JPH02177463A - Manufacture of ceramic-metal composite board - Google Patents

Manufacture of ceramic-metal composite board

Info

Publication number
JPH02177463A
JPH02177463A JP63332253A JP33225388A JPH02177463A JP H02177463 A JPH02177463 A JP H02177463A JP 63332253 A JP63332253 A JP 63332253A JP 33225388 A JP33225388 A JP 33225388A JP H02177463 A JPH02177463 A JP H02177463A
Authority
JP
Japan
Prior art keywords
copper
ceramic
members
active metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63332253A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kashiba
良裕 加柴
Masaru Okada
勝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63332253A priority Critical patent/JPH02177463A/en
Priority to KR1019890010225A priority patent/KR920007021B1/en
Priority to DE3924225A priority patent/DE3924225C2/en
Priority to DE3943683A priority patent/DE3943683C2/en
Publication of JPH02177463A publication Critical patent/JPH02177463A/en
Priority to US07/675,063 priority patent/US5153077A/en
Priority to US07/789,074 priority patent/US5251803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture a composite board at a low price having a highly reliable junction section by a method wherein a copper member is brought into contact with both the sides of a ceramic board via a thin film layer of an active metal, a copper member for joining elements is brought into contact with one side of the copper member which is not brought into contact, and it is heated to a specific temperature and pressurized in a thicknesswise direction. CONSTITUTION:A first and a second copper member 2a, 2b are brought into contact with both the sides of a ceramic board 1 via a thin film layer 21 made of an active metal which is 0.1 to 3mum thick. A copper member 2c for joining semiconductor elements is brought into contact with the not-contacted side of the copper member 2a which is one of the above copper member 2a, 2b via a heat buffer metal board 3. Next, such a board member as above is heated to a temperature from the melting point of an alloy formed by the first and second copper members 2a, 2b and an active metal to temperature not higher than the melting point of the first and second copper members 2a, 2b in an atmosphere which is not likely to react with the active metal and is pressurized in a thicknesswise direction. For example, for the ceramic board 1, an alumina member is used; for the active metal, Ti; and, for the heat buffer metal, molybdenum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置を製造する際に使用されるセラミッ
ク−金属複合基板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a ceramic-metal composite substrate used in manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

従来、セラミック基材と金属部材とが直接に接合された
半導体素子実装用のセラミック−金属複合基板の製造方
法としてはへ特開昭60−155580号公報に開示さ
れたものが知られている。ところが、この製造方法によ
って形成された基板は、半導体装置用の基板として使用
するにはヒートサイクルに対して弱いという不具合があ
った。この不都合を解消するために、半導体素子と接合
される金属部材と、セラミック基材に接合される金属部
材との間にモリブデン等の熱拘束部材を介在させてクラ
ツド材を形成し、このクラツド材をセラミック基材に接
合させるセラミック−金属複合基板の製造方法が本願出
願人によって提案されている。これを図によって説明す
る。
Conventionally, as a method for manufacturing a ceramic-metal composite substrate for mounting a semiconductor element in which a ceramic base material and a metal member are directly bonded, there is known a method disclosed in Japanese Patent Application Laid-open No. 155580/1983. However, the substrate formed by this manufacturing method has a problem in that it is susceptible to heat cycles when used as a substrate for a semiconductor device. In order to solve this problem, a heat-restricting material such as molybdenum is interposed between the metal member to be bonded to the semiconductor element and the metal member to be bonded to the ceramic base material to form a cladding material. The applicant has proposed a method for manufacturing a ceramic-metal composite substrate in which a ceramic-metal composite substrate is bonded to a ceramic base material. This will be explained using a diagram.

第5図(a)〜(c)は従来のセラミック−金属複合基
板の製造方法を説明するための断面図で、同図において
、1はセラミック基材、2a、 2b、 2cは電気回
路を形成するための銅部材で、これらの銅部材2a、2
b、2cはそれぞれ銅あるいは銅合金によって形成され
ており、銅部材2a 、2bはセラミック基材1の両面
に配置され、銅部材2cは前記銅部材2aに後述する拘
束部材を介して配置されている。この銅部材2cは半導
体素子の大容量化のために追加されたものであり、この
銅部材2c上に半導体素子が実装される。3は前記銅部
材2a 、2cの熱膨張を拘束するための拘束部材で、
この拘束部材3は例えばモリブデンによって形成されて
いる。
FIGS. 5(a) to 5(c) are cross-sectional views for explaining a conventional method for manufacturing a ceramic-metal composite substrate, in which 1 is a ceramic base material, and 2a, 2b, and 2c form electric circuits. These copper members 2a, 2
b and 2c are each made of copper or a copper alloy, the copper members 2a and 2b are placed on both sides of the ceramic base material 1, and the copper member 2c is placed on the copper member 2a via a restraining member which will be described later. There is. This copper member 2c is added to increase the capacity of the semiconductor element, and the semiconductor element is mounted on this copper member 2c. 3 is a restraining member for restraining the thermal expansion of the copper members 2a and 2c;
This restraint member 3 is made of molybdenum, for example.

次に、これらの各部材によってセラミック−金属複合基
板を製造する方法について説明する。前記各部材は半田
等の中間層を介在させずにそれぞれ接合させることが望
ましいため、先ず、第5図(a)に示すように、銅部材
2aと銅部材2Cによって拘束部材3を挟み、これらを
爆発圧接法等の接合方法によって一体化させる。この際
、拘束部材3と両銅部材2a、2cとの接合面4a 、
4bは機械的に強固なものが得られる0次いで、上記工
程によって製造されたクラツド材を、例えば打ち抜き等
の方法によって成形し所望の電気回路パターンを形成す
る。そして、第5図(b)に示すように、前記クランド
材と銅部材2bによってセラミック基材1を挟み、クラ
ツド材の銅部材2aと銅部材2bとをセラミック基材l
にそれぞれ接合させる。このセラミック基材1と銅部材
2a、 2bとの接合は、例えば、前記特開昭60−1
55580号公軸に示された酸素を媒介とする所謂DB
C法や活性金属法が採用される。
Next, a method for manufacturing a ceramic-metal composite substrate using each of these members will be described. Since it is desirable that each of the above-mentioned members be joined without intervening an intermediate layer such as solder, first, as shown in FIG. 5(a), the restraining member 3 is sandwiched between the copper member 2a and the copper member 2C, and these are integrated using a joining method such as explosive welding. At this time, the joint surface 4a between the restraint member 3 and both copper members 2a and 2c,
4b is a material that is mechanically strong. Next, the cladding material produced by the above process is shaped by a method such as punching to form a desired electrical circuit pattern. As shown in FIG. 5(b), the ceramic base material 1 is sandwiched between the clad material and the copper member 2b, and the clad copper members 2a and 2b are attached to the ceramic base material 1.
are joined to each other. The bonding between the ceramic base material 1 and the copper members 2a and 2b can be performed, for example, by
The so-called DB mediated by oxygen shown on the common axis of No. 55580
C method and active metal method are adopted.

なお、同図中5はセラミック基材lと銅部材2a +2
bを強固に接合させるための酸素である。前記DBC法
や活性金属法によれば、銅部材2a 、2bとセラミッ
ク基材1との接合面6a 、6bに厚みが数十μm前後
の溶融層が形成され、この溶融層によって銅部材2a 
、2bとセラミック基材1とが濡らされるようにして接
合されるために、銅部材2a 、2bはセラミック基材
1に強固に接合されることになる。
In addition, 5 in the figure indicates the ceramic base material l and the copper member 2a +2
This is oxygen to firmly bond b. According to the DBC method and the active metal method, a molten layer with a thickness of approximately several tens of μm is formed on the bonding surfaces 6a and 6b between the copper members 2a and 2b and the ceramic base material 1, and this molten layer forms the copper member 2a and the ceramic base material 1.
, 2b and the ceramic base material 1 are bonded to each other in a wetting manner, so that the copper members 2a, 2b are firmly bonded to the ceramic base material 1.

第6図は従来のセラミック−金属複合基板に半導体素子
を接合させた状態を示す斜視図で、同図において前記第
5図で説明したものと同一部材については同一符号を付
し、ここにおいて詳細な説明は省略する。第6図におい
て、7は半導体素子で、この半導体素子7は銅部材2C
上に半田8を介して実装されている。9は外部接続用電
極としての銅板で、この銅板9はセラミック基材1上に
接合されており、前記銅部材2Cとは電気的に絶縁され
ている。10は前記半導体素子7の表面電橋(図示せず
)と前記銅板9とを接続するためのボンディングワイヤ
で、このボンディングワイヤ10はアルミニウムによっ
て形成されている。
FIG. 6 is a perspective view showing a state in which a semiconductor element is bonded to a conventional ceramic-metal composite substrate. In this figure, the same members as those explained in FIG. Further explanation will be omitted. In FIG. 6, 7 is a semiconductor element, and this semiconductor element 7 is a copper member 2C.
It is mounted on the top via solder 8. Reference numeral 9 denotes a copper plate serving as an electrode for external connection, and this copper plate 9 is bonded onto the ceramic base material 1 and is electrically insulated from the copper member 2C. 10 is a bonding wire for connecting the surface bridge (not shown) of the semiconductor element 7 and the copper plate 9, and this bonding wire 10 is made of aluminum.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、上述したようなセラミック−金属複合基板の
製造方法では、金属どうしを接合する工程と、金属とセ
ラミックとを接合する工程とで2工程必要となるため製
造コストが高くなる。このため、基板構造としては優れ
ているもののコスト面で実用化に際しては大きな妨げと
なっていた。
However, the method for manufacturing a ceramic-metal composite substrate as described above requires two steps, one for joining metals together and the other for joining metal and ceramic, resulting in high manufacturing costs. For this reason, although this is an excellent substrate structure, it has been a major hindrance to its practical application in terms of cost.

また、銅部材2a 、2cと拘束部材3とを前工程で接
合させると、拘束部材3を中心として銅部材2a+20
の板厚を同一にした対称形をとる必要があった。
Moreover, when the copper members 2a, 2c and the restraining member 3 are joined in the previous process, the copper members 2a+20
It was necessary to take a symmetrical shape with the same plate thickness.

すなわち、対称形でない場合には、銅部材2a 、2c
と拘束部材3の熱膨張差によって反りが発生し、次の工
程へ移れなくなる場合があるからである。
That is, if the copper members 2a and 2c are not symmetrical,
This is because warpage may occur due to the difference in thermal expansion between the restraining member 3 and the restraining member 3, and it may become impossible to proceed to the next step.

このため、電気回路としては自由度がなく、例えば、銅
部材2cの厚みを薄くしかつ銅部材2aの厚みを厚く形
成し、電気回路上に実装される半導体素子7への熱応力
を減少させることによって半導体素子7の破損防止策を
講じることは困難であった。
For this reason, there is no degree of freedom as an electric circuit. For example, the thickness of the copper member 2c is made thinner and the thickness of the copper member 2a is made thicker to reduce thermal stress on the semiconductor element 7 mounted on the electric circuit. This makes it difficult to take measures to prevent damage to the semiconductor element 7.

さらに、半導体素子7を実装する面は銅部材2 a +
2cと拘束部材3とが一体化された複合材を所望の形状
に加工し、電気回路を形成する必要があるーが、従来、
少量生産向きに多用される化学エツチングによる加工法
では、銅部材2a 、2cと拘束部材3のエツチング速
度が異なるために加工が難しかった。
Further, the surface on which the semiconductor element 7 is mounted is a copper member 2 a +
Conventionally, it is necessary to process the composite material in which the restraining member 2c and the restraining member 3 are integrated into a desired shape to form an electric circuit.
In the processing method using chemical etching, which is often used for small-scale production, processing is difficult because the etching speeds of the copper members 2a, 2c and the restraining member 3 are different.

このため、従来においては高価な金型を製作し、打ち抜
き加工によって所望の形状に成形しなければならなかっ
た。
For this reason, in the past, it was necessary to manufacture an expensive mold and punch it into the desired shape.

このような問題を解消するためには各部材を一括に接合
させればよいが、従来の製造方法を組合わせて1工程に
しただけでは以下に示す問題が生じる。先ず、金属どう
しを接合する場合について詳述する。銅部材2a、2c
と拘束部材3は融点が大きく異なるため、前記爆発圧接
を特徴とする特許接合やろう付は等の接合法によって接
合させることが必要である。一般のろう付けは、接合界
面の品質を考えると未接合部が多く残存されてしまうた
め、強固に接合させることができないばかりか、ろう材
を介して密着される部材間の熱抵抗が大きくなり高熱伝
導性を有する基板が得にくい、したがって、銅部材2a
 、2cと拘束部材3との接合は固相接合を行なう必要
がある。固相接合の原理は被接合物どうしの界面を原子
間距離にまで接近させることによって両者を接合させる
ことであるから、両者を接合させるための加圧力が必要
であり、また、加圧した状態で拡散反応されるまで所定
時間保持しなければならない。一方、銅部材2a 、2
bとセラミック基材1との接合は、一般にDBC法や活
性金属法が採用される。この際、接合界面には数十μm
前後の溶融層が形成され、金属とセラミックとの濡れを
確保することにより短時間で安定した強度が得られる。
In order to solve these problems, it is possible to join each member all at once, but if conventional manufacturing methods are combined into one process, the following problems will occur. First, the case of joining metals together will be described in detail. Copper members 2a, 2c
Since the melting points of the restraining member 3 and the restraining member 3 are greatly different, it is necessary to join them by a joining method such as patent joining or brazing, which is characterized by the above-mentioned explosive pressure welding. In general brazing, considering the quality of the bonding interface, many unbonded parts remain, which not only makes it impossible to make a strong bond, but also increases the thermal resistance between the parts that are closely bonded through the brazing material. It is difficult to obtain a substrate with high thermal conductivity, therefore, the copper member 2a
, 2c and the restraining member 3 must be joined by solid phase joining. The principle of solid phase bonding is to bond the objects by bringing their interfaces close to the atomic distance. must be maintained for a specified period of time until the diffusion reaction occurs. On the other hand, copper members 2a, 2
A DBC method or an active metal method is generally used to bond the ceramic substrate 1 and the ceramic substrate 1. At this time, the bonding interface has a thickness of several tens of μm.
By forming front and rear molten layers and ensuring wetting between the metal and ceramic, stable strength can be obtained in a short time.

なお、この際には加圧力は不要である0以上の二種類の
接合方法を同時に実施して一括に接合させた場合に生じ
る問題点を第7図(a)および第7図(b)によって説
明する。第7図において前記第5図で説明したものと同
一部材については同一符号を付し、ここにおいて詳細な
説明は省略する。第7図(a)は同相接合を確実に行な
うために加圧させたものを示し、第7図(b)は加圧せ
ずに接合させた例を示す。第7図(a)に示すように、
銅部材2a 、2cと拘束部材3とを同相接合によって
確実に接合させると、セラミック基材lと銅部材2a 
、2bとの接合面から反応溶融層11が排出されてしま
い、電気回路がショートしてしまうという問題が発生す
る。一方、加圧力を加えない第7図(b)においては、
接合面4a 、4bが確実に接合されず接合強度が得ら
れない、また、接合に必要となる反応時間、温度も異な
り、銅部材2a+2bとセラミック基材1は長時間高温
中に保持すると、銅部材2a 、2bと溶融層の反応が
進み過ぎ銅部材2a 、2bが変質、変形されてしまう
In this case, problems that arise when two types of welding methods of 0 or more are performed at the same time and welded at once are shown in Figure 7 (a) and Figure 7 (b). explain. In FIG. 7, the same members as those explained in FIG. 5 are given the same reference numerals, and detailed explanations will be omitted here. FIG. 7(a) shows an example in which pressure is applied to ensure in-phase bonding, and FIG. 7(b) shows an example in which bonding is performed without applying pressure. As shown in Figure 7(a),
When the copper members 2a, 2c and the restraining member 3 are reliably joined by in-phase joining, the ceramic base material l and the copper member 2a
, 2b, the reaction molten layer 11 is discharged from the joint surface, causing a problem that the electric circuit is short-circuited. On the other hand, in Fig. 7(b) where no pressure is applied,
The bonding surfaces 4a and 4b cannot be reliably bonded and bonding strength cannot be obtained. Also, the reaction time and temperature required for bonding are different, and if the copper members 2a+2b and the ceramic base material 1 are kept at high temperatures for a long time, the copper The reaction between the members 2a and 2b and the molten layer progresses too much and the copper members 2a and 2b are altered and deformed.

本発明はこのような問題点を解決するためになされたも
ので、安価でかつ信頼性の高い接合部を有するセラミッ
ク−金属複合基板を製造する方法を得ることを目的とす
る。
The present invention has been made to solve these problems, and an object of the present invention is to provide a method for manufacturing a ceramic-metal composite substrate having a bonding portion that is inexpensive and highly reliable.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るセラミック−金属複合基板の製造方法は、
セラミック板の両面に厚み0.1 μm〜3μmの活性
金属からなる薄膜層を介して第一および第二の銅部材を
密接させると共に前記両銅部材のうち一方の銅部材の末
対接面に熱糧衝用金属板を介して半導体素子接合用銅部
材を密接させてなる基板部材を、前記第一および第二の
銅部材と活性金属とによって形成される合金の融点から
第一および第二の銅部材の融点未満の温度に前記活性金
属と反応されにくい雰囲気中で加熱させ、かつ厚み方向
に加圧するものである。
The method for manufacturing a ceramic-metal composite substrate according to the present invention includes:
The first and second copper members are brought into close contact with each other through a thin film layer made of active metal with a thickness of 0.1 μm to 3 μm on both sides of the ceramic plate, and the end facing surface of one of the copper members is A substrate member made of a copper member for bonding a semiconductor element brought into close contact with a metal plate for heat supply is heated from the melting point of the alloy formed by the first and second copper members and the active metal. The copper member is heated to a temperature below the melting point of the copper member in an atmosphere where it is unlikely to react with the active metal, and pressure is applied in the thickness direction.

〔作 用〕[For production]

複合基板の各構成部材間の接合を一括に行なうことがで
きる。
Each component of the composite substrate can be bonded all at once.

(実施例〕 以下、本発明の一実施例を第1図ないし第4図によって
詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 1 to 4.

第1図(a)および第1図(b)は本発明のセラミック
−金属複合基板の製造方法を説明するための図で、同図
(a)は接合前の状態を示す各部材の断面、同図(b)
は接合後の状態を示す各部材の断面図である。第2図は
本発明に係る銅部材と拘束部材とのビール強度と温度の
関係を示す特性図、第3図は本発明に係るセラミック基
材と銅部材とのビール強度と温度の関係を示す特性図、
第4図は本発明に係るセラミック基材と銅部材とのビー
ル強度と膜厚の関係を示す特性図である。これらの図に
おいて前記第5図で説明したものと同一もしくは同等部
材については同一符号を付し、ここにおいて詳細な説明
は省略する。なお、本実施例では、セラミック基材1と
してアルミナ部材を使用した例について説明する。第1
図(a)において、21は活性金属からなる薄膜層で、
この薄膜層21はTiを銅部材2a、2bのそれぞれの
一面に一連に真空蒸着させることによって形成され、そ
の厚み寸法が0.1 μm〜3μmに設定されている。
FIG. 1(a) and FIG. 1(b) are diagrams for explaining the method of manufacturing a ceramic-metal composite substrate of the present invention, and FIG. 1(a) is a cross-section of each member showing the state before joining, Same figure (b)
FIG. 3 is a cross-sectional view of each member showing the state after joining. Fig. 2 is a characteristic diagram showing the relationship between beer strength and temperature between the copper member and the restraining member according to the present invention, and Fig. 3 shows the relation between beer strength and temperature between the ceramic base material and the copper member according to the present invention. Characteristic diagram,
FIG. 4 is a characteristic diagram showing the relationship between beer strength and film thickness of the ceramic base material and copper member according to the present invention. In these figures, the same or equivalent members as those explained in FIG. 5 are given the same reference numerals, and detailed explanation will be omitted here. In this example, an example in which an alumina member is used as the ceramic base material 1 will be described. 1st
In figure (a), 21 is a thin film layer made of active metal,
This thin film layer 21 is formed by sequentially vacuum-depositing Ti on one surface of each of the copper members 2a and 2b, and its thickness is set to 0.1 μm to 3 μm.

次に、本発明に係るセラミック−金属複合基板の製造方
法について説明する。
Next, a method for manufacturing a ceramic-metal composite substrate according to the present invention will be described.

先ず、セラミック基材1と銅部材2a 、2bとの接合
性を確保するためにセラミック基材1あるいは銅部材2
a 、2bの接合面6a 、6bに厚み0.1μm〜3
μmの活性金属をプリコートすることによって薄膜層2
1を形成する。プリコートはセラミック基材1あるいは
銅部材2a 、2bのいずれに形成してもよいが、生産
性を考慮すると、ロール状に巻いた銅部材用の板材を使
用して連続蒸着を実施することが可能であるという利点
から、銅部材2a 、2b側に形成するのが望ましい。
First, in order to ensure the bondability between the ceramic base material 1 and the copper members 2a and 2b, the ceramic base material 1 or the copper member 2 is
A, 2b joint surfaces 6a, 6b have a thickness of 0.1 μm to 3
Thin film layer 2 by precoating with μm of active metal.
form 1. The precoat may be formed on either the ceramic base material 1 or the copper members 2a and 2b, but in consideration of productivity, it is possible to carry out continuous vapor deposition using a rolled plate material for the copper member. Because of this advantage, it is desirable to form them on the copper members 2a and 2b side.

本実施例では薄膜層21を銅部材2a 、2b側に形成
した例について説明する。
In this embodiment, an example in which the thin film layer 21 is formed on the copper members 2a and 2b side will be explained.

次いで、銅部材2a、 2b、 2cおよび拘束部材3
を例えば化学エツチング法によって所定の形状に成形す
る。以上の工程によって形成されたセラミ・ツク基材1
.tIi4部材2a、2b、2cおよび拘束部材3とを
第1図(a)に示すように、カーボン製の治具上に所定
の順序で重ね、装着させる。この際、薄膜121がセラ
ミック基材lに対接されるように銅部材2a。
Next, the copper members 2a, 2b, 2c and the restraining member 3
is formed into a predetermined shape by, for example, chemical etching. Ceramic base material 1 formed by the above steps
.. As shown in FIG. 1(a), the tIi4 members 2a, 2b, 2c and the restraining member 3 are stacked and mounted in a predetermined order on a carbon jig. At this time, the copper member 2a is placed so that the thin film 121 is brought into contact with the ceramic base material l.

2bをセラミック基材1の両側に装着させる。そして、
この治具ごと各部材を接合装置としての真空ホットプレ
ス装置に装着させる。接合装置としては、雰囲気形成、
加圧、加熱が可能な装置であれば、前記ホットプレス装
置以外の装置でもよい。
2b are attached to both sides of the ceramic base material 1. and,
This jig and each member are mounted on a vacuum hot press device as a bonding device. As a bonding device, atmosphere formation,
Any device other than the hot press device may be used as long as it is capable of pressurizing and heating.

接合装置内に装着された後、接合装置内にアルゴンガス
や窒素ガスあるいは10−’Torr程度の真空等活性
金属と反応されにくい雰囲気を形成し、次いで、第1図
(b)に示すように、加圧、加熱を行なう。なお、同図
中矢印Aは加圧方向を示す。この際、加圧時期は加熱前
であっても、また、ある−定の温度に達してからでもよ
く、要はセラミック基材1.銅部材2a、 2b、 2
cおよび拘束部材3が反応する温度において加圧するこ
とによって密着化が図れればよい。また、加熱速度も接
合性にとって大きな影響はなく、例えば、50℃/wi
n程度でよい。
After being installed in the bonding device, an atmosphere that does not easily react with the active metal, such as argon gas, nitrogen gas, or a vacuum of about 10-'Torr, is created in the bonding device, and then as shown in FIG. 1(b), , pressurize, and heat. Note that arrow A in the figure indicates the direction of pressurization. At this time, the pressure may be applied before heating or after reaching a certain temperature. Copper members 2a, 2b, 2
It is sufficient if the adhesion can be achieved by applying pressure at a temperature at which c and the restraining member 3 react. In addition, the heating rate does not have a large effect on bonding properties, for example, 50°C/wi
About n is sufficient.

なお、被接合物が所定の温度に達してからは接合に十分
なだけの反応時間(接合時間)が必要である。接合終了
後、セラミック基材1に割れが生じない程度の、例えば
、10℃/s+inの冷却速度をもって冷却させること
によりセラミック−金属複合基板が得られる。
Note that after the objects to be bonded reach a predetermined temperature, a sufficient reaction time (bonding time) is required for bonding. After the bonding is completed, a ceramic-metal composite substrate is obtained by cooling the ceramic substrate 1 at a cooling rate of, for example, 10° C./s+in, which does not cause cracks.

次に、−括接合を行なう際の接合時の現象について詳述
する。
Next, we will discuss in detail the phenomena during welding when performing -bracket welding.

先ず、銅部材2a 、2cと拘束部材3との接合に関し
て第2図によって説明する。以下、銅部材2a 。
First, the connection between the copper members 2a, 2c and the restraining member 3 will be explained with reference to FIG. Below, the copper member 2a.

2cを銅によって形成し、拘束部材3をモリブデンによ
って形成した場合を例に説明する。第2図は横軸に温度
、縦軸にビール強度をとり、両者の関係を示した特性図
である。同図中Aは加圧力が1MPaの場合を示し、B
は加圧力が20MPaの場合を示す。なお、銅とモリブ
デンとの接合は固相状態の接合となるため、接合時間が
比較的長く必要であり、接合時間は従来の固相接合(拡
散接合)と同程度の20分としている。第2図に示すよ
うに、接合強度は900℃前後から安定した値が得られ
ている。加圧力は1MPa以下では密着化が不十分とな
り、安定した強度は得られない。また、20Mpa以上
の加圧力では強度の向上効果が得られないばかりか、銅
部材2a 、2cが変形されてしまい実用上価値が減少
されてしまう、一方、銅部材2a。
An example will be described in which the restraining member 2c is made of copper and the restraining member 3 is made of molybdenum. FIG. 2 is a characteristic diagram showing the relationship between temperature on the horizontal axis and beer strength on the vertical axis. In the figure, A indicates the case where the pressurizing force is 1 MPa, and B
indicates the case where the applied pressure is 20 MPa. Note that since copper and molybdenum are bonded in a solid state, a relatively long bonding time is required, and the bonding time is set to 20 minutes, which is about the same as conventional solid phase bonding (diffusion bonding). As shown in FIG. 2, stable values of bonding strength were obtained from around 900°C. If the pressing force is less than 1 MPa, adhesion will be insufficient and stable strength will not be obtained. Moreover, if the pressing force is 20 MPa or more, not only will the strength not be improved, but the copper members 2a and 2c will be deformed and their practical value will be reduced.On the other hand, the copper member 2a.

2bとセラミック基材1とを確実に接合させるためには
接合面6a 、6bにおける反応速度を前記固相接合の
速度と合致させる必要がある。
In order to reliably bond 2b and ceramic base material 1, it is necessary to match the reaction rate at the bonding surfaces 6a and 6b with the rate of solid phase bonding.

第3図は第2図と同様に横軸に温度、縦軸にビール強度
をとり、銅とアルミナの関係を示した特性図で、活性金
属としてはチタンを例にとっている。同図においてA、
Bは加圧力がIMPaの場合を示し、C,Dは加圧力が
20MPaの場合を示す。また、実線は薄膜層21の厚
みが1μmの場合を示し、破線は同じく3μmの場合を
示す。銅とチタンの共晶温度は約880℃であり、銅お
よびチタンの融点より低く、共晶組成はこれ以上の温度
となると溶融を開始する。従来より利用されているろう
付は法は、数種類の材料が混合され被接合物の融点より
低い融点を有する厚み数十μm程度の厚いろう材が使用
され、ろう材が融点以上の温度に加熱されると急激に溶
融されるが、本発明においては活性金属からなる薄膜層
21と銅部材2a +2bとが反応して初めて溶融層が
形成されるため、この薄膜層21の厚みを変えて形成す
ることによって溶融層の量を変えることができ、反応速
度も制御することができる。第3図に示すように、チタ
ンからなる薄膜層21の膜厚を1μmとした場合は、加
圧力の差によるビール強度の差が膜厚を3μmとした場
合よりも大きい。すなわち、膜厚が薄い場合には、反応
により形成される溶融層も薄(、アルミナとの密着・接
合を促すために加圧力が必要であることを示している。
Similar to FIG. 2, FIG. 3 is a characteristic diagram showing the relationship between copper and alumina, with temperature on the horizontal axis and beer strength on the vertical axis, using titanium as an example of the active metal. In the same figure, A,
B shows the case where the pressing force is IMPa, and C and D show the case where the pressing force is 20 MPa. Further, the solid line indicates the case where the thickness of the thin film layer 21 is 1 μm, and the broken line indicates the case where the thickness is 3 μm. The eutectic temperature of copper and titanium is approximately 880° C., which is lower than the melting points of copper and titanium, and the eutectic composition starts to melt at temperatures above this temperature. The conventional brazing method uses a thick brazing filler metal with a thickness of several tens of micrometers, which is a mixture of several materials and has a melting point lower than the melting point of the objects to be joined, and the brazing filler metal is heated to a temperature above its melting point. However, in the present invention, a molten layer is formed only after the thin film layer 21 made of active metal and the copper members 2a + 2b react, so the thickness of this thin film layer 21 is changed. By doing so, the amount of the molten layer can be varied and the reaction rate can also be controlled. As shown in FIG. 3, when the thickness of the thin film layer 21 made of titanium is 1 μm, the difference in beer strength due to the difference in pressing force is larger than when the thickness is 3 μm. That is, when the film thickness is thin, the molten layer formed by the reaction is also thin (this indicates that pressure is required to promote adhesion and bonding with alumina).

また、膜厚が厚くなると、流動され易い溶融層が増加さ
れるため加圧力の影響が少なく、低温でも密着・接合が
容易に行われるが、溶融層を厚くし過ぎると溶融層が排
出されるという問題が生じる。第4図は横軸に膜厚、縦
軸にビール強度をとり、接合時間の影響を示した特性図
で、同図において実線は接合時間が60分の場合を示し
、破線は接合時間が20分の場合を示す。なお、両者と
も加圧力は10MPaとした。
In addition, as the film thickness increases, the molten layer that is more likely to flow increases, so it is less affected by pressure and adhesion and bonding can be easily achieved even at low temperatures, but if the molten layer is made too thick, the molten layer will be expelled. A problem arises. Figure 4 is a characteristic diagram showing the influence of bonding time, with film thickness on the horizontal axis and beer strength on the vertical axis. The case of minutes is shown. In addition, the pressing force was 10 MPa in both cases.

同図によれば、膜厚が薄いと接合に時間が多くかかるこ
とが明確に示されている。膜厚が0.1 μm以下であ
ると、銅が変形される限界まで加圧力を増大させても反
応が遅く、工業的価値が低い。逆に、膜厚が3μm以上
であると反応は速く進行するが、前記固相接合させるた
めの最低圧力であるIMPaでも溶融層が排出されてし
まうため、電気回路として使用しにくくなる。
The figure clearly shows that the thinner the film, the longer it takes to bond. If the film thickness is 0.1 μm or less, even if the pressing force is increased to the limit where copper is deformed, the reaction will be slow and the industrial value will be low. On the other hand, if the film thickness is 3 μm or more, the reaction proceeds quickly, but the molten layer is discharged even at IMPa, which is the lowest pressure for solid phase bonding, making it difficult to use as an electric circuit.

以上のことから銅部材2a 、2bとセラミック基材1
との接合は、薄11!JIi21の厚みを0.1 μm
〜3μmとし、接合加圧力を1〜20MPa、接合温度
を薄膜21と銅部材2a 、2bとによって形成される
合金の融点以上で銅部材2a +2bの融点未満の範囲
と設定することにより、銅部材2a 、2cと拘束部材
3との接合と同時に行なうことができる。
From the above, the copper members 2a, 2b and the ceramic base material 1
The connection with is thin 11! The thickness of JIi21 is 0.1 μm.
~3 μm, the bonding pressure is set to 1 to 20 MPa, and the bonding temperature is set to a range that is higher than the melting point of the alloy formed by the thin film 21 and the copper members 2a and 2b and lower than the melting point of the copper members 2a + 2b. This can be done at the same time as joining 2a, 2c and the restraining member 3.

なお、前記実施例ではプリコートする薄膜層21をチタ
ンによって形成した例を示したが、チタンに限定される
ことなく、例えば、ジルコニウム等の他の活性金属でも
よく、また、その成分は一種類に限定されることはなく
、例えば銀等を同時にプリコートしてもよい。但し、銅
部材2a 、2cと拘束部材3との接合強度は900℃
程度以上の温度で安定した値が得られるため、銅部材2
a 、2bと薄膜層21によって形成される合金の融点
は排出現象等を抑制するために900℃に近いことが望
ましい。
In the above embodiment, an example was shown in which the thin film layer 21 to be precoated was formed of titanium, but it is not limited to titanium, and other active metals such as zirconium may be used, and its components may be of one type. There is no limitation, and for example, silver or the like may be precoated at the same time. However, the bonding strength between the copper members 2a and 2c and the restraining member 3 is 900°C.
Since stable values can be obtained at temperatures higher than
It is desirable that the melting point of the alloy formed by a, 2b and the thin film layer 21 be close to 900° C. in order to suppress discharge phenomena.

また、前記実施例では活性金属のプリコートを真空蒸着
により形成した例を示したが、これに限るものではなく
、薄膜層21が0.1/Jm〜3μmの厚みをもって形
成されれば、どのような方法を採っても本発明と同様の
効果が得られる。
Further, in the above embodiment, an example was shown in which the active metal pre-coat was formed by vacuum evaporation, but the present invention is not limited to this. Even if other methods are used, the same effects as the present invention can be obtained.

さらにまた、前記実施例ではセラミック基材1としてア
ルミナ部材、拘束部材3としてモリブデン部材を使用し
た例を示したが、アルミナの代わりに窒化アルミニウム
部材等別の絶縁基板材料を使用しても、活性金属を用い
ることによって本発明と同様の効果が得られ、モリブデ
ン部材の代わりに、銅部材と略同程度の接合特性を有す
るタングステン部材を利用することもできる。
Furthermore, in the above embodiment, an alumina member is used as the ceramic base material 1, and a molybdenum member is used as the restraining member 3. The same effect as the present invention can be obtained by using metal, and instead of the molybdenum member, a tungsten member having substantially the same bonding properties as a copper member can also be used.

本実施例で使用したセラミック部材、銅部材および拘束
部材はそれぞれ純度が100%の同一材料によって形成
させる必要もな(、接合性が大幅に変化されない限り上
記成分を主成分とする合金物質、例えば、銅合金、モリ
ブデン合金であってもよい。
The ceramic member, copper member, and restraint member used in this example do not need to be made of the same material with 100% purity (for example, unless the bonding properties are significantly changed, an alloy material mainly composed of the above components, etc.) is not required. , copper alloy, or molybdenum alloy.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係るセラミック金属複合基
板の製造方法は、セラミック板の両面に厚み0.1μm
〜3μmの活性金属からなる薄膜層を介して第一および
第二の銅部材を密接させると共に前記両銅部材のうち一
方の銅部材の未対接面に熱緩衝用金属板を介して半導体
素子接合用銅部材を密接させてなる基板部材を、前記第
一および第二の銅部材と活性金属とによって形成される
合金の融点から第一および第二の銅部材の融点未満の温
度に前記活性金属と反応されにくい雰囲気中で加熱させ
、かつ厚み方向に加圧するため、複合基板の各構成部材
間の接合を一括に行なうことができる。したがって、信
頼性の高い接合部を有するセラミック−金属複合基板を
安価に得ることができる。
As explained above, in the method for manufacturing a ceramic-metal composite substrate according to the present invention, a thickness of 0.1 μm is formed on both sides of the ceramic plate.
The first and second copper members are brought into close contact with each other through a thin film layer made of active metal with a thickness of ~3 μm, and a semiconductor element is placed on the uncontacted surface of one of the two copper members through a thermal buffer metal plate. A substrate member formed by bringing bonding copper members into close contact with each other is heated to a temperature below the melting point of the first and second copper members from the melting point of the alloy formed by the first and second copper members and the active metal. Since it is heated in an atmosphere that does not easily react with metal and pressurized in the thickness direction, each component of the composite substrate can be bonded all at once. Therefore, a ceramic-metal composite substrate having a highly reliable joint can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は本発明のセラミック金属複
合基板の製造方法を説明するための図で、同図(a)は
接合前の状態を示す各部材の断面、同図(b)は接合後
の状態を示す各部材の断面図である。第2図は本発明に
係る銅部材と拘束部材とのビール強度と温度の関係を示
す特性図、第3図は本発明に係るセラミック基材と銅部
材とのビール強度と温度の関係を示す特性図、第4図は
本発明に係るセラミック基材と銅部材とのビール強度と
膜厚の関係を示す特性図、第5図(a)〜(c)は従来
のセラミック−金属複合基板の製造方法を説明するため
の図で、同図(a)は拘束部材と銅部材とが接合される
状態を示す断面図、同図(b)はセラミック基材と銅部
材とが接合される状態を示す断面図、同図(c)は接合
終了後の状態を示す断面図である。第6図は従来のセラ
ミック−金属複合基板に半導体素子を接合させた状態を
示す斜視図、第7図(a)および(b)は従来の製造方
法によって一括接合させた際の各部材の状態を示す断面
図で、同図(a)は加圧させた場合、同図(b)は加圧
させない場合を示す。 l・・・・セラミック基材、2a、 2b、 2c・・
・・銅部材、3・・・・拘束部材、21・・・・薄膜層
FIGS. 1(a) and 1(b) are diagrams for explaining the method of manufacturing a ceramic-metal composite substrate of the present invention, in which FIG. ) is a sectional view of each member showing the state after joining. Fig. 2 is a characteristic diagram showing the relationship between beer strength and temperature between the copper member and the restraining member according to the present invention, and Fig. 3 shows the relation between beer strength and temperature between the ceramic base material and the copper member according to the present invention. A characteristic diagram, FIG. 4 is a characteristic diagram showing the relationship between beer strength and film thickness of the ceramic base material and copper member according to the present invention, and FIGS. 5(a) to (c) are characteristic diagrams of the conventional ceramic-metal composite substrate. These are diagrams for explaining the manufacturing method. Figure (a) is a cross-sectional view showing a state where a restraining member and a copper member are joined, and Figure (b) is a diagram showing a state where a ceramic base material and a copper member are joined. FIG. 3(c) is a sectional view showing the state after the bonding is completed. Fig. 6 is a perspective view showing the state in which semiconductor elements are bonded to a conventional ceramic-metal composite substrate, and Fig. 7 (a) and (b) are the states of each member when they are collectively bonded by the conventional manufacturing method. FIG. 3A is a cross-sectional view showing the case where pressure is applied, and FIG. l...ceramic base material, 2a, 2b, 2c...
...Copper member, 3...Restraint member, 21...Thin film layer.

Claims (1)

【特許請求の範囲】[Claims] セラミック板の両面に厚み0.1μm〜3μmの活性金
属からなる薄膜層を介して第一および第二の銅部材を密
接させると共に前記両銅部材のうち一方の銅部材の未対
接面に熱緩衝用金属板を介して半導体素子接合用銅部材
を密接させてなる基板部材を、前記第一および第二の銅
部材と活性金属とによって形成される合金の融点から第
一および第二の銅部材の融点未満の温度に前記活性金属
と反応されにくい雰囲気中で加熱させ、かつ厚み方向に
加圧することを特徴とするセラミック−金属複合基板の
製造方法。
The first and second copper members are brought into close contact with each other through a thin film layer made of active metal with a thickness of 0.1 μm to 3 μm on both sides of the ceramic plate, and heat is applied to the non-contact surface of one of the copper members. A substrate member in which a copper member for bonding semiconductor elements is brought into close contact with each other via a buffering metal plate is heated by heating the first and second copper members from the melting point of the alloy formed by the first and second copper members and the active metal. A method for producing a ceramic-metal composite substrate, which comprises heating the member to a temperature below the melting point of the member in an atmosphere that does not easily react with the active metal, and applying pressure in the thickness direction.
JP63332253A 1988-07-22 1988-12-28 Manufacture of ceramic-metal composite board Pending JPH02177463A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63332253A JPH02177463A (en) 1988-12-28 1988-12-28 Manufacture of ceramic-metal composite board
KR1019890010225A KR920007021B1 (en) 1988-07-22 1989-07-19 Ceramic-metal composite
DE3924225A DE3924225C2 (en) 1988-07-22 1989-07-21 Method for producing a ceramic-metal composite substrate and ceramic-metal composite substrate
DE3943683A DE3943683C2 (en) 1988-07-22 1989-07-21 Ceramic metal composite substrate
US07/675,063 US5153077A (en) 1988-07-22 1991-03-26 Ceramic-metal composite substrate
US07/789,074 US5251803A (en) 1988-07-22 1991-11-07 Ceramic-metal composite substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332253A JPH02177463A (en) 1988-12-28 1988-12-28 Manufacture of ceramic-metal composite board

Publications (1)

Publication Number Publication Date
JPH02177463A true JPH02177463A (en) 1990-07-10

Family

ID=18252885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332253A Pending JPH02177463A (en) 1988-07-22 1988-12-28 Manufacture of ceramic-metal composite board

Country Status (1)

Country Link
JP (1) JPH02177463A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335983A (en) * 1999-05-28 2000-12-05 Denki Kagaku Kogyo Kk Production of conjugate
JP2012001430A (en) * 2010-06-14 2012-01-05 Ixys Semiconductor Gmbh Method for manufacturing double-sided metallized ceramic substrate
CN105196640A (en) * 2015-09-16 2015-12-30 武汉钢铁(集团)公司 Preparation method for metal composite plate
JP2020072207A (en) * 2018-07-31 2020-05-07 國家中山科學研究院 Method of increasing adhesive strength between ceramic mounting plate and thick film circuit
JP2020145335A (en) * 2019-03-07 2020-09-10 株式会社Fjコンポジット Manufacturing method of circuit substrate
US10784182B2 (en) 2015-12-28 2020-09-22 Ngk Insulators, Ltd. Bonded substrate and method for manufacturing bonded substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335983A (en) * 1999-05-28 2000-12-05 Denki Kagaku Kogyo Kk Production of conjugate
JP2012001430A (en) * 2010-06-14 2012-01-05 Ixys Semiconductor Gmbh Method for manufacturing double-sided metallized ceramic substrate
CN105196640A (en) * 2015-09-16 2015-12-30 武汉钢铁(集团)公司 Preparation method for metal composite plate
US10784182B2 (en) 2015-12-28 2020-09-22 Ngk Insulators, Ltd. Bonded substrate and method for manufacturing bonded substrate
JP2020072207A (en) * 2018-07-31 2020-05-07 國家中山科學研究院 Method of increasing adhesive strength between ceramic mounting plate and thick film circuit
JP2020145335A (en) * 2019-03-07 2020-09-10 株式会社Fjコンポジット Manufacturing method of circuit substrate
WO2020179893A1 (en) * 2019-03-07 2020-09-10 株式会社Fjコンポジット Circuit board production method

Similar Documents

Publication Publication Date Title
US4518112A (en) Process for controlled braze joining of electronic packaging elements
US5153077A (en) Ceramic-metal composite substrate
JPS61154764A (en) Method of combining metal with structural member and combining material
JPH0249267B2 (en)
JPS61204953A (en) Hermetic sealing cover and manufacture thereof
KR20010031563A (en) Component and method for production thereof
US5251803A (en) Ceramic-metal composite substrate and method for producing the same
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
JPH08255973A (en) Ceramic circuit board
JPH02177463A (en) Manufacture of ceramic-metal composite board
JP3733708B2 (en) Method for joining silicon wafers using aluminum
WO2005086218A1 (en) Process for producing semiconductor module
JPH11307596A (en) Low temperature bonding method
JP2000068396A (en) Cover for hermetic seal
JP2551155B2 (en) Ceramic-metal joining brazing material, ceramic-metal composite substrate and method of manufacturing the same
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JPS61181136A (en) Die bonding
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JP7379813B2 (en) Joined body and method for manufacturing the joined body
JP2972106B2 (en) Bonding method of lead to substrate
JPH0555638A (en) Connecting method for thermoelctric converter
JPS6334963A (en) Method of manufacturing ceramic substrate for semiconductor device and clad material therefor
JP4333634B2 (en) Silicon wafer bonding method
JPH0521626A (en) Manufacturing method of metal lid
JPH06344131A (en) Method for joining part to semiconductor heat radiating base plate