JPH06268115A - Manufacture of heat radiating substrate for semiconductor device - Google Patents

Manufacture of heat radiating substrate for semiconductor device

Info

Publication number
JPH06268115A
JPH06268115A JP5390693A JP5390693A JPH06268115A JP H06268115 A JPH06268115 A JP H06268115A JP 5390693 A JP5390693 A JP 5390693A JP 5390693 A JP5390693 A JP 5390693A JP H06268115 A JPH06268115 A JP H06268115A
Authority
JP
Japan
Prior art keywords
heat dissipation
plates
thickness
clad material
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5390693A
Other languages
Japanese (ja)
Other versions
JP2860037B2 (en
Inventor
Yoshihiko Doi
良彦 土井
Takehiko Hayashi
武彦 林
Tadashi Arikawa
正 有川
Akira Ichida
晃 市田
Kenichiro Shibata
憲一郎 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd, Sumitomo Electric Industries Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP5053906A priority Critical patent/JP2860037B2/en
Publication of JPH06268115A publication Critical patent/JPH06268115A/en
Application granted granted Critical
Publication of JP2860037B2 publication Critical patent/JP2860037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heat radiating substrate composed of such a homogeneous clad material that the film thickness ratio can be selected within a wide range and has a uniform coefficient of thermal expansion, and then, no strain is generated in the material by sticking a second member composed of Cu or Ti to both surfaces of a first member composed of W or Mo by the hot uniaxial working method. CONSTITUTION:At the time of manufacturing the title heat radiating substrate for mounting or holding a semiconductor chip, a second member 1 composed of copper or titanium is stuck to counterposed one main surfaces of first members 2 composed of tungsten or molybdenum and facing each other by the hot uniaxial working method. For example, after performing acid cleaning or displacement cleaning on the surfaces of a Cu plate 1 and Mo plate 2, the plates 1 and 2 are set in a hot press by putting the plates 1 and 2 upon another. Then the plates 1 and 2 are heated to 600 deg.C in an Ar gas atmosphere and, after 30 minutes, the plates 1 and 2 are gradually cooled while the plates 1 and 2 are pressed against another with a pressure of 350kgf/cm<2> by means of a punch 5 and die 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体素子を搭載ま
たは保持するための半導体装置用放熱基板の製造方法に
関し、特定的には、半導体素子搭載用パッケージの放熱
基板に用いられるクラッド材の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat dissipation board for a semiconductor device for mounting or holding a semiconductor element, and more specifically, manufacturing a clad material used for the heat dissipation board of a package for mounting a semiconductor element. It is about the method.

【0002】[0002]

【従来の技術】半導体素子支持用の電極材料あるいは半
導体素子搭載用基板は、半導体集積回路装置(IC)の
高密度化、高出力化に伴い、半導体素子との熱膨張の整
合した放熱効果の高いものが求められている。また、半
導体素子以外にパッケージ材料の熱膨張率に近似してい
る基板が望まれている。あるいは、パッケージ材料、ろ
う材、端子などとともに組立てられた後の熱膨張のバラ
ンスを考慮して、これらの材料とは異なり、かつ制御さ
れた熱膨張率を有する基板が望まれている。さらに、熱
膨張率を考慮するとともにできるだけ軽量な材料が望ま
しく、パッケージの組立に必要な加工、ろう付け、めっ
きがしやすいことも上記基板の材料に求められている。
なお、上記基板の材料に耐薬品性が必要な場合もある。
2. Description of the Related Art A semiconductor element supporting electrode material or a semiconductor element mounting substrate has a heat dissipation effect matching thermal expansion with a semiconductor element as a semiconductor integrated circuit device (IC) has higher density and higher output. What is expensive is required. In addition to the semiconductor element, a substrate having a thermal expansion coefficient close to that of the package material is desired. Alternatively, a substrate having a controlled coefficient of thermal expansion different from these materials is desired in consideration of a balance of thermal expansion after being assembled with a packaging material, a brazing material, a terminal, and the like. Further, considering the coefficient of thermal expansion, it is desirable to use a material that is as light as possible, and it is also required for the material of the substrate that the processing, brazing and plating necessary for assembling the package are easy.
In some cases, the material of the substrate requires chemical resistance.

【0003】上述のような要件のいくつかを満足する材
料として、銅/モリブデン、銅/タングステン、チタン
/モリブデン等の複合材料が提案されている。しかしな
がら、組立時に必要な加工性、パッケージ材料とのろう
付け性、耐薬品性などの観点から、モリブデン(Mo)
やタングステン(W)を基材に、銅(Cu)やチタン
(Ti)を合せ材にした高品質なクラッドタイプの放熱
基板材の提供が強く望まれている。
As materials satisfying some of the above requirements, composite materials of copper / molybdenum, copper / tungsten, titanium / molybdenum, etc. have been proposed. However, molybdenum (Mo) is used from the viewpoint of workability required for assembly, brazing property with package material, chemical resistance, etc.
It is strongly desired to provide a high-quality clad-type heat dissipation substrate material in which copper (Cu) or titanium (Ti) is used as a base material of tungsten or tungsten (W) as a base material.

【0004】これらのクラッド材は、従来、圧延法によ
って製造されている。非金属を含む複合材料とは異な
り、延性を有する金属系複合材料からなる典型的な金属
クラッド材においては、その製造と二次加工が塑性加工
によって行なわれ得る。そのため、圧延法による金属ク
ラッド材の製造は大量生産に適している。特に、特許第
1458686号でも明らかなように金属クラッド材は
熱間で圧延加工することにより容易に製造され得る。
Conventionally, these clad materials are manufactured by a rolling method. Unlike a composite material containing a non-metal, in a typical metal clad material made of a metal-based composite material having ductility, its production and secondary working can be performed by plastic working. Therefore, the production of the metal clad material by the rolling method is suitable for mass production. In particular, as is clear from Japanese Patent No. 1458686, the metal clad material can be easily manufactured by hot rolling.

【0005】しかしながら、金属クラッド材を圧延法に
よって製造する場合には、クラッド材を構成する基材と
合せ材の厚み(以下、層厚と称する)の差が大きい場
合、均一な層厚比が安定して得られ難く、その解決法が
求められている。
However, when the metal clad material is manufactured by the rolling method, if the difference in the thickness (hereinafter referred to as the layer thickness) between the base material forming the clad material and the laminated material is large, a uniform layer thickness ratio is obtained. It is difficult to obtain it in a stable manner, and a solution for it is required.

【0006】[0006]

【発明が解決しようとする課題】上述のように、たとえ
ば、Cu/Mo/CuまたはCu/W/Cuの各層厚の
差が小さい範囲では、そのクラッド材は容易に圧延法に
よって製造され得る。ちなみに従来の圧延法によって製
造されたCu/Mo/CuまたはCu/W/Cuのクラ
ッド材の層厚比は1:5:1〜2:1:2の範囲であ
る。
As described above, for example, the clad material can be easily manufactured by the rolling method within a range in which the difference in the layer thickness of Cu / Mo / Cu or Cu / W / Cu is small. Incidentally, the layer thickness ratio of the Cu / Mo / Cu or Cu / W / Cu clad material produced by the conventional rolling method is in the range of 1: 5: 1 to 2: 1: 2.

【0007】また、変形抵抗の著しく異なる異種金属を
同時に加工するため(加工なしでは圧着し得ない)、上
述のCu/Mo/CuあるいはCu/W/Cuの層厚比
率の範囲外では、加工の進行に伴って、Mo層あるいは
W層のうねりまたはコロニーが形成される場合が多い。
Further, since different kinds of metals having remarkably different deformation resistances are processed at the same time (which cannot be pressure-bonded without processing), the processing is performed outside the above-mentioned Cu / Mo / Cu or Cu / W / Cu layer thickness ratio range. In many cases, undulations or colonies of the Mo layer or W layer are formed along with the progress of.

【0008】図8は、Mo層またはW層のうねりまたは
コロニーを模式的に示す断面図である。図8の(a)に
示すように、Cu層(材)1の間に挟まれたMo層
(材)またはW層(材)2のうねり、すなわち部分的な
巨視的剪断帯が形成される。また、図8の(b)に示さ
れるように、Mo層またはW層2が分断されて、コロニ
ーを形成する。このようにMo層またはW層のうねりや
コロニーが形成される場合には、クラッド材の熱膨張率
が不均一になったり、クラッド材そのものの歪みが発生
する。その結果、高い信頼性が要求される放熱基板の材
料として、このようなクラッド材を用いることができな
くなる。
FIG. 8 is a sectional view schematically showing the undulations or colonies of the Mo layer or W layer. As shown in FIG. 8A, the undulation of the Mo layer (material) or the W layer (material) 2 sandwiched between the Cu layers (material) 1, that is, a partial macroscopic shear band is formed. . Further, as shown in FIG. 8B, the Mo layer or W layer 2 is divided to form a colony. When undulations or colonies of the Mo layer or W layer are formed in this way, the coefficient of thermal expansion of the clad material becomes nonuniform, and the clad material itself is distorted. As a result, such a clad material cannot be used as a material for the heat dissipation substrate that requires high reliability.

【0009】上述のような問題は、二層または四層以上
の圧延クラッド材においても同様に生じる。
The above-mentioned problems also occur in a rolled clad material having two layers or four layers or more.

【0010】なお、半導体素子支持用電極または半導体
素子搭載用基板の材料は、三層構造を有し、めっきやろ
う付けの容易さからCu層が外側に位置するクラッド材
が多く用いられている。
As a material for the semiconductor element supporting electrode or the semiconductor element mounting substrate, a clad material having a three-layer structure and having a Cu layer positioned outside is often used because of ease of plating and brazing. .

【0011】そこで、この発明の目的は、層厚の比率を
広い範囲にとることができ、熱膨張率が均一で歪みが発
生しない、均質なクラッド材からなる半導体装置用放熱
基板を製造することである。
Therefore, an object of the present invention is to manufacture a heat dissipation substrate for a semiconductor device, which can have a layer thickness ratio in a wide range, has a uniform coefficient of thermal expansion and does not generate distortion and is made of a homogeneous clad material. Is.

【0012】[0012]

【課題を解決するための手段およびその作用効果】本願
発明者は、以上の問題点を解決するために鋭意研究した
結果、Cu/Mo/Cu、Cu/W/Cuなどのクラッ
ド材において、大きな塑性変形を加えずに、たとえば、
ほとんど圧延工程を経ずに、上述の歪みが発生せず、均
質なクラッド材を作製する方法として、クラッド材の盤
面全域に静的な一軸圧力を加えながら加熱する方法の開
発に到った。本願発明者は、この方法によって高い品
質、高い信頼性を有するクラッド材が得られることを見
い出した。
[Means for Solving the Problems and Their Effects] The inventors of the present application have conducted extensive studies to solve the above problems, and as a result, in the clad materials such as Cu / Mo / Cu and Cu / W / Cu Without adding plastic deformation, for example,
As a method of producing a homogeneous clad material that does not generate the above-described strain and undergoes almost no rolling process, a method of heating while applying a static uniaxial pressure to the entire surface of the clad material has been developed. The inventor of the present application has found that a clad material having high quality and high reliability can be obtained by this method.

【0013】すなわち、この発明に従った半導体装置用
放熱基板の製造方法は、タングステンおよびモリブデン
のいずれかの金属からなる第1の部材の互いに対向する
一方と他方の主表面に、銅およびチタンのいずれかの金
属からなる第2の部材を熱間一軸加工法によって接合す
る方法である。
That is, in the method for manufacturing a heat dissipation substrate for a semiconductor device according to the present invention, copper and titanium are formed on one main surface and the other main surface of the first member, which is made of one of tungsten and molybdenum, facing each other. This is a method of joining the second member made of either metal by a hot uniaxial working method.

【0014】本発明の製造方法に用いられる装置として
は、ホットプレスや熱間静水圧プレスを挙げることがで
きる。
Examples of the apparatus used in the manufacturing method of the present invention include a hot press and a hot isostatic press.

【0015】本発明の製造方法によれば、各種寸法の基
材と合せ材を組合せて圧接複合材料としての放熱基板を
製造することができる。また、本発明の製造方法によれ
ば、クラッド材を構成する層厚の比率を広い範囲にとる
ことができる。そのため、クラッド材の熱膨張率を広い
範囲に制御することができる。さらに、基材が変形抵抗
の大きい高融点金属であるが、本発明の製造方法によれ
ば、合せ材だけのわずかでかつ均一な変形によって合せ
材と基材とを複合することができる。そのため、均質で
歪みの少ない放熱基板を製造することが可能になる。な
お、本発明の製造方法においては、その製造工程におい
て歪がほとんど導入されない。そのため、パッケージ組
立中や組立後に反りや歪が生じがたく、高品質のパッケ
ージを製造することができる。
According to the manufacturing method of the present invention, it is possible to manufacture a heat dissipation substrate as a pressure-bonded composite material by combining a base material of various sizes and a bonding material. Further, according to the manufacturing method of the present invention, the ratio of the layer thicknesses of the clad material can be set in a wide range. Therefore, the coefficient of thermal expansion of the clad material can be controlled within a wide range. Further, although the base material is a refractory metal having a large deformation resistance, the manufacturing method of the present invention enables the composite material and the base material to be composited by a slight and uniform deformation of only the composite material. Therefore, it is possible to manufacture a heat dissipation substrate that is homogeneous and has little distortion. In the manufacturing method of the present invention, strain is hardly introduced in the manufacturing process. Therefore, warpage or distortion does not occur during or after the package is assembled, and a high-quality package can be manufactured.

【0016】以下、基材にモリブデン(Mo)、合せ材
に銅(Cu)を用いた場合を例にして、本発明の製造方
法について説明する。
The manufacturing method of the present invention will be described below by taking the case where molybdenum (Mo) is used as the base material and copper (Cu) is used as the bonding material as an example.

【0017】まず、第1の部材(基材)としてのモリブ
デンと、第2の部材(合せ材)としての銅の接合面にど
ぶ漬け法によって酸洗浄を施し、表面の酸化物を除去す
る。次に、アルコールまたはアセトンなどを用いて酸の
置換洗浄を行なった後に銅材とモリブデン材を直接重ね
合わせる。あるいは、モリブデン材の表面に銅またはニ
ッケル、あるいはそれらの組合せの材料を用いてめっき
処理を施した後、銅材とモリブデン材を重ね合わせる。
このめっき処理を施すことにより、後工程の加圧加熱接
合時において加熱温度を低減することが可能になる。
First, the joint surface of molybdenum as the first member (base material) and copper as the second member (composite material) is subjected to acid cleaning by a doppling method to remove surface oxides. Next, after performing acid substitution cleaning using alcohol or acetone, the copper material and the molybdenum material are directly laminated. Alternatively, the surface of the molybdenum material is plated with copper, nickel, or a combination thereof, and then the copper material and the molybdenum material are stacked.
By performing this plating treatment, it becomes possible to reduce the heating temperature at the time of pressure heating and joining in the subsequent step.

【0018】第1の部材(基材)の厚みは10μm以上
0.3mm以下であることが望ましい。10μm未満の
厚みを有する基材は、実用的な放熱基板の熱膨張を制御
する上で実質的な効果をもたらさない。また、基材の厚
みが0.3mmを越えると、熱放散機能を分担する第2
の部材(合せ材)の作用が発揮され難くなるためであ
る。
The thickness of the first member (base material) is preferably 10 μm or more and 0.3 mm or less. A substrate having a thickness of less than 10 μm has no substantial effect on controlling the thermal expansion of a practical heat dissipation substrate. Also, when the thickness of the base material exceeds 0.3 mm, the second heat sharing function is shared.
This is because it becomes difficult for the member (combining material) to exhibit its function.

【0019】その後、重ね合わせた基材と合せ材を加圧
しながら加熱する。加熱温度は、300℃〜800℃の
範囲内が好ましい。加熱温度が300℃未満であると、
接合に必要な基材と合せ材の馴染みが十分でなく、それ
らの間で十分な接合が得られない。また、加熱温度が8
00℃を越えると、合せ材に大きな変形が生じ、層厚を
制御することが困難になる。
Then, the laminated base material and the laminated material are heated while being pressurized. The heating temperature is preferably in the range of 300 ° C to 800 ° C. If the heating temperature is less than 300 ° C,
The base material and the mating material necessary for bonding are not sufficiently familiar, and sufficient bonding cannot be obtained between them. The heating temperature is 8
If it exceeds 00 ° C, the laminated material is largely deformed, and it becomes difficult to control the layer thickness.

【0020】また、重ね合わせた基材と合せ材に加えら
れる圧力は200〜1000kgf/cm2 の範囲内で
あることが望ましい。圧力が200kgf/cm2 未満
では、接合に必要な基材と合せ材の密着や界面反応が進
行しない。また、1000kgf/cm2 の圧力を加え
ても、基材と合せ材の密着性の向上は期待され得ない。
The pressure applied to the laminated base material and the laminated material is preferably in the range of 200 to 1000 kgf / cm 2 . If the pressure is less than 200 kgf / cm 2 , the adhesion between the base material and the bonding material necessary for bonding and the interfacial reaction do not proceed. Further, even if a pressure of 1000 kgf / cm 2 is applied, improvement in the adhesion between the base material and the laminated material cannot be expected.

【0021】加熱圧接後の冷却は、歪の解放を容易にす
るため、可能な限り緩慢にすることが望ましい。また、
冷却時の変形を生じさせないために、少なくとも急冷却
を避け、降温速度は10℃/分以内が望ましい。
It is desirable that the cooling after the heating and pressure welding be as slow as possible in order to facilitate the release of strain. Also,
In order not to cause deformation during cooling, it is desirable to avoid rapid cooling at least and to lower the cooling rate within 10 ° C / min.

【0022】また、クラッド材の盤面形状によっては圧
接中に歪が生じる。その歪を解放しやすくするために、
クラッド材の盤面形状の外周部に半円の切り欠きを設け
るのが望ましい。
Further, depending on the surface shape of the clad material, distortion occurs during the pressure contact. To make it easier to release the distortion,
It is desirable to provide a semicircular cutout on the outer peripheral portion of the board surface shape of the clad material.

【0023】図6は、クラッド材の盤面形状を示す平面
図である。たとえば、直径D=200mmの外周部に半
円の切り欠きを設けることによって、圧接中に生じる歪
が解放されやすくなる。
FIG. 6 is a plan view showing the board surface shape of the clad material. For example, by providing a semi-circular cutout on the outer peripheral portion of the diameter D = 200 mm, the strain generated during the pressure welding is easily released.

【0024】銅材とモリブデン材の純度は、いずれも9
9.9%程度以上であれば、設計上問題ない。
The purity of copper material and molybdenum material are both 9
If it is about 9.9% or more, there is no problem in design.

【0025】基材と合せ材の厚みは、放熱基板の厚み
(以下、総厚と称する)0.3〜3.0mmを所望の構
成比に換算したものを基本とする。最終製品の仕上げ時
における総厚が所望の値になるように、加熱圧接時にホ
ットプレスの金型の離型剤を取り除くためのエッチング
代(たとえば10μm程度の厚み)を余分に含ませた厚
みを設定する。
The thickness of the base material and the bonding material is basically the thickness of the heat dissipation substrate (hereinafter referred to as the total thickness) of 0.3 to 3.0 mm converted into a desired composition ratio. To make the total thickness of the final product to the desired value, add an etching allowance (for example, a thickness of about 10 μm) for removing the mold release agent of the hot press mold during heating and pressure welding. Set.

【0026】たとえば、総厚1.0mmでCu/Mo/
Cuの層厚比が5:1:5の放熱基板を製造する場合に
は、厚み0.090mmのMo基材と厚み0.460m
mのCu合せ材をCu/Mo/Cuの構成で重ね合わせ
る。このとき、基材または合せ材の表面での酸化物層の
生成を抑えることに留意すべきである。
For example, with a total thickness of 1.0 mm, Cu / Mo /
When manufacturing a heat dissipation substrate with a Cu layer thickness ratio of 5: 1: 5, a Mo base material with a thickness of 0.090 mm and a thickness of 0.460 m
The Cu composite material of m is superposed with the composition of Cu / Mo / Cu. At this time, it should be noted that the formation of an oxide layer on the surface of the base material or the composite material is suppressed.

【0027】圧接時における加熱温度を下げ、かつ接合
性を向上させるために、基材と合せ材の両者と濡れ性の
良好な第3層を介在させて接合させると効果的である。
第3層には、たとえばCuまたはNiのめっき層が有効
である。この他に、第3層の形成方法として蒸着などの
気相被覆を用いることも可能である。第3層の厚みは1
0μm以下であることが望ましい。第3層の厚みが10
μmを越えると、第3層を構成する金属が合せ材の中に
拡散する量が増加し、合せ材そのものの熱伝導率が減少
する。
In order to lower the heating temperature at the time of pressure contact and improve the bondability, it is effective to bond both the base material and the bonding material with the third layer having good wettability interposed therebetween.
For the third layer, for example, a Cu or Ni plating layer is effective. In addition to this, it is also possible to use vapor phase coating such as vapor deposition as a method of forming the third layer. The thickness of the third layer is 1
It is preferably 0 μm or less. The thickness of the third layer is 10
When the thickness exceeds μm, the amount of the metal forming the third layer diffused into the composite material increases, and the thermal conductivity of the composite material itself decreases.

【0028】接合された状態のままのクラッド材の面粗
度ではパッケージ組立に適さない用途に対しては、クラ
ッド材の外周を洗浄した後、冷間圧延法を用いて表面粗
さが0.1μmRa程度まで精密に矯正することが必要
である。
For applications in which the surface roughness of the clad material in the joined state is not suitable for package assembly, the outer circumference of the clad material is washed and then the surface roughness is reduced to 0. It is necessary to correct it precisely to about 1 μmRa.

【0029】以上のように本発明によれば、従来、製造
不可能であった層厚比1:9:1〜5:1:5、基材の
厚みの変動±3/100、反り0.5mm/300mm
以内のクラッド材を作製することが可能になる。たとえ
ば、クラッド材の構成がCu/Mo/Cuの場合、その
層厚比が1:9:1〜5:1:5のとき、熱膨張係数の
範囲を6×10-6〜16×10-6/Kと広い範囲に制御
することができる。
As described above, according to the present invention, a layer thickness ratio of 1: 9: 1 to 5: 1: 5, which is conventionally impossible to manufacture, a variation in the thickness of the substrate ± 3/100, and a warp of 0. 5mm / 300mm
It is possible to produce a clad material within the range. For example, when the structure of the clad material is Cu / Mo / Cu and the layer thickness ratio is 1: 9: 1 to 5: 1: 5, the range of the coefficient of thermal expansion is 6 × 10 −6 to 16 × 10 −. It can be controlled in a wide range of 6 / K.

【0030】また、クラッド材にした後の基材の厚みの
偏差は、圧延法による場合に比べてかなり小さい値に制
御され得る。
Further, the deviation of the thickness of the base material after being made into the clad material can be controlled to a value which is considerably smaller than that in the case of the rolling method.

【0031】図7は、基材の厚みの偏差を説明するため
に用いられる断面図である。t0 は圧延前または熱間一
軸加工前の基材の厚みを示し、t1 とt2 は圧延後また
は熱間一軸加工後の基材の厚みを示す。なお、図7にお
いてモリブデン(Mo)材2の両面に銅(Cu)材1が
接合される。偏差Sは以下の式で表される。
FIG. 7 is a cross-sectional view used to explain the deviation of the thickness of the base material. t 0 indicates the thickness of the base material before rolling or before hot uniaxial working, and t 1 and t 2 indicate the thickness of the base material after rolling or after hot uniaxial working. In FIG. 7, the copper (Cu) material 1 is joined to both surfaces of the molybdenum (Mo) material 2. The deviation S is represented by the following formula.

【0032】 S=(t0 ×100)/(t1 またはt2 ) 偏差Sの値は、圧延法による場合、20〜30%である
が、本発明の製造方法によれば5%程度まで小さくな
る。
S = (t 0 × 100) / (t 1 or t 2 ) The value of the deviation S is 20 to 30% according to the rolling method, but up to about 5% according to the manufacturing method of the present invention. Get smaller.

【0033】以上、基材にモリブデン(Mo)、合せ材
に銅(Cu)を用いた場合を例に本発明の圧接複合材、
すなわちクラッド材からなる放熱基板の製造方法につい
て述べたが、合せ材にチタン(Ti)を用いた場合、基
材にタングステン(W)、合せ材に銅(Cu)またはチ
タン(Ti)を用いた場合にも同様の製造方法によって
信頼性の高いクラッド材を得ることができる。
As described above, the pressure-bonded composite material of the present invention is exemplified by the case where molybdenum (Mo) is used as the base material and copper (Cu) is used as the bonding material.
That is, the manufacturing method of the heat dissipation substrate made of the clad material has been described. When titanium (Ti) is used as the bonding material, tungsten (W) is used as the base material and copper (Cu) or titanium (Ti) is used as the bonding material. Also in this case, a highly reliable clad material can be obtained by the same manufacturing method.

【0034】[0034]

【実施例】実施例1 圧延法を用いて作製された直径200mm、厚み0.4
65mmのCu板と、Cu板と同じ直径で厚み0.09
0mmのMo板を準備した。Cu板とMo板の各々の表
面をHF/HNO3 溶液によって洗浄した後、温純水、
アセトンによって酸を置換洗浄した。その後、各板をC
u/Mo/Cuの順に重ね合わせ、図1に示すようなホ
ットプレス内にその重ね合せ板を設定した。
EXAMPLES Example 1 Diameter 200 mm and thickness 0.4 produced by rolling method
A 65 mm Cu plate and the same diameter as the Cu plate but with a thickness of 0.09
A 0 mm Mo plate was prepared. After cleaning the surface of each of the Cu plate and Mo plate with an HF / HNO 3 solution, hot pure water,
The acid was replaced and washed with acetone. After that, C
u / Mo / Cu were superposed in this order, and the superposed plate was set in a hot press as shown in FIG.

【0035】図1は、この発明の製造方法の熱間一軸加
工に用いられるホットプレスの構成を示す模式図であ
る。重ね合せ材(Cu/Mo/Cu)3はCu材1とM
o材2とから構成される。Mo材2の両面にCu材1が
重ね合わせられる。各重ね合せ材3の間にはスペーサ4
が設けられる。重ね合せ材3にスペーサ4を介して圧力
が加えられるように、上パンチ5と下パンチ6が配置さ
れる。重ね合せ材3とスペーサ4の外周部を囲むように
サイドモールド7とガイドリング8とが設けられてい
る。サイドモールド7とガイドリング8はガイドモール
ド9の内周面に設けられる。また、ガイドモールド9の
外側にはヒータ10が設けられる。
FIG. 1 is a schematic view showing the structure of a hot press used for hot uniaxial processing in the manufacturing method of the present invention. The laminated material (Cu / Mo / Cu) 3 is Cu material 1 and M
It is composed of o material 2. The Cu material 1 is superposed on both sides of the Mo material 2. Spacers 4 are provided between the overlapping materials 3.
Is provided. The upper punch 5 and the lower punch 6 are arranged so that pressure is applied to the superposed material 3 via the spacer 4. A side mold 7 and a guide ring 8 are provided so as to surround the outer peripheral portions of the overlapping material 3 and the spacer 4. The side mold 7 and the guide ring 8 are provided on the inner peripheral surface of the guide mold 9. A heater 10 is provided outside the guide mold 9.

【0036】図1に示されるホットプレス内において、
スペーサ4、ガイドリング8の重ね合せ材3との接触部
には、BN粉をアルコールに分散したものを薄く塗布し
た。炉内を真空脱気した後、アルゴン(Ar)ガスを導
入し、再び真空脱気し、アルゴンガスを導入した。その
後、炉内を5Torrまで減圧した後、600℃の温度
まで加熱した。このとき、上パンチ5と下パンチ6とに
よって加圧力を350kgf/cm2 に保持した。その
ままの状態で30分後徐冷した。
In the hot press shown in FIG.
On the contact portions of the spacer 4 and the guide ring 8 with the overlapping material 3, a thin film of BN powder dispersed in alcohol was applied. After degassing the inside of the furnace under vacuum, argon (Ar) gas was introduced, vacuum degassing was again carried out, and argon gas was introduced. After that, the pressure inside the furnace was reduced to 5 Torr and then heated to a temperature of 600 ° C. At this time, the pressing force was kept at 350 kgf / cm 2 by the upper punch 5 and the lower punch 6. In that state, it was gradually cooled after 30 minutes.

【0037】温度200℃まで冷却された段階でアルゴ
ンガスを炉内に導入し、温度100℃まで冷却した段階
で上下パンチによる加圧力を解放した。
Argon gas was introduced into the furnace when the temperature was cooled to 200 ° C., and the pressure applied by the upper and lower punches was released when the temperature was cooled to 100 ° C.

【0038】ホットプレスから取出されたCu/Mo/
Cuクラッド材は、表層にBNが残存しており、僅かに
HNO3 を用いてエッチングした後、クラッド材の厚み
を測定したところ、その厚みは1.02mmであった。
#8000の砥粒を用いてクラッド材の両面に同時にラ
ッピング処理を施し、クラッド材の厚みを1.00mm
にした。このようにして得られたクラッド材の断面は図
2に模式的に示される。クラッド材30は基材としてM
o材2と、その両面に接合された合せ材としてCu材1
とから構成される。
Cu / Mo / taken out from the hot press
In the Cu clad material, BN remained on the surface layer, and after slightly etching using HNO 3 , the thickness of the clad material was measured and found to be 1.02 mm.
Lapping treatment is performed on both sides of the clad material at the same time using # 8000 abrasive grains, and the thickness of the clad material is 1.00 mm.
I chose The cross section of the clad material thus obtained is schematically shown in FIG. The clad material 30 is M as a base material.
o material 2 and Cu material 1 as a bonding material bonded to both surfaces thereof
Composed of and.

【0039】得られたクラッド材の剪断強度をJISZ
−3192に基づいて測定したところ、その剪断強度は
30kgf/mm2 以上であった。一般的な銅クラッド
材の剪断強度の目安が10kgf/mm2 以上とされて
いるので、本発明の製造方法によって得られたクラッド
材の接合強度はこの条件を満たしていることが確認され
た。
The shear strength of the obtained clad material is measured according to JISZ.
When measured based on -3192, the shear strength was 30 kgf / mm 2 or more. Since the standard of the shear strength of a general copper clad material is set to 10 kgf / mm 2 or more, it was confirmed that the bonding strength of the clad material obtained by the manufacturing method of the present invention satisfies this condition.

【0040】得られたクラッド材の熱伝導率と熱膨張係
数を測定した。図3は、これらの測定結果を示すグラフ
である。
The thermal conductivity and thermal expansion coefficient of the obtained clad material were measured. FIG. 3 is a graph showing these measurement results.

【0041】図3の(a)において横軸はCu/Mo/
Cuクラッド材におけるCuの質量%を示し、縦軸は熱
伝導率(W/mK)を示す。また、白丸のプロットはK
−z(厚み方向の熱伝導率)を示し、黒丸のプロットは
K−xy(厚み方向と直交する平面内での熱伝導率)を
示す。なお、グラフ中において示される比率はCu:M
o:Cuの層厚比の値を示す。
In FIG. 3A, the horizontal axis represents Cu / Mo /
The mass% of Cu in the Cu clad material is shown, and the vertical axis shows the thermal conductivity (W / mK). The white circle plot is K
-Z (heat conductivity in the thickness direction) is shown, and a black circle plot shows K-xy (heat conductivity in a plane orthogonal to the thickness direction). The ratio shown in the graph is Cu: M
The value of the layer thickness ratio of o: Cu is shown.

【0042】図3の(b)の横軸はCu/Mo/Cuク
ラッド材におけるCuの質量%を示し、縦軸は熱膨張係
数(10-6/K)を示す。また、白丸のプロットはα−
xy(厚み方向に直交する平面内の熱膨張係数)を示
す。
In FIG. 3B, the horizontal axis represents the mass% of Cu in the Cu / Mo / Cu clad material, and the vertical axis represents the thermal expansion coefficient (10 −6 / K). The white circle plot is α-
xy (coefficient of thermal expansion in a plane orthogonal to the thickness direction) is shown.

【0043】図3から明らかなように、本発明の製造方
法を用いれば、クラッド材を構成する層厚比を広い範囲
にとることができるため、熱膨張係数、熱伝導率をとも
に広い範囲に制御することが可能になる。
As is apparent from FIG. 3, when the manufacturing method of the present invention is used, the layer thickness ratio of the clad material can be set in a wide range, so that both the thermal expansion coefficient and the thermal conductivity can be set in a wide range. It becomes possible to control.

【0044】次に、得られたクラッド材を25mm角の
平面形状にダイ・フローティング方式によって打抜き、
外周部に2μmの厚みのニッケルめっきを施した。外周
部において、クラック、めっきのむら等が発生せず、外
観の良好な放熱基板が得られた。
Next, the obtained clad material was punched into a planar shape of 25 mm square by a die floating method,
The outer peripheral portion was plated with nickel having a thickness of 2 μm. In the outer peripheral portion, cracks, uneven plating, etc. did not occur, and a heat dissipation board having a good appearance was obtained.

【0045】さらに、上記の打抜き加工によって得られ
た20mm角の平面形状の放熱基板を用いてはんだぬれ
における密着強度試験を行なった。ろう材としてAgろ
うを用いた。
Further, an adhesion strength test in solder wetting was carried out using a 20 mm square flat heat dissipation substrate obtained by the above punching. Ag brazing was used as the brazing material.

【0046】図4は、本発明によって得られた放熱基板
に対するめっきの密着強度を評価する装置を示す模式図
である。ニッケルめっきが施された放熱基板30(20
mm角の形状)を2つの治具50と60の間に設定し
た。放熱基板30に対向する治具50と60の表面積は
30mm×30mmであった。放熱基板30と治具50
との間、放熱基板30と治具60との間にはAgろう材
70が設けられ、放熱基板3が治具50と60に対して
ろう付けされた。このような状態で放熱基板30の厚み
方向に、すなわち図4の矢印で示す方向に治具50と6
0を垂直に引っ張ったところ、放熱基板30を構成する
Mo材の部分で破断した。このことから、本発明によっ
て得られた放熱基板に対するめっきの密着強度も、一般
的な規格5kgf/mm2 以上を満たし、十分高いこと
が理解される。
FIG. 4 is a schematic view showing an apparatus for evaluating the adhesion strength of plating on the heat dissipation board obtained by the present invention. The heat dissipation board 30 (20
(mm square shape) was set between the two jigs 50 and 60. The surface area of the jigs 50 and 60 facing the heat dissipation board 30 was 30 mm × 30 mm. Heat dissipation board 30 and jig 50
, And the Ag brazing material 70 was provided between the heat dissipation board 30 and the jig 60, and the heat dissipation board 3 was brazed to the jigs 50 and 60. In this state, the jigs 50 and 6 are arranged in the thickness direction of the heat dissipation board 30, that is, in the direction shown by the arrow in FIG.
When 0 was pulled vertically, it fractured at the portion of the Mo material forming the heat dissipation substrate 30. From this, it is understood that the adhesion strength of the plating to the heat dissipation substrate obtained by the present invention also satisfies the general standard of 5 kgf / mm 2 or more and is sufficiently high.

【0047】上述の方法によって作製された直径25m
m、厚み1mmのCu/Mo/Cuクラッド材の放熱基
板をアルミナ製のセラミックパッケージにろう付けによ
って組み込んだ。図5は、本発明の放熱基板を用いた半
導体装置の構成を示す断面図である。
25 m diameter produced by the above method
A heat-dissipating substrate of Cu / Mo / Cu clad material having a thickness of 1 mm and a thickness of 1 mm was incorporated into an alumina ceramic package by brazing. FIG. 5 is a sectional view showing the configuration of a semiconductor device using the heat dissipation substrate of the present invention.

【0048】放熱基板30は半導体素子搭載部分31を
有する。放熱基板30の上にはアルミナからなるセラミ
ック枠体11がろう付けされる。セラミック枠体11に
はピン端子12が設けられている。
The heat dissipation substrate 30 has a semiconductor element mounting portion 31. The ceramic frame 11 made of alumina is brazed onto the heat dissipation substrate 30. Pin terminals 12 are provided on the ceramic frame 11.

【0049】図5に従って本発明の放熱基板を用いて半
導体装置を構成した。本発明の放熱基板と、半導体素子
やパッケージ材料との熱膨張の整合性を調べた。その結
果、パッケージの歪みや亀裂、接合部の剥離はなく、放
熱基板として優れていることがわかった。
According to FIG. 5, a semiconductor device was constructed using the heat dissipation substrate of the present invention. The thermal expansion matching between the heat dissipation substrate of the present invention and the semiconductor element or the package material was examined. As a result, it was found that there was no distortion or crack of the package and peeling of the joint, and it was excellent as a heat dissipation substrate.

【0050】実施例2 実施例1と同様にMo板、Cu板を準備した。Mo板の
表面にはCuのめっき層を3μmの厚みで形成した後、
実施例1と同じ手順でCu/Mo/Cuクラッド材を作
製した。500kgf/cm2 の加圧力、500℃の加
熱温度で接合したクラッド材は、JISZ−3192に
よる剪断強度が30kgf/mm2 以上であり、接合強
度が高かった。また、打ち抜き性についても実施例1と
同様に良好なクラッド材が得られた。
Example 2 A Mo plate and a Cu plate were prepared in the same manner as in Example 1. After forming a Cu plating layer with a thickness of 3 μm on the surface of the Mo plate,
A Cu / Mo / Cu clad material was produced by the same procedure as in Example 1. The clad material joined at a pressing force of 500 kgf / cm 2 and a heating temperature of 500 ° C. had a shear strength of 30 kgf / mm 2 or more according to JIS Z-3192, and had a high joining strength. Also, as for the punching property, a good clad material was obtained as in Example 1.

【0051】実施例3 ニッケルのめっき層を5μmの厚みで形成した実施例1
と同じ寸法のMo板と、直径200mm、厚み0.46
5mmのTi板を用いて、実施例1と同様の方法でTi
/Mo/Tiクラッド材を作製した。Cu/Mo/Cu
クラッド材と同様、JISZ−3192による剪断強度
が30kgf/mm2 以上であり、実施例1と同様の良
好な打ち抜き加工を行なうことができた。
Example 3 Example 1 in which a nickel plating layer was formed to a thickness of 5 μm
Mo plate with the same dimensions as the above, diameter 200 mm, thickness 0.46
Using a 5 mm Ti plate, Ti was prepared in the same manner as in Example 1.
A / Mo / Ti clad material was produced. Cu / Mo / Cu
Similar to the clad material, the shear strength according to JIS Z-3192 was 30 kgf / mm 2 or more, and the same favorable punching as in Example 1 could be performed.

【0052】このクラッド材についても実施例1と同様
にセラミックパッケージに組み込み、半導体装置として
の評価をした。その結果、パッケージの組立雰囲気やろ
う材によく適合し、合せ材としてTi材を利用しても充
分、高品質、高信頼性の放熱基板が得られることがわか
った。
This clad material was also incorporated into a ceramic package in the same manner as in Example 1 and evaluated as a semiconductor device. As a result, it was found that a heat dissipation board that is well suited to the assembly atmosphere of the package and the brazing material and that has a sufficiently high quality and high reliability can be obtained even if the Ti material is used as the bonding material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法に用いられる装置の一例とし
てホットプレスの構成を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of a hot press as an example of an apparatus used in a manufacturing method of the present invention.

【図2】本発明によって得られた放熱基板の断面構成を
示す模式図である。
FIG. 2 is a schematic view showing a cross-sectional structure of a heat dissipation board obtained by the present invention.

【図3】本発明によって得られた放熱基板の熱伝導率と
熱膨張係数の特性を示すグラフである。
FIG. 3 is a graph showing the characteristics of thermal conductivity and thermal expansion coefficient of the heat dissipation board obtained by the present invention.

【図4】本発明によって得られた放熱基板に対するめっ
きの密着強度を評価する装置を示す模式図である。
FIG. 4 is a schematic diagram showing an apparatus for evaluating the adhesion strength of plating to the heat dissipation board obtained by the present invention.

【図5】本発明によって得られた放熱基板を組み込んだ
半導体装置の一例を示す断面図である。
FIG. 5 is a cross-sectional view showing an example of a semiconductor device incorporating a heat dissipation substrate obtained by the present invention.

【図6】本発明の製造方法において圧接中に生じる歪を
解放しやすくするために用いられるクラッド材の盤面形
状の一例を示す平面図である。
FIG. 6 is a plan view showing an example of a board surface shape of a clad material used for facilitating release of strain generated during pressure welding in the manufacturing method of the present invention.

【図7】クラッド材の加工において加工前と加工後にお
ける基材の厚みの偏差を説明するための断面図である。
FIG. 7 is a cross-sectional view for explaining a deviation in thickness of a base material before and after processing of a clad material.

【図8】従来の圧延法によって得られたクラッド材の断
面を示す模式図である。
FIG. 8 is a schematic view showing a cross section of a clad material obtained by a conventional rolling method.

【符号の説明】[Explanation of symbols]

1 Cu材(合せ材) 2 Mo材(基材) 3 重ね合せ材 5 上パンチ 6 下パンチ 10 ヒータ 30 放熱基板(クラッド材) 1 Cu Material (Ladding Material) 2 Mo Material (Base Material) 3 Laminating Material 5 Upper Punch 6 Lower Punch 10 Heater 30 Heat Dissipating Board (Clad Material)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有川 正 富山県富山市岩瀬古志町2番地 東京ダン グステン株式会社富山製作所内 (72)発明者 市田 晃 富山県富山市岩瀬古志町2番地 東京ダン グステン株式会社富山製作所内 (72)発明者 柴田 憲一郎 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Tadashi Arikawa 2 Iwase Koshi-cho, Toyama City, Toyama Prefecture Tokyo Dan Gusten Co., Ltd. Toyama Works (72) Inventor Akira Ichida 2 Iwase Koshi-cho, Toyama City, Toyama Prefecture Gusten Co., Ltd. Toyama Works (72) Inventor Kenichiro Shibata 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries Itami Works Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子を搭載または保持するための
半導体装置用放熱基板の製造方法であって、 タングステンおよびモリブデンのいずれかの金属からな
る第1の部材の互いに対向する一方と他方の主表面に、
銅およびチタンのいずれかの金属からなる第2の部材を
熱間一軸加工法によって接合する、半導体装置用放熱基
板の製造方法。
1. A method for manufacturing a heat dissipation substrate for a semiconductor device for mounting or holding a semiconductor element, wherein one main surface and the other main surface of a first member made of a metal of either tungsten or molybdenum facing each other. To
A method for manufacturing a heat dissipation substrate for a semiconductor device, comprising joining a second member made of a metal of copper or titanium by a hot uniaxial working method.
JP5053906A 1993-03-15 1993-03-15 Method of manufacturing heat dissipation board for semiconductor device Expired - Lifetime JP2860037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053906A JP2860037B2 (en) 1993-03-15 1993-03-15 Method of manufacturing heat dissipation board for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5053906A JP2860037B2 (en) 1993-03-15 1993-03-15 Method of manufacturing heat dissipation board for semiconductor device

Publications (2)

Publication Number Publication Date
JPH06268115A true JPH06268115A (en) 1994-09-22
JP2860037B2 JP2860037B2 (en) 1999-02-24

Family

ID=12955765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053906A Expired - Lifetime JP2860037B2 (en) 1993-03-15 1993-03-15 Method of manufacturing heat dissipation board for semiconductor device

Country Status (1)

Country Link
JP (1) JP2860037B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126525A1 (en) * 2005-05-23 2006-11-30 Neomax Materials Co., Ltd. Cu-Mo SUBSTRATE AND METHOD FOR PRODUCING SAME
WO2007046164A1 (en) * 2005-10-18 2007-04-26 Eiki Tsushima Cladding material and its fabrication method, method for molding cladding material, and heat sink using cladding material
JP2010074122A (en) * 2008-08-21 2010-04-02 Sumitomo Electric Ind Ltd Heat sink for led, heat sink precursor for led, led element, method for manufacturing heat sink for led and method for manufacturing led element
WO2011001795A1 (en) 2009-06-30 2011-01-06 住友電気工業株式会社 Metal laminate structure and process for production of metal laminate structure
JP2011014917A (en) * 2010-08-20 2011-01-20 Sumitomo Electric Ind Ltd Metal laminate structure
WO2011034080A1 (en) * 2009-09-15 2011-03-24 昭和電工株式会社 Light emitting diode, light emitting diode lamp and lighting device
JP2011082362A (en) * 2009-10-07 2011-04-21 Showa Denko Kk Metal substrate for light-emitting diode, light-emitting diode, and method of manufacturing the same
JP2011129880A (en) * 2009-10-01 2011-06-30 Jfe Seimitsu Kk Heat sink for electronic device, and process for production thereof
JP2011149103A (en) * 2011-04-07 2011-08-04 Sumitomo Electric Ind Ltd Method for producing metallic multilayer structure
JP4768024B2 (en) * 2006-07-28 2011-09-07 京セラ株式会社 Electronic component storage package and electronic device
CN103264261A (en) * 2013-05-22 2013-08-28 周旭红 Method for preparing multi-laminated-layer molybdenum-copper composite material
JP2013229472A (en) * 2012-04-26 2013-11-07 Denso Corp Semiconductor device
JPWO2013038964A1 (en) * 2011-09-13 2015-03-26 電気化学工業株式会社 Clad material for LED light-emitting element holding substrate and manufacturing method thereof
US8993121B2 (en) 2010-02-19 2015-03-31 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the same
JP6304670B1 (en) * 2017-04-14 2018-04-04 株式会社半導体熱研究所 Heat dissipation substrate, heat dissipation substrate electrode, semiconductor package, and semiconductor module
JP2018182287A (en) * 2017-11-20 2018-11-15 株式会社半導体熱研究所 Heat dissipating substrate, heat dissipating substrate electrode, semiconductor package, semiconductor module, and manufacturing method of heat dissipating substrate

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004792B2 (en) * 2005-05-23 2012-08-22 株式会社Neomaxマテリアル Cu-Mo substrate and manufacturing method thereof
CN100459109C (en) * 2005-05-23 2009-02-04 株式会社新王材料 Cu-Mo substrate and method for producing same
US7830001B2 (en) 2005-05-23 2010-11-09 Neomax Materials Co., Ltd. Cu-Mo substrate and method for producing same
WO2006126525A1 (en) * 2005-05-23 2006-11-30 Neomax Materials Co., Ltd. Cu-Mo SUBSTRATE AND METHOD FOR PRODUCING SAME
WO2007046164A1 (en) * 2005-10-18 2007-04-26 Eiki Tsushima Cladding material and its fabrication method, method for molding cladding material, and heat sink using cladding material
US7951467B2 (en) 2005-10-18 2011-05-31 Eiki Tsushima Cladding material and its manufacturing method, press-forming method, and heat sink using cladding material
JP4768024B2 (en) * 2006-07-28 2011-09-07 京セラ株式会社 Electronic component storage package and electronic device
JP2012019193A (en) * 2006-07-28 2012-01-26 Kyocera Corp Electronic component housing package and electronic device
US8242387B2 (en) 2006-07-28 2012-08-14 Kyocera Corporation Electronic component storing package and electronic apparatus
JP2010074122A (en) * 2008-08-21 2010-04-02 Sumitomo Electric Ind Ltd Heat sink for led, heat sink precursor for led, led element, method for manufacturing heat sink for led and method for manufacturing led element
US9199433B2 (en) 2009-06-30 2015-12-01 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the metal laminated structure
JP2011011366A (en) * 2009-06-30 2011-01-20 Sumitomo Electric Ind Ltd Method of manufacturing metal laminated structure
WO2011001795A1 (en) 2009-06-30 2011-01-06 住友電気工業株式会社 Metal laminate structure and process for production of metal laminate structure
WO2011034080A1 (en) * 2009-09-15 2011-03-24 昭和電工株式会社 Light emitting diode, light emitting diode lamp and lighting device
US9112084B2 (en) 2009-09-15 2015-08-18 Showa Denko K.K. Light emitting diode, light emitting diode lamp, and illuminating apparatus
US8659004B2 (en) 2009-09-15 2014-02-25 Showa Denko K.K. Light emitting diode, light emitting diode lamp, and illuminating apparatus
JP2011129880A (en) * 2009-10-01 2011-06-30 Jfe Seimitsu Kk Heat sink for electronic device, and process for production thereof
JP2011082362A (en) * 2009-10-07 2011-04-21 Showa Denko Kk Metal substrate for light-emitting diode, light-emitting diode, and method of manufacturing the same
US8993121B2 (en) 2010-02-19 2015-03-31 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the same
JP2011014917A (en) * 2010-08-20 2011-01-20 Sumitomo Electric Ind Ltd Metal laminate structure
JP2011149103A (en) * 2011-04-07 2011-08-04 Sumitomo Electric Ind Ltd Method for producing metallic multilayer structure
JPWO2013038964A1 (en) * 2011-09-13 2015-03-26 電気化学工業株式会社 Clad material for LED light-emitting element holding substrate and manufacturing method thereof
EP2757604B1 (en) 2011-09-13 2018-06-13 Denka Company Limited Method of manufacturing a clad material for led light-emitting element holding substrate
JP2013229472A (en) * 2012-04-26 2013-11-07 Denso Corp Semiconductor device
CN103264261A (en) * 2013-05-22 2013-08-28 周旭红 Method for preparing multi-laminated-layer molybdenum-copper composite material
JP6304670B1 (en) * 2017-04-14 2018-04-04 株式会社半導体熱研究所 Heat dissipation substrate, heat dissipation substrate electrode, semiconductor package, and semiconductor module
WO2018190023A1 (en) * 2017-04-14 2018-10-18 株式会社半導体熱研究所 Heat dissipation substrate, heat dissipation substrate electrode, semiconductor package, and semiconductor module
JP2018182088A (en) * 2017-04-14 2018-11-15 株式会社半導体熱研究所 Heat dissipating substrate, heat dissipating substrate electrode, semiconductor package, and semiconductor module
JP2018182287A (en) * 2017-11-20 2018-11-15 株式会社半導体熱研究所 Heat dissipating substrate, heat dissipating substrate electrode, semiconductor package, semiconductor module, and manufacturing method of heat dissipating substrate

Also Published As

Publication number Publication date
JP2860037B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
JPH0249267B2 (en)
JP2004249589A (en) Copper-molybdenum composite material and heat sink using the same
JP4350753B2 (en) Heat sink member and manufacturing method thereof
JP2003068949A (en) Heat sink, power semiconductor module, and ic package
JP2003209197A (en) Package for electronic part, its lid, material for its lid, and method for manufacturing its led material
KR100374379B1 (en) Substrate
JP4293406B2 (en) Circuit board
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
EP3968369B1 (en) Heat radiation member and method for producing same
US6511759B1 (en) Means and method for producing multi-element laminar structures
JPH02196074A (en) Production of ceramics-metal joined body
JP6786090B2 (en) Heat dissipation plate material
KR101212826B1 (en) Electronic component package, cover body for such electronic component package, cover material for such cover body and method for manufacturing such cover material
JP3505704B2 (en) Heat dissipating substrate and manufacturing method thereof
JP4419461B2 (en) Circuit board manufacturing method and power module
JPH05109947A (en) Heat conducting material and its manufacture
JP2011210745A (en) Substrate for power module, and method of manufacturing the same
JPH03227621A (en) Thermally conductive composing material
JPH02177463A (en) Manufacture of ceramic-metal composite board
JPS6334963A (en) Method of manufacturing ceramic substrate for semiconductor device and clad material therefor
WO2024014532A1 (en) Multilayer assembly, semiconductor device using same, and method for manufacturing same
JP2023044755A (en) Method for producing joint body and method for producing insulated circuit board
JPS6338244A (en) Manufacture of ceramic substrate for semiconductor device and clad material used for the same
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981117