternary Ni system
FIG. 3 is a sectional state diagram of a portion corresponding to i eq. ≈30%, and FIGS. 3 (a), (b), (c), and (d) show δ-Fe.
Fig. 4 is a photograph of a metallographic structure showing a comparison of the cross-sectional structures of slabs obtained by twin roll casting of molten steel of the composition system in which caL. It is a figure showing the relation of a solidification organization, Drawing 5 is a figure showing typically a mechanism which a solidification organization with little delta ferrite is generated, and Drawing 6 (a) and (b) shows this invention example No. 3 is a photograph of a metallographic structure showing unevenness of the textures of the slab and the product plate of No. 3 and Comparative Example No. 9.

フロントページの続き (56)参考文献 特開 平2−52152(JP,A) 特開 昭64−83342(JP,A) 特開 平2−133529(JP,A)Continuation of the front page (56) Reference JP-A-2-52152 (JP, A) JP-A 64-83342 (JP, A) JP-A 2-133529 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】3(Cr+1.5Si+Mo)−2.8(Ni+0.5Mn+
0.5Cu)−84(C+N)−19.8で定義されるδ−FecaL.
(%)を5〜9%にしたオーステナイト系ステンレス鋼
を、直径が0.1〜1.2mm、深さが50〜100μmの範囲にあ
る円形あるいは長円形の開口部を持つディンプルを多数
散在させ、すべての隣接ディンプルエッジ間距離が0.35
mm以下となるように配置した冷却ドラムの壁面に同期し
て鋳片が移動する連続鋳造機により、厚さ10mm以下の薄
帯状鋳片に鋳造することを特徴とする表面品質の優れた
オーステナイト系ステンレス鋼薄帯状鋳片の製造方法。
Claims 1. 3 (Cr + 1.5Si + Mo) -2.8 (Ni + 0.5Mn +
0.5Cu) -84 (C + N) -19.8 defined as δ-Fe caL.
Austenitic stainless steel with 5% to 9% (%) dispersed with a large number of dimples having circular or oval openings with a diameter of 0.1 to 1.2 mm and a depth of 50 to 100 μm. Distance between adjacent dimple edges is 0.35
a continuous casting machine in which the slab moves in synchronism with the wall surface of the cooling drum arranged to be less than 10 mm, is cast into a strip-shaped slab with a thickness of 10 mm or less, and has an excellent surface quality. A method for producing a strip of stainless steel strip.
【請求項2】3(Cr+1.5Si+Mo)−2.8(Ni+0.5Mn+
0.5Cu)−84(C+N)−19.8で定義されるδ−FecaL.
(%)を5〜9%にしたオーステナイト系ステンレス鋼
を、直径が0.1〜1.2mm、深さが50〜100μmの範囲にあ
る円形あるいは長円形の開口部を持つディンプルを多数
散在させ、すべての隣接ディンプルエッジ間距離が0.35
mm以下となるように配置した冷却ドラムの壁面に同期し
て鋳片が移動する連続鋳造機により、厚さ10mm以下の薄
帯状鋳片に鋳造し、次いで該薄帯状鋳片を表面デスケー
リングして冷間圧延を行ない焼鈍することによって薄板
製品とすることを特徴とした表面品質の優れたオーステ
ナイト系ステンレス鋼薄板の製造方法。
2. Claims: 3 (Cr + 1.5Si + Mo) -2.8 (Ni + 0.5Mn +
0.5Cu) -84 (C + N) -19.8 defined as δ-Fe caL.
Austenitic stainless steel with 5% to 9% (%) dispersed with a large number of dimples having circular or oval openings with a diameter of 0.1 to 1.2 mm and a depth of 50 to 100 μm. Distance between adjacent dimple edges is 0.35
With a continuous casting machine in which the slab moves in synchronism with the wall surface of the cooling drum arranged to be less than or equal to mm, the strip is cast into a strip with a thickness of 10 mm or less, and then the strip is subjected to surface descaling. A method for producing an austenitic stainless steel sheet having excellent surface quality, which comprises forming a sheet product by cold rolling and annealing.
【請求項3】3(Cr+1.5Si+Mo)−2.8(Ni+0.5Mn+
0.5Cu)−84(C+N)−19.8で定義されるδ−FecaL.
(%)が5〜9%の範囲の成分組成を有し、かつ、その
表面に直径が0.1〜1.2mm、高さが50〜100μmの範囲に
ある円形あるいは長円形の突起を0.35mm以下の隣接突起
間距離で多数散在せしめてなることを特徴とする表面品
質の優れたオーステナイト系ステンレス鋼薄帯状鋳片。
3. (Cr + 1.5Si + Mo) -2.8 (Ni + 0.5Mn +)
0.5Cu) -84 (C + N) -19.8 defined as δ-Fe caL.
(%) Has a component composition in the range of 5 to 9%, and a circular or oval protrusion having a diameter of 0.1 to 1.2 mm and a height of 50 to 100 μm on its surface is 0.35 mm or less. Austenitic stainless steel thin strip slabs with excellent surface quality, characterized in that they are scattered in large numbers at the distance between adjacent protrusions.
JP2279097A 1990-10-19 1990-10-19 Austenitic stainless steel strip-shaped slab with excellent surface quality, thin plate manufacturing method, and strip-shaped slab Expired - Fee Related JPH082484B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2279097A JPH082484B2 (en) 1990-10-19 1990-10-19 Austenitic stainless steel strip-shaped slab with excellent surface quality, thin plate manufacturing method, and strip-shaped slab
DE69102388T DE69102388T2 (en) 1990-10-19 1991-10-17 Process for producing thin cast stainless austenitic steel strips and strips made in this way.
ES91117741T ES2056553T3 (en) 1990-10-19 1991-10-17 PROCEDURE FOR THE PRODUCTION OF AUSTENITIC STAINLESS STEEL THIN CAST BAND, AND BAND OBTAINED ACCORDING TO THIS.
EP91117741A EP0481481B1 (en) 1990-10-19 1991-10-17 Process for production of austenitic stainless steel thin cast strip and strip obtained thereby
KR1019910018401A KR950014485B1 (en) 1990-10-19 1991-10-18 Process for production of anstenitic stainless steel thin cast strip and strip obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2279097A JPH082484B2 (en) 1990-10-19 1990-10-19 Austenitic stainless steel strip-shaped slab with excellent surface quality, thin plate manufacturing method, and strip-shaped slab

Publications (2)

Publication Number Publication Date
JPH04158957A JPH04158957A (en) 1992-06-02
JPH082484B2 true JPH082484B2 (en) 1996-01-17

Family

ID=17606374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2279097A Expired - Fee Related JPH082484B2 (en) 1990-10-19 1990-10-19 Austenitic stainless steel strip-shaped slab with excellent surface quality, thin plate manufacturing method, and strip-shaped slab

Country Status (5)

Country Link
EP (1) EP0481481B1 (en)
JP (1) JPH082484B2 (en)
KR (1) KR950014485B1 (en)
DE (1) DE69102388T2 (en)
ES (1) ES2056553T3 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679114B2 (en) * 1993-11-18 2004-11-03 Castrip, LLC Casting stainless steel strip on surface with specified roughness
CA2177831C (en) * 1993-12-01 2005-06-21 Werner Kuttner Continuous casting and rolling plant for steel strip, and a control system for such a plant
US6044895A (en) * 1993-12-21 2000-04-04 Siemens Aktiengesellschaft Continuous casting and rolling system including control system
FR2726209B1 (en) * 1994-10-31 1996-11-29 Usinor Sacilor CASTING SURFACE OF A CONTINUOUS CASTING LINGOTIERE OF MOBILE WALL METALS
FR2746333B1 (en) * 1996-03-22 1998-04-24 Usinor Sacilor METHOD FOR CONTINUOUSLY CASTING A AUSTENITIC STAINLESS STEEL STRIP ON OR BETWEEN TWO MOBILE WALLS WITH SURFACES PROVIDED WITH PITCHES, AND CASTING INSTALLATION FOR IMPLEMENTING SAME
IT1294228B1 (en) * 1997-08-01 1999-03-24 Acciai Speciali Terni Spa PROCEDURE FOR THE PRODUCTION OF AUSTENITIC STAINLESS STEEL BELTS, AUSTENITIC STAINLESS STEEL BELTS SO
KR100381523B1 (en) * 1998-12-29 2003-07-23 주식회사 포스코 Manufacturing method of high nickel equivalent austenitic stainless alloy with excellent surface quality
KR100411277B1 (en) * 1999-09-15 2003-12-18 주식회사 포스코 A method for manufacturing metal sheets without crack in twin roll strip casting process
AU2008100847A4 (en) 2007-10-12 2008-10-09 Bluescope Steel Limited Method of forming textured casting rolls with diamond engraving
CN113263162B (en) * 2021-04-20 2022-12-02 广州市通上德智能装备有限公司 Lead alloy slurry-hanging type belt casting machine
CN113741337B (en) * 2021-09-10 2023-02-03 哈尔滨工业大学 Planning method and device for machining track of all-surface uniformly-distributed micro-pit structure of thin-wall spherical shell type micro component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252152A (en) * 1988-08-15 1990-02-21 Nippon Steel Corp Cooling drum for strip continuous casting device
ES2037232T3 (en) * 1987-09-24 1993-06-16 Nippon Steel Corporation REFRIGERATION DRUM FOR CONTINUOUS CAST MACHINES TO MANUFACTURE THIN METALLIC STRAP.
JPS6483342A (en) * 1987-09-24 1989-03-29 Nippon Steel Corp Cooling drum for continuous casting apparatus for cast thin slab
JPH0730407B2 (en) * 1988-07-08 1995-04-05 新日本製鐵株式会社 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
EP0378705B2 (en) * 1988-07-08 1999-09-15 Nippon Steel Corporation PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL

Also Published As

Publication number Publication date
KR920007716A (en) 1992-05-27
EP0481481A1 (en) 1992-04-22
EP0481481B1 (en) 1994-06-08
DE69102388T2 (en) 1995-01-19
ES2056553T3 (en) 1994-10-01
DE69102388D1 (en) 1994-07-14
JPH04158957A (en) 1992-06-02
KR950014485B1 (en) 1995-12-02

Similar Documents

Publication Publication Date Title
JPH082484B2 (en) Austenitic stainless steel strip-shaped slab with excellent surface quality, thin plate manufacturing method, and strip-shaped slab
US5286315A (en) Process for preparing rollable metal sheet from quenched solidified thin cast sheet as starting material
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
EP0417318B1 (en) Method of producing rollable metal sheet based on quench-solidified thin cast sheet
JPH0730406B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
JP2532314B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JPH08165523A (en) Production of austenitic stainless steel thin cast slab excellent in cold-rolled surface quality
JP2000219919A (en) Production of austenitic stainless thin sheet
JPH0559447A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JP2002001495A (en) Manufacturing method for austenitic stainless steel sheet iron excellent in surface quality and thin casting slab
JPH0327811A (en) Manufacture of stainless steel sheet of excellent surface quality
JPH0730405B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JP2574471B2 (en) Cooling drum for continuous casting of thin cast slabs
JPH0620606B2 (en) Method for producing stainless steel sheet with excellent surface quality
JPH0788534B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0829325B2 (en) Thin plate manufacturing method
JP2003285141A (en) Method for manufacturing thin strip-like cast slab of austenitic stainless steel
JP2003290881A (en) Cr-Ni BASE STAINLESS STEEL THIN SHEET AND ITS PRODUCING METHOD
JPH0735551B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0342150A (en) Production of cr-ni stainless steel sheet having excellent surface quality
JPH02133529A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPH02263929A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH02267225A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH08300107A (en) Production of austenitic stainless steel thin strip excellent in surface quality
JPH082450B2 (en) Method for manufacturing austenitic stainless thin plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 15