KR100381523B1 - Manufacturing method of high nickel equivalent austenitic stainless alloy with excellent surface quality - Google Patents
Manufacturing method of high nickel equivalent austenitic stainless alloy with excellent surface quality Download PDFInfo
- Publication number
- KR100381523B1 KR100381523B1 KR10-1998-0060196A KR19980060196A KR100381523B1 KR 100381523 B1 KR100381523 B1 KR 100381523B1 KR 19980060196 A KR19980060196 A KR 19980060196A KR 100381523 B1 KR100381523 B1 KR 100381523B1
- Authority
- KR
- South Korea
- Prior art keywords
- ferrite
- austenitic stainless
- stainless alloy
- high nickel
- surface quality
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Continuous Casting (AREA)
Abstract
본 발명은 고 Ni 당량 오스테나이트계 스테인레스강과 그의 제조방법에 관한 것으로, 초정 오스테나이트상으로 응고를 시작하고, 응고과정중 δ-페라이트가 형성되고, 응고완료후 δ-페라이트가 오스테나이트 상으로 변태하는 스테인레스 합금을 연속 주조하는 경우, 주편내부에서 δ-페라이트 함량을 1∼3%로 제어하는 주편품질이 우수한 고 Ni당량 오스테나이트계 스테인레스 합금의 제조방법을 제공하는 것을 요지로 한다.The present invention relates to a high Ni equivalent austenitic stainless steel and a method for producing the same, in which solidification starts with a primary austenite phase, δ-ferrite is formed during the solidification process, and δ-ferrite is transformed into an austenite phase after solidification is completed. In the case of continuous casting of a stainless alloy, it is an object of the present invention to provide a method for producing a high Ni equivalent austenitic stainless alloy having excellent cast quality in which the δ-ferrite content is controlled to 1 to 3% within the cast steel.
Description
본 발명은 고 니켈(Ni) 당량 오스테나이트계 스테인레스 합금의 제조방법에 관한 것으로, 특히 연속주조 주편의 표면 내부크랙을 방지하고, 열간압연시 발생하는 선상결함을 방지할 수 있도록 한 표면품질이 우수한 고 니켈 당량 오스테나이트계 스테인레스합금의 제조방법에 관한 것이다.The present invention relates to a method for producing a high nickel (Ni) equivalent austenitic stainless alloy, and in particular, the surface quality of the continuous cast slab to prevent the surface cracks, and to prevent the line defects generated during hot rolling excellent A method for producing a high nickel equivalent austenitic stainless alloy.
일반적으로 고 니켈(Ni) 당량 오스테나이트계 스테인레스 합금은 초정 오스테나이트로 응고를 하기 때문에 응고과정중 편석이 심하게 발생되고, 또한 응고 수축량이 크기 때문에 연주과정에서 응고크랙이 발생하기 쉽고, 또한 열간압연시에 열간 가공성이 저하되어 크랙이 발생하기 쉽다.In general, high nickel (Ni) equivalent austenitic stainless alloys solidify with primary austenite, causing segregation during the solidification process, and solidification cracks are liable to occur during the process due to the large amount of solidification shrinkage. Hot workability falls at the time of cracking, and it is easy to produce a crack.
특히, 에지(Edge)크랙이라고 일컬어지는 슬라브 에지와 열연판 에지에 발생하는 크랙은 실수율을 크게 떨어뜨리는 등 제조를 불가능하게 하는 문제점을 야기시키고 있다. 이러한 크랙을 방지하기 위해 열연과정에서 발생하는 크랙에 관해서는 종래부터 많은 검토가 이루어져서 현재는 성분과 압연조건의 적정화에 의해 제조가 불가능하게 되는 경우는 적어지고 있다.In particular, cracks occurring at the slab edges and hot-rolled sheet edges, which are called edge cracks, cause problems that make manufacturing impossible, such as greatly reducing the error rate. In order to prevent such cracks, cracks generated during the hot rolling process have been extensively studied in the past, and there are fewer cases in which manufacture is impossible due to the optimization of components and rolling conditions.
이처럼 제조 가능여부를 결정짓는 크랙은 열간압연 공정에서 산세후 검출되는 선상결함이다. 이러한 선상결함은 발생장소가 연주주편이고 표면품질이 중요한 스테인레스강에 있어서 치명적인 결함이 되기 때문에 재산세와 그라인딩(grinding)같은 정정공정을 통해 선상결함을 제거하는 추가 공정이 필요하고, 경우에 따라서는 표면품질 관리측면에서 제품이 되지않는 경우가 있기 때문에 제조공정에서 가격상승의 요인이 되고 있다. 이 같은 선상결함을 방지하기 위해 연속주조 공정에서부터 열연 및 소둔 공정에 이르기까지 여러 가지 검토가 이루어져 왔다.The crack that determines whether it can be manufactured is a linear defect detected after pickling in a hot rolling process. Since the linear defects are fatal defects in stainless steel where the casting cast is a place where the surface quality is important, an additional process of eliminating the linear defects through correction processes such as property tax and grinding is required. In terms of quality control, products may not be available, which is a factor of price increase in the manufacturing process. In order to prevent such line defects, various studies have been made from the continuous casting process to the hot rolling and annealing processes.
주편 표층부의 조직개선의 관점에서 일본 특공평(特公平) 2-9651호 공보에서는 오스테나이트계 스테인레스강의 Si함유량을 규제한 슬라브(Slab)를 가열로 투입전에 숏 블라스트(shot blast)를 행하는 것으로 표층에 가공층을 만들어서, 가열시 슬라브 표층부 응고조직의 재결정을 통해 결정립을 미세화 시킴으로써 크랙을 방지하는 기술을 제시하고 있다.In view of the structural improvement of the surface layer of cast steel, Japanese Unexamined Patent Publication No. 2-9651 discloses that a surface blast is applied to the slab which regulates the Si content of the austenitic stainless steel before the furnace is heated. A technique for preventing cracks by making microfabricated layers by refining the solidified structure of the slab surface layer during heating is made.
또한, 가열시에 스케일에 관점을 둔 것으로서 특공평(特公平) 4-48865 호 공보에서는 sol.Al을 규제하는 슬라브 가열시의 산소농도을 0.5∼5%로 규제하여 선상결함을 방지하는 기술을 제안하고 있다. 그러나 위에서 서술한 방법은 추가 공정이 요구되고, 또한 공정상의 부하를 증가시키기 때문에 위의 방법으로는 선상결함을 완전히 제거하기는 곤란한 실정이다.Also, in view of scale at the time of heating, Japanese Patent Publication No. 4-48865 proposes a technique for preventing shipboard defects by regulating the oxygen concentration at heating slab that regulates sol.Al to 0.5 to 5%. Doing. However, the method described above requires an additional process and also increases the process load, so it is difficult to completely eliminate the line defects by the above method.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위해 안출된 것으로서, 연주주편의 δ -페라이트 함량을 조절하여 표면품질이 우수한 고 니켈 당량 오스테나이트계 스테인레스 합금의 제조방법을 제공하는 것을 그 목적으로 한다.The present invention has been made to solve the above-mentioned problems of the prior art, and aims to provide a method for producing a high nickel equivalent austenitic stainless alloy having excellent surface quality by controlling the δ-ferrite content of the cast steel casting. .
이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 고 Ni 당량 오스테나이트계 스테인레스강을 연속주조로 제조하는 경우 연속주조 주편을 열간압연시 코일 선상결함의 발생위치와 주편크랙과의 상관성을 조사하여 주편의 델타페라이트(δ-ferrite) 함량을 일정 범위로 제어하는 것이다.In the present invention, when the high Ni equivalent austenitic stainless steel is manufactured by continuous casting, the delta ferrite (δ-ferrite) content of the cast steel is investigated by investigating the correlation between the occurrence location of the coil linear defect and the crack of the cast wire during hot rolling of the continuous casting cast steel. To control the range.
열간압연시 코일 표면에 발생하는 선상결함을 야금학적으로 살펴보면, 열간압연시의 선상결함은 δ/감마(γ) 계면에서 발생하는 경우와, γ입계에서 발생하는 경우의 2종류가 있다. δ/γ 계면에서 발생하는 경우는 δ-페라이트가 열간압연 공정에서 상당량 잔존한 경우 열간압연시 δ-페라이트와 γ상의 연삼율이 틀리기 때문에 δ/γ 계면에서 열간가공성이 저하되어 크랙이 발생하는 경우이고, 크랙을 방지하기 위해서는 δ-페라이트를 슬라브 상태부터 적게 제어하는 것이 요구된다.In the metallurgical examination of the linear defects occurring on the coil surface during hot rolling, there are two types of linear defects during hot rolling, which occur at the δ / gamma (γ) interface and at the γ grain boundary. In case of δ / γ interface, a significant amount of δ-ferrite remains in the hot rolling process. In case of cracking due to deterioration of hot workability at the δ / γ interface because the annual triangular rate of δ-ferrite and γ phase is different during hot rolling. In order to prevent cracking, it is required to control the δ-ferrite from the slab state to less.
한편 δ-페라이트는 직접적으로 열간가공성에 관련이 있지만 가열시 δ-페라이트가 재결정의 핵생성 사이트로 작용하기 때문에 γ립의 성장 및 조대화에도 영향을 미쳐서 γ립의 불규칙 성장을 만드는 원인이 되어 γ입계에서 크랙이 발생하는 경우가 있다. 따라서 δ-페라이트를 미세히 분포시킨후 가열시 γ립의 비정상적 생성을 방지할 필요가 있다.On the other hand, δ-ferrite is directly related to hot workability, but because δ-ferrite acts as nucleation site of recrystallization when heated, it also affects growth and coarsening of γ grains, causing irregular growth of γ grains. Cracks may occur at grain boundaries. Therefore, it is necessary to prevent abnormal generation of γ grains upon heating after finely distributing δ-ferrite.
본 발명에서는, 초정 오스테나이트상으로 응고를 시작하고, 응고 과정중 δ-페라이트가 형성되고, 응고완료후 δ-페라이트가 오스테나이트 상으로 변태하는 스테인레스 합금을 연속주조로 제조하는 경우, 아래의 수학식 1로 표시되는 δ-페라이트 함량이 주편 내무에서 1∼3%로 제어함을 특징으로 한다.In the present invention, when solidification is started in the primary austenite phase, δ-ferrite is formed during the solidification process, and δ-ferrite is transformed into an austenite phase after solidification is completed, the following mathematical formula The δ-ferrite content represented by Equation 1 is characterized by controlling to 1-3% in the interior of the cast steel.
[수학식 1][Equation 1]
상기 수학식 1은 일반화된 수식으로 그 출처는 (Ironmaking Steelmaking, 1986, vol.13, no.5, P248)이다. 상기 δ-페라이트 함량을 제어하기 위해 중량%로, Cr은 20∼30%, Ni은 15∼25%범위에서 아래의 수학식 2 및 수학식 3 즉, 해머 앤 스벤슨(Hammer and Sevensson)관계식, 출처 : Soliditication Technology in the Foundary and Cast House, 1983, P401)으로부터 [Cr/Ni]eq.=1.2∼1.4에 속하는 범위의 합금계이다.Equation 1 is a generalized formula, and its source is (Ironmaking Steelmaking, 1986, vol. 13, no. 5, P248). In order to control the δ-ferrite content by weight%, Cr is 20 to 30%, Ni is 15 to 25% in the following Equation 2 and Equation 3, that is, Hammer and Sevensson relation, source It is an alloy system in the range which belongs to [Cr / Ni] eq. = 1.2-1.4 from Soliditication Technology in the Foundary and Cast House, 1983, P401).
[수학식 2][Equation 2]
[수학식 3][Equation 3]
연속주조 주편내 분포하는 δ-페라이트 함량이 1% 이하로 존재하면 응고시 초정 오스테나이트상이 편석을 심하게 발생시키는 것을 δ-페라이트가 흡수하지 못하고, 결정입계에 편석이 잔존하여 연주시 주편표면 및 내부에 응고크랙 및 적열취성을 유발시키고, 또한 열간압연시 주편내 잔존한 δ-페라이트가 완전히 소멸되어 γ립 재결정이 지연되기 때문에 γ립이 불규칙하게 성장되어 열간압연시 선상결함을 야기시킨다.If the δ-ferrite content distributed in the continuous casting slab is less than 1%, the δ-ferrite does not absorb excessive generation of segregation of the primary austenite phase during coagulation, and segregation remains at the grain boundaries and the surface of the cast steel during playing Γ-grains grow irregularly and cause linear defects during hot rolling because δ-ferrite remaining in the slab during the hot rolling is completely extinguished and the γ-crystal recrystallization is delayed.
또한, 연속주조 주편내 δ-페라이트 함량이 3%이상 분포하면 주편품질에 영향을 미치지 않지만, 주편내 δ-페라이트는 취약한 시그마상으로 변태하여 열간압연시 선상결함을 야기시킨다.In addition, when the δ-ferrite content in the continuous cast slab is distributed over 3%, it does not affect the quality of the slab, but the δ-ferrite in the slab transforms into a weak sigma phase and causes line defects during hot rolling.
한편, 본 발명에서 성분범위를 한정한 이유를 설명하면 다음과 같다.On the other hand, when explaining the reason for limiting the component range in the present invention.
본 발명의 스테인레스 소재는 고온에서 쓰이는 화학플랜트 및 소각로내에 사용되기 위한 것으로 [Cr/Ni]eq.이 1.2∼1.4 범위내 속해야 하며, 이중에서 Ni은 고온 및 상온에서 오스테나이트상을 얻기 위해 필수적인 원소지만, 상기의 사용환경은 고온산화 억제 및 고온강도가 우수한 특성이 요구되기 때문에 Ni 함량은 15∼25% 범위를 가져야 한다.The stainless material of the present invention is intended to be used in chemical plants and incinerators used at high temperatures. [Cr / Ni] eq. Should be in the range of 1.2 to 1.4, where Ni is an essential element for obtaining an austenite phase at high temperature and room temperature. However, since the use environment is required to suppress high temperature oxidation and excellent high temperature strength, the Ni content should be in the range of 15 to 25%.
그리고 Cr은 내식성 향상에 필수적인 원소이다. 사용환경에서 내식성을 갖기 위해서는 적어도 20% Cr을 필요로 한다. 그러나 Cr은 페라이트 형성원소이기 때문에 너무 높으면 고온에서 δ-페라이트상이 다량으로 생성해 버린다. 따라서 δ-페라이트상의 억제를 위해서는 오스테나이트 형성원소(C, N, Ni, Mn, Cu등)을 첨가하지 않으면 안되지만, 이러한 원소의 과도한 첨가는 입계부식등의 문제점을 야기시키기 때문에 Cr 상한은 30%로 설정된다.Cr is an essential element for improving corrosion resistance. At least 20% Cr is required to have corrosion resistance in the use environment. However, since Cr is a ferrite forming element, if it is too high, a large amount of δ-ferrite phase will be produced at high temperature. Therefore, austenite forming elements (C, N, Ni, Mn, Cu, etc.) must be added to suppress the δ-ferrite phase, but the excessive addition of such elements causes problems such as grain boundary corrosion, so the upper limit of Cr is 30%. Is set to.
또한, [Cr/Ni]eq.의 비(比)를 1.2~1.4 범위로 한정된 이유는 [Cr/Ni]eq.이 1.2 이하일 경우, 연속주조 공정에서 주조조직내에 페라이트상이 생성되지 않으므로 본 발명에서 δ-페라이트를 1~3%로 제어하려는 목적을 이룰 수 없고, [Cr/Ni]eq.이 1.4 이상일 경우, 응고시 초정으로 페라이트상이 형성되어 본 발명에서 이루고자 하는 초정 오스테나이트상(γ상)을 형성하지 못하기 때문이다.In addition, the reason for limiting the ratio of [Cr / Ni] eq. To 1.2 to 1.4 is that when [Cr / Ni] eq. Is 1.2 or less, no ferrite phase is formed in the casting structure in the continuous casting process. If the purpose of controlling δ-ferrite to 1 to 3% cannot be achieved, and the [Cr / Ni] eq. is 1.4 or more, the ferrite phase is formed as a primary crystal upon solidification, and thus the primary austenite phase (γ phase) to be achieved in the present invention is achieved. Because it does not form.
이하 실시예를 통해 본 발명의 효과 및 특징을 상세히 설명된다.Through the following examples will be described in detail the effects and features of the present invention.
(실시예)(Example)
고 Ni당량 오스테나이트계 스테인레스 합금을 실험실적으로 제조한 후 하기 표 1에서 보는 바처럼 최종제품의 품질특성을 평가하여 나타내었다. 비교재 A 합금계는 Cr농도가 기준값보다 적은 것으로 내식성 불량을 나타냈으며, 비교재 B 합금계는 Ni농도가 기준값보다 적은 것으로 고온강도가 불량한 결과를 얻었다. 한편 발명재 C 및 D 합금은 Cr과 Ni농도가 기준값에 해당되는 것으로 내식성과 고온강도가 양호한 것으로 나타났다.After experimentally preparing a high Ni equivalent austenitic stainless alloy, the quality characteristics of the final product were shown as shown in Table 1 below. The comparative material A alloy system exhibited poor corrosion resistance with less Cr concentration than the reference value, while the comparative material B alloy system showed poor corrosion resistance with less Ni concentration than the reference value. On the other hand, the inventive alloys C and D showed that the Cr and Ni concentrations correspond to the reference values, indicating that the corrosion resistance and the high temperature strength were good.
또한, 하기 표 2는 본 발명에서 범위내에 속하는 합금계를 대상으로 연속주조 및 열간 압연한 후 발생한 문제점을 정리한 것이다. 연속주조 및 열간 압연은 통상의 조건으로 제조하였고, 조업후 연속주조 주편의 응고크랙 및 열연코일은 선상결함을 면밀히 조사하였다. 비교재 A합금은 주편내 δ-페라이트 함량이 3.6%인 경우로 주편내 응고크랙은 발생하지 않았으나, 열연코일상에 선상결함이 발생을 야기시켜 열연코일의 실수율을 저하시켰고, 또한 열연코일의 선상결함을 그라인딩으로 제거하는 공정이 필요하므로 제품생산시 공정부하가 걸리게 된다.In addition, Table 2 summarizes the problems occurring after continuous casting and hot rolling for the alloy system falling within the scope in the present invention. Continuous casting and hot rolling were prepared under normal conditions, and solidification cracks and hot rolled coils of the continuous casting cast after operation were examined closely for linear defects. Comparative A alloy had a δ-ferrite content of 3.6% in the cast steel, which did not cause solidification cracks in the cast steel, but caused linear defects on the hot rolled coil, which lowered the error rate of the hot rolled coil. Since the process of removing defects by grinding is required, the process load is taken during production.
그리고 비교재 B합금은 주편내 δ-페라이트 함량이 0.8%인 경우로 연속주조 주편 및 열연코일에 결함을 야기시키는 문제점을 안고 있다. 한편, 본 발명에 의한 C 및 D 합금은 δ-페라이트 함량이 1.7% 및 2.9인 경우로 연속주조 주편에서 응고크랙이 발생하지 않았고, 또한 열연 코일표면에 선상결함이 응고크랙이 발생하지않은 양호한 주편을 얻을 수 있었다.In addition, the comparative material B has a problem of causing defects in the continuous cast steel and the hot rolled coil when the δ-ferrite content in the cast steel is 0.8%. On the other hand, the C and D alloys according to the present invention had a solidity crack in the continuous cast slab with δ-ferrite content of 1.7% and 2.9, and a good cast with no linear crack on the surface of the hot rolled coil. Could get
이상의 실시예를 통해 본 발명재는 연주주편내 δ-페라이트 함량을 제어함으로써 우수한 연속주조 주편 및 열연코일의 품질을 얻을 수 있을 뿐만 아니라 안정적인 조업이 가능하다는 것을 확인하였다.Through the above embodiment, the present invention confirmed that the quality of the continuous cast steel and hot rolled coil as well as stable operation can be obtained by controlling the δ-ferrite content in the cast steel casting.
[표 1]TABLE 1
[표 2]TABLE 2
이상에서와 같이 본 발명의 표면품질이 우수한 고 니켈 당량 오스테나이트계 스테인레스 합금의 제조방법에 따르면, 연속주조 및 열연압연시 크랙방지를 위한 공정 부하없이도 우수한 고 니켈(Ni) 당량 오스테나이트계 스테인레스 합금을 제조할 수 있는 효과가 있다.As described above, according to the manufacturing method of the high nickel equivalent austenitic stainless alloy having excellent surface quality, the high nickel equivalent (Ni) equivalent austenitic stainless alloy without process load for crack prevention during continuous casting and hot rolling There is an effect that can be prepared.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0060196A KR100381523B1 (en) | 1998-12-29 | 1998-12-29 | Manufacturing method of high nickel equivalent austenitic stainless alloy with excellent surface quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0060196A KR100381523B1 (en) | 1998-12-29 | 1998-12-29 | Manufacturing method of high nickel equivalent austenitic stainless alloy with excellent surface quality |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000043775A KR20000043775A (en) | 2000-07-15 |
KR100381523B1 true KR100381523B1 (en) | 2003-07-23 |
Family
ID=19567031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1998-0060196A KR100381523B1 (en) | 1998-12-29 | 1998-12-29 | Manufacturing method of high nickel equivalent austenitic stainless alloy with excellent surface quality |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100381523B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190064896A (en) * | 2017-12-01 | 2019-06-11 | 주식회사 포스코 | Austenitic stainless having excellent surface quality and mathod for manufacturing thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101947549A (en) * | 2010-09-10 | 2011-01-19 | 山东泰山钢铁集团有限公司 | Production technology for inhibiting nickel-saving austenitic stainless steel hot-rolled plate edge crack |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126759A (en) * | 1984-07-17 | 1986-02-06 | Kawasaki Steel Corp | Austenitic stainless steel having superior hot workability |
KR920007716A (en) * | 1990-10-19 | 1992-05-27 | 나까가와 하지메 | Thin cast strip and cold rolled strip of austenitic stainless steel with excellent surface quality, manufacturing method and thin cast strip |
KR950006015A (en) * | 1993-08-25 | 1995-03-20 | 조말수 | Austenitic stainless steel with excellent press formability, hot workability and high temperature oxidation resistance |
KR19980033840A (en) * | 1996-11-02 | 1998-08-05 | 김종진 | Manufacturing method of austenitic stainless wire with less surface defects |
-
1998
- 1998-12-29 KR KR10-1998-0060196A patent/KR100381523B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126759A (en) * | 1984-07-17 | 1986-02-06 | Kawasaki Steel Corp | Austenitic stainless steel having superior hot workability |
KR920007716A (en) * | 1990-10-19 | 1992-05-27 | 나까가와 하지메 | Thin cast strip and cold rolled strip of austenitic stainless steel with excellent surface quality, manufacturing method and thin cast strip |
KR950006015A (en) * | 1993-08-25 | 1995-03-20 | 조말수 | Austenitic stainless steel with excellent press formability, hot workability and high temperature oxidation resistance |
KR19980033840A (en) * | 1996-11-02 | 1998-08-05 | 김종진 | Manufacturing method of austenitic stainless wire with less surface defects |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190064896A (en) * | 2017-12-01 | 2019-06-11 | 주식회사 포스코 | Austenitic stainless having excellent surface quality and mathod for manufacturing thereof |
KR102031424B1 (en) | 2017-12-01 | 2019-10-11 | 주식회사 포스코 | Austenitic stainless having excellent surface quality and mathod for manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20000043775A (en) | 2000-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4883544A (en) | Process for preparation of austenitic stainless steel having excellent seawater resistance | |
KR950008377B1 (en) | Producing a weldable, ferrtic stainless steel strip | |
US5234512A (en) | Fe-ni alloy sheet for shadow mask, excellent in etching pierceability, preventing sticking during annealing, and inhibiting production of gases | |
JPS62161936A (en) | Fe-ni alloy cold-rolled sheet and its production | |
KR100381523B1 (en) | Manufacturing method of high nickel equivalent austenitic stainless alloy with excellent surface quality | |
JPH04224659A (en) | Seamless martensitic steel tube and its production | |
KR102143076B1 (en) | Austenitic stainless steel with excellent resistance to stress corrosion cracking and surfuric acid dew point corrosion | |
JP3042398B2 (en) | How to control slab surface cracks | |
KR100666727B1 (en) | 304H austenite stainless steel for spring | |
JPH0148337B2 (en) | ||
KR100314851B1 (en) | Method for continuously casting austenitic stainless alloy having less linear defects during hot rolling | |
JPH07268455A (en) | Production of cr-ni stainless alloy free from microracking in hot rolling | |
JPH06304607A (en) | Manufacture of preventing crack in hot rolling of cr-ni base stainless steel alloy | |
EP4050119A1 (en) | Nonmagnetic austenitic stainless steel | |
JP2838467B2 (en) | Method for producing Cr-Ni stainless steel alloy free from surface flaws | |
JP4624691B2 (en) | Method for producing ferritic stainless steel slab | |
KR100340549B1 (en) | A method for manufacturing continuously cast primary δ-ferrite stainless steel having excellent surface quality | |
JP3063379B2 (en) | Super free-cutting steel with excellent hot workability | |
JPH06271933A (en) | Production of mo-containing austenitic stainless steel excellent in nitric acid resistance | |
JPH07292418A (en) | Production of chromium-nickel stainless steel free from occurrence of surface flaw at hot rolling | |
JPS58164722A (en) | Production of steel material having high resistance to hydrogen induced cracking | |
JP2987732B2 (en) | Method for producing Cr-Ni stainless steel alloy free from surface flaws by hot rolling | |
JPH07268453A (en) | Production of cr-ni stainless alloy free from generation of surface flaw by hot rolling | |
KR100397298B1 (en) | Method for cooling a continuously cast non-magnetic austenite stainiless steel slab | |
JP2000034545A (en) | Austenitic heat resistant steel with improved hot workability, and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130409 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20140409 Year of fee payment: 12 |
|
LAPS | Lapse due to unpaid annual fee |