JPH06268462A - Ns−gtカット水晶振動子の周波数調整方法 - Google Patents
Ns−gtカット水晶振動子の周波数調整方法Info
- Publication number
- JPH06268462A JPH06268462A JP5052480A JP5248093A JPH06268462A JP H06268462 A JPH06268462 A JP H06268462A JP 5052480 A JP5052480 A JP 5052480A JP 5248093 A JP5248093 A JP 5248093A JP H06268462 A JPH06268462 A JP H06268462A
- Authority
- JP
- Japan
- Prior art keywords
- temperature coefficient
- frequency
- adjusting
- crystal resonator
- cut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000013078 crystal Substances 0.000 title claims abstract description 17
- 239000010453 quartz Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H3/04—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
(57)【要約】
【目的】 NS−GTカット水晶振動子の結合状態を変
化させることにより、周波数温度特性に極めて優れた振
動子を提供することにある。 【構成】 規格化周波数と一次温度係数の関係より規格
化周波数を調整して一次温度係数がほとんど零になるよ
うにする工程からなる。
化させることにより、周波数温度特性に極めて優れた振
動子を提供することにある。 【構成】 規格化周波数と一次温度係数の関係より規格
化周波数を調整して一次温度係数がほとんど零になるよ
うにする工程からなる。
Description
【0001】
【産業上の利用分野】本発明は、結合水晶振動子、とり
わけ振動部を支持部から成るGTカット水晶振動子(以
下、NS−GTカット振動子と呼ぶ)の周波数調整方法
に関する。特に、本発明は周波数温度特性(以下、単に
温度特性と呼ぶ)に極めて優れたGTカット水晶振動子
を得る調整方法に関する。
わけ振動部を支持部から成るGTカット水晶振動子(以
下、NS−GTカット振動子と呼ぶ)の周波数調整方法
に関する。特に、本発明は周波数温度特性(以下、単に
温度特性と呼ぶ)に極めて優れたGTカット水晶振動子
を得る調整方法に関する。
【0002】
【従来の技術】最近はICの技術を応用したフォトリソ
グラフィ法による振動子の形成方法が振動子製造に応用
され、その結果、大変に小型の振動子を提供することが
できるようになった。例えば、振動子の厚みを大変に薄
くすることができる温度特性に優れたNS−GTカット
振動子に応用され非常に小型のものが可能になった。し
かしながら、NS−GTカット振動子は良好な温度特性
を得るためには、二つの振動モード、すなわち、主振動
と副振動の結合を利用している。それゆえ、温度特性は
主振動と副振動の共振周波数の差と各々の振動の強さに
よって決定される。特に、主振動と副振動の振動の強さ
の比が異なると、良好な温度特性を与える共振周波数の
差も異なり、共振周波数の差を各振動子ごとに合わせ込
む必要がある。そのために、調整時間が長く、コストア
ップの要因となり、この方式は量産用としては不向き
で、このタイプの振動子が多用されない原因の一つであ
った。
グラフィ法による振動子の形成方法が振動子製造に応用
され、その結果、大変に小型の振動子を提供することが
できるようになった。例えば、振動子の厚みを大変に薄
くすることができる温度特性に優れたNS−GTカット
振動子に応用され非常に小型のものが可能になった。し
かしながら、NS−GTカット振動子は良好な温度特性
を得るためには、二つの振動モード、すなわち、主振動
と副振動の結合を利用している。それゆえ、温度特性は
主振動と副振動の共振周波数の差と各々の振動の強さに
よって決定される。特に、主振動と副振動の振動の強さ
の比が異なると、良好な温度特性を与える共振周波数の
差も異なり、共振周波数の差を各振動子ごとに合わせ込
む必要がある。そのために、調整時間が長く、コストア
ップの要因となり、この方式は量産用としては不向き
で、このタイプの振動子が多用されない原因の一つであ
った。
【0003】
【発明が解決しようとする課題】以上述べたように、温
度特性に極めて優れたNS−GTカット振動子を短時間
で、しかも、容易に得られないという課題が残されてい
た。換言するならば、安価な振動子が得られないという
ことである。
度特性に極めて優れたNS−GTカット振動子を短時間
で、しかも、容易に得られないという課題が残されてい
た。換言するならば、安価な振動子が得られないという
ことである。
【0004】
【課題を解決するための手段】NS−GTカット水晶振
動子の長さ方向の両端部の少なくとも一端部に、温度特
性調整用錘を付着してNS−GTカット水晶振動子の周
波数温度係数を調整する方法であって、あらかじめ振動
子の一次温度係数を目標値より偏位させた特性を有する
振動子を形成する工程と、規格化周波数と一次温度係数
の関係より規格化周波数を調整して一次温度係数がほと
んど零になるようにする工程から成るように構成して課
題を解決している。
動子の長さ方向の両端部の少なくとも一端部に、温度特
性調整用錘を付着してNS−GTカット水晶振動子の周
波数温度係数を調整する方法であって、あらかじめ振動
子の一次温度係数を目標値より偏位させた特性を有する
振動子を形成する工程と、規格化周波数と一次温度係数
の関係より規格化周波数を調整して一次温度係数がほと
んど零になるようにする工程から成るように構成して課
題を解決している。
【0005】
【作用】規格化周波数と一次温度係数との間には一定の
関係がある。それゆえ、この規格化周波数を調整するこ
とにより一次温度係数を大略零にすることができる。そ
の結果、温度特性が極めて優れたNS−GTカット水晶
振動子が得られる。
関係がある。それゆえ、この規格化周波数を調整するこ
とにより一次温度係数を大略零にすることができる。そ
の結果、温度特性が極めて優れたNS−GTカット水晶
振動子が得られる。
【0006】
【実施例】次に、本発明を実施例に基づいて具体的に述
べる。図1は、本発明に適用するNS−GTカット振動
子の形状と電極の一例を示す。図1(A)は正面図を、
図1(B)は上面図を示す。水晶1の表裏面には電極
2、3が配置され、両電極間に交番電圧を印加すること
によって容易に振動子を励振することができる。
べる。図1は、本発明に適用するNS−GTカット振動
子の形状と電極の一例を示す。図1(A)は正面図を、
図1(B)は上面図を示す。水晶1の表裏面には電極
2、3が配置され、両電極間に交番電圧を印加すること
によって容易に振動子を励振することができる。
【0007】図2は、本発明に適用されるNS−GTカ
ット振動子の電気的等価回路を示す。主振動の直列アー
ム(L11,C11,R11)と副振動の直列アーム(L22,
C22,R22)および結合容量Cmと並列容量Coから回
路は構成される。それゆえ、この等価回路から二つの振
動モードが結合したNS−GTカット振動子の共振周波
数が得られる。以下、詳細に記述すると同時に温度特性
の調整原理をも詳述する。
ット振動子の電気的等価回路を示す。主振動の直列アー
ム(L11,C11,R11)と副振動の直列アーム(L22,
C22,R22)および結合容量Cmと並列容量Coから回
路は構成される。それゆえ、この等価回路から二つの振
動モードが結合したNS−GTカット振動子の共振周波
数が得られる。以下、詳細に記述すると同時に温度特性
の調整原理をも詳述する。
【0008】図2の電気的等価回路はインピーダンスΖ
で表わすことができる。すなわち、実数部Rei(i=
1,2)と虚数部jxeの和で表わせる。また水晶振動
子の機械的損失抵抗R11とR22は非常に小さいので、R
11≒R22≒0とすると、Xeは、
で表わすことができる。すなわち、実数部Rei(i=
1,2)と虚数部jxeの和で表わせる。また水晶振動
子の機械的損失抵抗R11とR22は非常に小さいので、R
11≒R22≒0とすると、Xeは、
【0009】
【数1】
【0010】但し、f1 とf2 は主振動と副振動の非結
合時の共振周波数である。
合時の共振周波数である。
【0011】
【数2】
【0012】で表わされる。それゆえ、結合時の主振動
と副振動の共振周波数をf+ , f- とすると、式(数
1)より以下の関係式が得られる。
と副振動の共振周波数をf+ , f- とすると、式(数
1)より以下の関係式が得られる。
【0013】
【数3】
【0014】ここで、K2m =C1 C2 /C2 mで与えら
れ、Kmは結合係数と呼ばれる。式(数3)を温度tで
1回微分し、・≡∂/∂tで表わすと、非結合時の主振
動と副振動の一次温度係数α1 ,α2 と結合時の主振動
と副振動の一次温度係数α+,α- 及び結合係数の一次
温度係数αKmと結合係数Km の関数として支えられるK
は、
れ、Kmは結合係数と呼ばれる。式(数3)を温度tで
1回微分し、・≡∂/∂tで表わすと、非結合時の主振
動と副振動の一次温度係数α1 ,α2 と結合時の主振動
と副振動の一次温度係数α+,α- 及び結合係数の一次
温度係数αKmと結合係数Km の関数として支えられるK
は、
【0015】
【数4】
【0016】で支えられる。式(数3)と式(数4)よ
り以下の重要な関係が得られる。即ち 、 α+ +α- =α1 +α2 −KαKm (5) α+ とα- の和は一定値となる。ここで新しく周波数比
fMPとRを採用し、fMP=f- /f+ ,R=f2 /f-
とすると、式(5)のα+ は、
り以下の重要な関係が得られる。即ち 、 α+ +α- =α1 +α2 −KαKm (5) α+ とα- の和は一定値となる。ここで新しく周波数比
fMPとRを採用し、fMP=f- /f+ ,R=f2 /f-
とすると、式(5)のα+ は、
【0017】
【数5】
【0018】のように変形される。さらに、新しく規格
化周波数δを以下のように定義する。
化周波数δを以下のように定義する。
【0019】
【数6】
【0020】それゆえ、式(数6)は、
【0021】
【数7】
【0022】で表わされる。周波数比fMPの少しの変化
に対してmとnは一定値を持つ。従って、傾きmが決ま
れば、α+ =0のときのfMPは容易に式(数7)から計
算できる。後述するように、実験にて、mは算出され
る。以下、温度係数の調整方法を調整原理に基づいて説
明する。
に対してmとnは一定値を持つ。従って、傾きmが決ま
れば、α+ =0のときのfMPは容易に式(数7)から計
算できる。後述するように、実験にて、mは算出され
る。以下、温度係数の調整方法を調整原理に基づいて説
明する。
【0023】図3は、本発明に適用されるNS−GTカ
ット振動子4とα+ を調整するために蒸着法によって付
着される錘り5、6の位置を示す。錘り5、6は振動子
の支持部7、8を有する長さ方向の両端部に配置され
る。この錘りは片方1箇所でも良い。この位置に錘り
5、6を設けることにより、結合時の副振動の共振周波
数f- を著しく変化させることができる。本実施例で
は、幅方向の中央部に設けたが、これらの錘りは幅方向
に少しズラして4個設けても同じ効果を有する。
ット振動子4とα+ を調整するために蒸着法によって付
着される錘り5、6の位置を示す。錘り5、6は振動子
の支持部7、8を有する長さ方向の両端部に配置され
る。この錘りは片方1箇所でも良い。この位置に錘り
5、6を設けることにより、結合時の副振動の共振周波
数f- を著しく変化させることができる。本実施例で
は、幅方向の中央部に設けたが、これらの錘りは幅方向
に少しズラして4個設けても同じ効果を有する。
【0024】図4は、錘り5、6を付加したときの錘り
量に対する周波数の変化を示す。図4から明らかなよう
に、f- が大きく変化し、f+ はほとんど変化しないこ
とが分かる。この関係の錘り5、6によって、主振動と
副振動間の結合状態を変化させることを意味している。
換言するならば、α+ の調整を可能にする。
量に対する周波数の変化を示す。図4から明らかなよう
に、f- が大きく変化し、f+ はほとんど変化しないこ
とが分かる。この関係の錘り5、6によって、主振動と
副振動間の結合状態を変化させることを意味している。
換言するならば、α+ の調整を可能にする。
【0025】図5は、規格化周波数δと結合時の主振動
の一次温度係数α+ との関係である。調整原理の説明の
際に述べたように、α+ とδは比例関係にあり、その傾
きmは大略一定値を持つ。例えば、本振動子の周波数f
=2.1MHzの場合、m=75×10-7/℃の位置を
有する。以下調整結果を示す。
の一次温度係数α+ との関係である。調整原理の説明の
際に述べたように、α+ とδは比例関係にあり、その傾
きmは大略一定値を持つ。例えば、本振動子の周波数f
=2.1MHzの場合、m=75×10-7/℃の位置を
有する。以下調整結果を示す。
【0026】図6は、エッチング法によって形成された
NS−GTカット振動子の周波数温度特性の5個の例を
示す。−30〜+85℃の広い温度範囲で周波数変化が
±20ppm以内に入るように、しかも、α+ は正値を
持つように、あらかじめ偏位した特性を有するように振
動子は設けられている。一般的にはα+ は1〜3×10
-7/℃の値をもつように設けられる。一方、この時の二
次、三次温度係数β+,α+ はその絶対値で、5×10
-10 /℃2 と6×10-13 /℃3 より小さくなる。それ
ゆえ、α+ を近似的に零にすることにより、さらに温度
特性に優れたNS−GTカット振動子が期待できる。
NS−GTカット振動子の周波数温度特性の5個の例を
示す。−30〜+85℃の広い温度範囲で周波数変化が
±20ppm以内に入るように、しかも、α+ は正値を
持つように、あらかじめ偏位した特性を有するように振
動子は設けられている。一般的にはα+ は1〜3×10
-7/℃の値をもつように設けられる。一方、この時の二
次、三次温度係数β+,α+ はその絶対値で、5×10
-10 /℃2 と6×10-13 /℃3 より小さくなる。それ
ゆえ、α+ を近似的に零にすることにより、さらに温度
特性に優れたNS−GTカット振動子が期待できる。
【0027】図7は、本発明の方法によって一次温度特
性α+ を近似的に零に調整したときの周波数温度特性の
5個の例を示す。−30〜85℃の広い温度範囲にわた
って、周波数変化が±1.0ppm以内と温度特性に極
めて優れたNS−GTカット振動子を得ることができ
た。
性α+ を近似的に零に調整したときの周波数温度特性の
5個の例を示す。−30〜85℃の広い温度範囲にわた
って、周波数変化が±1.0ppm以内と温度特性に極
めて優れたNS−GTカット振動子を得ることができ
た。
【0028】
【発明の効果】以上述べたように、本発明の温度係数の
調整方法を提案することにより、次の著しい効果を有す
る。 (1)一次温度係数α+ と規格化周波数δは比例関係に
あるのでα+ =0となるδが容易に算出でき、このδの
調整により、温度特性に極めて優れたNS−GTカット
振動子が得られる。 (2)規格化周波数δの調整は非常に簡単にできるの
で、安価な振動子が得られる。 (3)蒸着法による調整は振動子に損傷を与えないの
で、機械的損失抵抗の小さい、Q値の高い振動子が得ら
れる。同時に、エージング特性に優れている。
調整方法を提案することにより、次の著しい効果を有す
る。 (1)一次温度係数α+ と規格化周波数δは比例関係に
あるのでα+ =0となるδが容易に算出でき、このδの
調整により、温度特性に極めて優れたNS−GTカット
振動子が得られる。 (2)規格化周波数δの調整は非常に簡単にできるの
で、安価な振動子が得られる。 (3)蒸着法による調整は振動子に損傷を与えないの
で、機械的損失抵抗の小さい、Q値の高い振動子が得ら
れる。同時に、エージング特性に優れている。
【図1】本発明に適用されるNS−GTカット振動子の
形状と電極の一例を示すもので、(A)は正面図、
(B)は上面図を示す。
形状と電極の一例を示すもので、(A)は正面図、
(B)は上面図を示す。
【図2】本発明に適用されるNS−GTカット振動子の
電気的等価回路を示す。
電気的等価回路を示す。
【図3】本発明に適用されるNS−GTカット振動子と
一次温度特性α+ を調整するために付着される錘りの位
置を示す。
一次温度特性α+ を調整するために付着される錘りの位
置を示す。
【図4】錘り量に対する主振動と副振動の共振周波数の
変化を示す。
変化を示す。
【図5】規格化周波数δと一次温度係数α+ との関係を
示す。
示す。
【図6】エッチング法によって形成されたNS−GTカ
ット振動子の周波数温度特性の5個の例を示す。
ット振動子の周波数温度特性の5個の例を示す。
【図7】本発明の方法によって調整された周波数温度特
性の5個の例を示す。
性の5個の例を示す。
1 水晶 2、3 電極 4 振動子 5、6 錘り 7、8 支持部
Claims (1)
- 【請求項1】 NS−GTカット水晶振動子の長さ方向
の両端部の少なくとも一端部に、温度特性調整用錘を付
着してNS−GTカット水晶振動子の周波数温度係数を
調整する方法であって、あらかじめ、振動子の一次温度
係数を目標値より偏位した特性を有する振動子を形成す
る工程と、規格化周波数と一次温度係数の関係より規格
化周波数を調整して一次温度係数がほとんど零になるよ
うにする工程とからなるNS−GTカット水晶振動子の
周波数調整方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5052480A JPH06268462A (ja) | 1993-03-12 | 1993-03-12 | Ns−gtカット水晶振動子の周波数調整方法 |
US08/205,946 US5469010A (en) | 1993-03-12 | 1994-03-03 | Method of adjusting frequency of NS-GT cut quartz resonator |
EP94301807A EP0615338B1 (en) | 1993-03-12 | 1994-03-14 | Method of adjusting frequency of NS-GT cut quartz resonator |
DE1994618636 DE69418636T2 (de) | 1993-03-12 | 1994-03-14 | Verfahren zur Abstimmung der Frequenz von einem in NS-GT-Richtung geschnittenen Quarzresonator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5052480A JPH06268462A (ja) | 1993-03-12 | 1993-03-12 | Ns−gtカット水晶振動子の周波数調整方法 |
US08/205,946 US5469010A (en) | 1993-03-12 | 1994-03-03 | Method of adjusting frequency of NS-GT cut quartz resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06268462A true JPH06268462A (ja) | 1994-09-22 |
Family
ID=26393082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5052480A Pending JPH06268462A (ja) | 1993-03-12 | 1993-03-12 | Ns−gtカット水晶振動子の周波数調整方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US5469010A (ja) |
EP (1) | EP0615338B1 (ja) |
JP (1) | JPH06268462A (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2000228235A1 (en) * | 2000-02-24 | 2001-09-03 | Nanomotion Ltd. | Resonance shifting |
US6570468B2 (en) * | 2001-06-29 | 2003-05-27 | Intel Corporation | Resonator frequency correction by modifying support structures |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5944114A (ja) * | 1982-09-07 | 1984-03-12 | Seiko Instr & Electronics Ltd | 結合振動子の周波数調整方法 |
JPS6450129A (en) * | 1987-08-20 | 1989-02-27 | Fujitsu Ltd | Operation description generating system for parallel grating-like computer |
JPH03804A (ja) * | 1989-05-26 | 1991-01-07 | Kanebo Ltd | マルチフィラメント糸条体の繊度測定方法及びその装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6051283B2 (ja) * | 1975-09-10 | 1985-11-13 | 株式会社精工舎 | Gtカツト水晶振動子の周波数温度特性調整法 |
JPS55147818A (en) * | 1979-05-08 | 1980-11-18 | Seiko Epson Corp | Frequency and temperature characteristic adjusting method of crystal oscillator |
JPS5791017A (en) * | 1980-11-27 | 1982-06-07 | Seiko Instr & Electronics Ltd | Gt-cut quartz oscillator |
US4447753A (en) * | 1981-03-25 | 1984-05-08 | Seiko Instruments & Electronics Ltd. | Miniature GT-cut quartz resonator |
JPS57188121A (en) * | 1981-05-15 | 1982-11-19 | Seiko Instr & Electronics Ltd | Frequency adjusting method of coupling oscillator |
JPS57197906A (en) * | 1981-05-29 | 1982-12-04 | Seiko Instr & Electronics Ltd | Gt cut quartz oscillator |
JPS58170109A (ja) * | 1982-03-30 | 1983-10-06 | Seiko Instr & Electronics Ltd | 小型gtカツト水晶振動子 |
JPS5944113A (ja) * | 1982-09-07 | 1984-03-12 | Seiko Instr & Electronics Ltd | Gtカット水晶振動子の周波数調整方法 |
JP3175319B2 (ja) * | 1992-07-16 | 2001-06-11 | ソニー株式会社 | Vtrの制御信号発生回路 |
-
1993
- 1993-03-12 JP JP5052480A patent/JPH06268462A/ja active Pending
-
1994
- 1994-03-03 US US08/205,946 patent/US5469010A/en not_active Expired - Lifetime
- 1994-03-14 EP EP94301807A patent/EP0615338B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5944114A (ja) * | 1982-09-07 | 1984-03-12 | Seiko Instr & Electronics Ltd | 結合振動子の周波数調整方法 |
JPS6450129A (en) * | 1987-08-20 | 1989-02-27 | Fujitsu Ltd | Operation description generating system for parallel grating-like computer |
JPH03804A (ja) * | 1989-05-26 | 1991-01-07 | Kanebo Ltd | マルチフィラメント糸条体の繊度測定方法及びその装置 |
Also Published As
Publication number | Publication date |
---|---|
EP0615338B1 (en) | 1999-05-26 |
US5469010A (en) | 1995-11-21 |
EP0615338A1 (en) | 1994-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0150129B2 (ja) | ||
US4456850A (en) | Piezoelectric composite thin film resonator | |
US7511870B2 (en) | Highly tunable low-impedance capacitive micromechanical resonators, oscillators, and processes relating thereto | |
CN1685610B (zh) | 压电振子、使用其的滤波器和压电振子的调整方法 | |
US4447753A (en) | Miniature GT-cut quartz resonator | |
US20110001394A1 (en) | Piezoelectric thin-film tuning fork resonator | |
JP2007524303A (ja) | 基準発振器の周波数安定化 | |
JP2020532929A (ja) | 周波数基準発振器デバイス、および周波数基準信号を安定させる方法 | |
US4771202A (en) | Tuning fork resonator | |
GB2176892A (en) | Quartz resonator thermometer | |
JPH06268462A (ja) | Ns−gtカット水晶振動子の周波数調整方法 | |
JPH0156564B2 (ja) | ||
JPH0214608A (ja) | 圧電共振子 | |
JPH0150135B2 (ja) | ||
JPH06112761A (ja) | 捩り水晶振動子 | |
JPH02177712A (ja) | 弾性表面波共振子およびその共振周波数の調整方法 | |
JP2004328701A (ja) | 水晶発振器の製造方法 | |
JP6892321B2 (ja) | 圧電デバイス | |
JPS59202720A (ja) | 音叉型水晶振動子 | |
JPH1070416A (ja) | 集積化された電子装置 | |
JP3363457B2 (ja) | 捩り水晶振動子 | |
JPS58166818A (ja) | 結合振動子の周波数調整方法 | |
JPS647689B2 (ja) | ||
JP3401112B2 (ja) | 圧電結晶発振式膜厚計用発振回路 | |
JP2000091878A (ja) | 圧電振動子及び圧電発振器 |