KR920007021B1 - Ceramic-metal composite - Google Patents

Ceramic-metal composite Download PDF

Info

Publication number
KR920007021B1
KR920007021B1 KR1019890010225A KR890010225A KR920007021B1 KR 920007021 B1 KR920007021 B1 KR 920007021B1 KR 1019890010225 A KR1019890010225 A KR 1019890010225A KR 890010225 A KR890010225 A KR 890010225A KR 920007021 B1 KR920007021 B1 KR 920007021B1
Authority
KR
South Korea
Prior art keywords
copper
ceramic
semiconductor
substrate
molybdenum
Prior art date
Application number
KR1019890010225A
Other languages
Korean (ko)
Other versions
KR900009505A (en
Inventor
요시히로 가시바
마사루 오까다
Original Assignee
미쓰비시전기주식회사
시끼 모리야
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP63184033A external-priority patent/JP2738840B2/en
Priority claimed from JP63332253A external-priority patent/JPH02177463A/en
Application filed by 미쓰비시전기주식회사, 시끼 모리야 filed Critical 미쓰비시전기주식회사
Publication of KR900009505A publication Critical patent/KR900009505A/en
Application granted granted Critical
Publication of KR920007021B1 publication Critical patent/KR920007021B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

내용 없음.No content.

Description

세라믹-금속복합기판Ceramic-Metal Composite Board

제1도는 이 발명의 한 실시예에 의한 세라믹-금속복합기판을 표시하는 단면도.1 is a cross-sectional view showing a ceramic-metal composite substrate according to one embodiment of the present invention.

제2도는 이 발명에 의한 기판의 내열사이클과 구속부재의 두께의 관계에 대한 한 예를 표시하는 특성도.2 is a characteristic diagram showing an example of the relationship between the heat resistance cycle of the substrate and the thickness of the restraining member according to the present invention.

제3도는 이 발명의 다른 실시예를 표시하는 단면도.3 is a cross-sectional view showing another embodiment of the present invention.

제4도는 이 발명의 또다른 실시예를 표시하는 단면도.4 is a sectional view showing yet another embodiment of the present invention.

제5도는 종래의 세라믹-금속복합기판을 표시하는 단면도.5 is a cross-sectional view showing a conventional ceramic-metal composite substrate.

제6도는 일반적으로 세라믹-금속복합기판의 한 실시상태를 표시하는 사시도.6 is a perspective view generally showing one embodiment of a ceramic-metal composite substrate.

제7도는 종래의 세라믹-금속복합기판에 발생한 균열을 표시하는 단면도이다.7 is a cross-sectional view showing a crack occurring in a conventional ceramic-metal composite substrate.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 세라믹기재 2A, 2C, 2D : 동 또는 동합금부재1: Ceramic base material 2A, 2C, 2D: Copper or copper alloy member

3 : 구속부재3: restraining member

이 발명은 반도체의 실장에 사용되는 세라믹과 금속의 접합에 의하여 제조되는 세라믹-금속복합기판에 관한 것으로 특히 반도체나 세라믹의 파괴를 방지하는 기판구조에, 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-metal composite substrate manufactured by bonding a ceramic and a metal used for mounting a semiconductor, and more particularly, to a substrate structure which prevents breakage of a semiconductor or ceramic.

제5도는 일본특개소 60-155580호 공보에 개시된 종래의 세라믹기재와 금속부재가 직접 접합된 반도체실장용의 복합기판을 나타내는 단면도이며, 도면에서, 1은 세라믹기재의 알루미나부재, 2A, 2B는 알루미나부재(1)에 형성된 금속부재로서 전기회로를 형성하기 위한 예컨대 터프피치(tough pitch)전해동판, 7A, 7B는 알루미나부재(1)와 동판(2A), (2B)을 직접 접합한 접합면이다.5 is a cross-sectional view showing a composite substrate for semiconductor mounting in which a conventional ceramic substrate disclosed in Japanese Patent Laid-Open No. 60-155580 and a metal member are directly bonded. In the drawing, 1 is an alumina member of ceramic substrate, 2A and 2B. For example, a tough pitch electrolytic copper plate for forming an electric circuit as a metal member formed on the alumina member 1, 7A and 7B is a joint surface in which the alumina member 1 is directly bonded to the copper plates 2A and 2B. to be.

제6도는 종래의 반도체실장용기판을 사용한 한 실시상태를 표시하는 사시도이며, 반도체를 실장한 모듈구조의 한 예를 표시한다.6 is a perspective view showing an embodiment using a conventional semiconductor mounting substrate, and shows an example of a module structure in which a semiconductor is mounted.

도면에서, 4는 반도체, 5는 반도체(4)를 동판(2b)에 실장하기 위한 땜납, 6a, 6b는 각각 반도체(4)를 동작시키기 위하여 동판(2b)과 전기적으로 절연된 별도의 동판(2a), (2c)에 접속한 예컨대 알루미늄제의 본딩와이어이다.In the figure, 4 is a semiconductor, 5 is solder for mounting the semiconductor 4 to the copper plate 2b, and 6a and 6b are separate copper plates electrically insulated from the copper plate 2b to operate the semiconductor 4, respectively. Bonding wire made of aluminum connected to 2a) and (2c), for example.

상기과 같이 구성된 모듈의 반도체 특히 대전력반도체를 동작시키면, 반도체(4)는 대량의 열을 발생한다. 또 당연한 일이지만 상기 모듈은 반복사용된다.When the semiconductor, especially the high power semiconductor, of the module configured as described above is operated, the semiconductor 4 generates a large amount of heat. Of course, the module is used repeatedly.

따라서 반도체실장용기판으로서는 다음과 같은 것이 요구된다. 즉 반도체(4)에서 발생하는 열을 충분히 방산시킬 수 있을것, 반도체(4)의 동작·비동작에 수반하는 열사이클에 의하여 발생하는 기판의 열팽창·수축으로 인하여 반도체(4)를 파괴하지 않을것, 또한 이 열사이클에 의하여 알루미나부재 자체가 파괴되지 않아야 된다.Therefore, as the semiconductor mounting substrate, the following is required. That is, the heat generated in the semiconductor 4 can be sufficiently dissipated, and the semiconductor 4 should not be destroyed due to thermal expansion and contraction of the substrate generated by the thermal cycle accompanying the operation and non-operation of the semiconductor 4. In addition, the alumina member itself should not be destroyed by this heat cycle.

그런데 상기와같은 기판구조에서는 세라믹기재(1)는 일반적으로 열팽창계수가 작고 상기 실시예의 알루미나세라믹에서는 7×10-6이므로 열팽창계수가 17×10-6의 동판(2A), (2B)과 직접 접합한 경우 열팽창계수차에 의하여 접합면(7A), (7B)의 근방에 응력이 발생하였다. 이와 같은 접합체가 열사이클을 받으면 상기 접합면(7A), (7B) 근방에는 큰 응력이 반복 발생하고 단단하나 취약한 알루미나부재(1)는 그 응력에 견디지 못하고 균열이 발생하며 결국에는 분리된다는 문제점이 있었다. 제7도의 단면도에 전형적인 균열형상을 표시한다. 8A, 8B, 8C, 8D가 균열이다. 이와 같이 균열(8A)∼(8D)은 응력이 집중하는 세라믹 부재(1)와 동판(2A), (2B)의 각부에 발생하였다. 또 동판(2A), (2B)은 알루미나부재(1)에 경고하게 접합되어 있으므로 그 열팽창계수는 동단체(銅單體)의 경우에 비하여 작게는 되어 있지만 열팽창 계수가 5×10-6인 작은 실리콘반도체(4)를 예컨대 납땜으로 실장하면 반도체(4)에도 균열이 발생한다는 문제점이 있었다. 이들 문제점은 반도체(4)의 동작전류를 상승시키기 위하여 동판(2A), (2B)을 두껍게한 경우 또는 대면적의 반도체(4)를 실장할때에 현저하게 나타난다.However, in the substrate structure as described above, the ceramic substrate 1 generally has a small coefficient of thermal expansion and 7 × 10 −6 in the alumina ceramic of the above embodiment, so that the thermal expansion coefficient of the ceramic substrate 1 is 17 × 10 −6, which is directly connected to the copper plates 2A and 2B. In the case of joining, stress was generated in the vicinity of the joining surfaces 7A and 7B due to thermal expansion coefficient aberration. When such a bonded body is subjected to a thermal cycle, large stresses are repeatedly generated in the vicinity of the bonding surfaces 7A and 7B, and the hard but vulnerable alumina member 1 does not withstand the stress, cracks, and eventually is separated. there was. A typical crack shape is shown in the cross section of FIG. 8A, 8B, 8C and 8D are cracks. In this way, cracks 8A to 8D occurred in the respective portions of the ceramic member 1 and copper plates 2A and 2B where stress is concentrated. In addition, since the copper plates 2A and 2B are bonded to the alumina member 1 in a wary manner, their coefficients of thermal expansion are smaller than those of the single element, but they have a small coefficient of thermal expansion of 5 × 10 −6 . When the silicon semiconductor 4 is mounted by soldering, for example, there is a problem that cracks occur in the semiconductor 4. These problems are remarkable when the copper plates 2A and 2B are thickened in order to increase the operating current of the semiconductor 4 or when the large-area semiconductor 4 is mounted.

상기 균열의 발생은 알루미나부재(1)를 두껍게 함으로써 약간의 개선은 되지만 반도체(4)로부터의 방열특성은 알루미나부재(1)의 열저항이 높기 때문에 열화된다.The cracks are slightly improved by thickening the alumina member 1, but the heat dissipation characteristics from the semiconductor 4 deteriorate because of high thermal resistance of the alumina member 1.

예를들면 0.4㎜의 판두께의 알루미나부재(1)를 0.63㎜로 증가시킴으로써 -40℃∼150℃의 내열사이클 특성은 1.2배 정도 향상되나 반대로 열의 방산을 방해하는 열저항치는 약 1.6배로 높아져 반도체(4)의 기능이나 세라믹부재(1)의 비용등을 고려한 경우 효율적인 방법이 아니다.For example, by increasing the 0.4 mm thick alumina member 1 to 0.63 mm, the heat resistance cycle characteristic of -40 ° C to 150 ° C is improved by 1.2 times, whereas the heat resistance that prevents heat dissipation is increased to about 1.6 times. Considering the function of (4) or the cost of the ceramic member 1, the method is not efficient.

따라서, 이들 문제를 피하기 위하여는 반도체(4)의 파워나 형상을 제한하는 동판(2A), (2B)을 얇고 폭넓게 하여서 실장밀도를 내리는등의 대책이 필요하며 모듈의 고기능화, 고밀도화에 있어서 큰 장애로 되어 있었다.Therefore, in order to avoid these problems, measures such as lowering the mounting density by thinning and widening the copper plates 2A and 2B that limit the power and shape of the semiconductor 4 are required. It was supposed to be.

이 발명은 상기와 같은 문제점을 해소하기 위하여 안출된 것으로서, 과혹한 사용환경하에서도 예컨대 반도체에서 발생하는 열을 방출시키고 또한 세라믹부재등이 파괴되지 않는 신뢰성 높은 세라믹-금속복합기판을 얻는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object of the present invention is to obtain a highly reliable ceramic-metal composite substrate that emits heat generated from a semiconductor, for example, even under severe use conditions, and does not destroy a ceramic member. do.

이 발명의 세라믹-금속복합기판은 세라믹기재에 동 또는 동합금부재를 접합하여서 형성하는 보합기판에 있어서, 몰리브덴, 텅스텐 및 그 합금중 어느 하나로 되고 상기 동 또는 동합금부재의 두께의 1/20∼1/3 두께인 구속부재를 상기 동 또는 동합금부재에 접속하여 설치한 것이다.The ceramic-metal composite substrate of the present invention is a hybrid substrate formed by joining a copper or copper alloy member to a ceramic substrate, wherein the molybdenum, tungsten, or an alloy thereof is formed, and 1/20 to 1 / of the thickness of the copper or copper alloy member. A three-thick restraint member is connected to the copper or copper alloy member.

이 발명에서는 동 또는 동합금부재의 두께의 1/20∼1/3 두께의 구속부재를 설치함으로써 기판의 열전도나 전기전도특성을 확보하는 동시에 세라믹기재나 실장되는 반도체에 가해지는 응력을 저감시켜 세라믹기재나 반도체의 파괴를 방지한다.In the present invention, by providing a restraining member having a thickness of 1/20 to 1/3 of the thickness of the copper or copper alloy member, the thermal or electrical conductivity of the substrate is ensured, and the stress applied to the ceramic substrate or the semiconductor to be mounted is reduced. Prevent the destruction of semiconductors.

다음은 이 발명의 한 실시예를 도면에 의하여 설명한다.The following describes one embodiment of this invention with reference to the drawings.

제1도는 이 발명의 한 실시예의 세라믹-금속복합기판을 표시하는 단면도이며, 도면에서, 1은 세라믹소재로서 이 경우는 평판상의 알루미나부재, 2A는 알루미나부재(1)의 한면에 직접 접합된 제1동부재, 2B는 알루미나부재(1)의 다른면에 직접 접합된 제2동부재, 2C는 반도체의 대용량화를 위하여 알루미나부재(1)의 한면쪽에 추가한 제3동부재이며, 반도체(도시생략)는 상기 종래의 기판과 마찬가지로 이 제3동부재(2C)상에 실장된다. 3은 구속부재로 이 경우는 제1, 제3동부재(2A), (2C)간에 접합된 제1, 제3동부재(2A), (2C)의 총두께의 1/20∼1/3두께의 몰리브덴부재이다.1 is a cross-sectional view showing a ceramic-metal composite substrate of one embodiment of the present invention, in which 1 is a ceramic material, in which case a flat alumina member and 2A are directly bonded to one side of the alumina member 1. The first copper member, 2B is a second copper member directly bonded to the other side of the alumina member 1, 2C is a third copper member added to one side of the alumina member 1 for the purpose of increasing the capacity of the semiconductor, and the semiconductor (not shown) ) Is mounted on this third copper member 2C as in the conventional substrate. 3 is a restraining member. In this case, 1/20 to 1/3 of the total thickness of the first and third moving members 2A and 2C joined between the first and third moving members 2A and 2C. It is a molybdenum member of thickness.

상기와 같이 구성된 기판이 온도환경의 변화나 반도체동작에 의하여 열사이클을 받으면 종래의 기판과 마찬가지로 열팽창계수의 차에 의하여 열팽창계수가 큰 동부재(2A), (2B), (2C)는 알루미나부재(1)보다 더 팽창·수축하려고 한다. 그러나 이 실시예에서는 팽창계수가 낮고 고강도이며 열저항이 낮으며 또한 다른 부재와 일체화할 수 있는 재료인 얇은 몰리브덴부재(3)를 구속부재로서 추가한 구조로 하고 있다. 몰리브덴은 열팽창계수가 약 5×10-6(1℃)이며 동의 약 17×10-6(1℃)와의 차는 크고 가열냉각중에는 양자의 접합계면에는 큰 응력이 발생하나 몰리브덴의 내력 특히 얇은 압연재의 내력은 50㎏/㎟이상이기 때문에 동(내력 약 10㎏/㎟)쪽이 바로 소성변형하고 몰리브덴이 구속부재(3)로서 작용하여 알루미나부재(1)로 큰 응력이 가해지는 것을 방지할 수 있다. 그리고 몰리브덴과 동의 접합계면에 가해지는 응력은 종래예 이상이 되지만 양자가 연성의 금속재료이므로 균열은 발생하지 않는다. 몰리브덴부재(3)를 기판구성재료로서 경고하게 일체화하기 위하여는 예를들면 미리 몰리브덴부재(3)와 제1, 제3동부재(2A), (2C)를 폭발압점등의 방법으로 접합한 후 상기 복합재료를 알루미나부재(1)에 일본특개소 60-155580호 공보에 개시된 예를들면 DBC법등을 사용하여 접합하는 방법이 이용된다.When the substrate configured as described above receives a thermal cycle due to a change in temperature environment or a semiconductor operation, the eastern materials 2A, 2B, and 2C having a large thermal expansion coefficient due to the difference in thermal expansion coefficient, as in the conventional substrate, are alumina members. We try to expand and contract more than (1). However, in this embodiment, a thin molybdenum member 3, which is a material having a low expansion coefficient, high strength, low heat resistance, and which can be integrated with other members, is added as a restraining member. Molybdenum has a coefficient of thermal expansion of about 5 × 10 -6 (1 ° C) and a large difference from about 17 × 10 -6 (1 ° C) of copper, and large stresses occur at the joint interface between molybdenum and heat Since the yield strength of is 50㎏ / ㎠ or more, the copper (bearing force about 10㎏ / ㎠) side is plastically deformed and molybdenum acts as a restraining member (3) to prevent a large stress from being applied to the alumina member (1). have. The stress applied to the molybdenum and copper interface is more than the conventional example, but since both are soft metal materials, no cracking occurs. In order to integrally integrate the molybdenum member 3 as a substrate constituent material, for example, the molybdenum member 3 and the first and third copper members 2A and 2C are previously joined by a method such as explosion pressure point. A method of joining the composite material to the alumina member 1 using, for example, the DBC method or the like disclosed in Japanese Unexamined Patent Publication No. 60-155580 is used.

또 기판구조는 종래예와 같이 세라믹기재(1)를 중심으로하는 대칭구조로 하여도 세라믹기재 10등의 균일에 대한 효과가 나타난다. 그런데 새로이 구속부재를 설치하는데 따른 부품점수의 증가, 재료비용의 증가 및 열저항의 증가등의 문제가 발생하게 된다.In addition, even when the substrate structure has a symmetrical structure centered on the ceramic substrate 1 as in the conventional example, the effect on the uniformity of the ceramic substrate 10 and the like is exhibited. However, there are problems such as an increase in the number of parts, an increase in material cost, and an increase in heat resistance due to the installation of a new restraint member.

한편, 반도체의 대용량화에 따라서 체적을 증가시킬 필요가 있는 것은 반도체측의 동부재이다. 반도체측의 동부재두께는 총체적으로 0.3㎜이상이 필요하며 5㎜이하가 적당하고, 0.3㎜∼1㎜의 범위가 바람직하다.On the other hand, it is the eastern material on the semiconductor side that needs to increase in volume as the capacity of the semiconductor is increased. The thickness of the eastern material on the semiconductor side is generally 0.3 mm or more, preferably 5 mm or less, and preferably in the range of 0.3 mm to 1 mm.

따라서 이 실시예에서는 반도체를 실장하는 쪽만 제1, 제3동부재(2A), (2C) 및 몰리브덴부재(3)를 적층한 구조로 하고 반대측은 제1도와 같이 제2동부재(2B)단체의 구조로 하고 있다. 이 결과 성능이 좋고 또한 간단하며 염가인 구조로 되어 있다. 그리고 제2동부재(2B)는 후공정의 납땜을 위하여, 또 제2동부재(2B)가 없는 경우는 균형을 잡기 위하여 몰리브덴부재(3)를 약간 두껍게 하여야 되므로 설치되어 있다. 두께는 알루미나부재(1)의 균열발생방지를 위하여 0.3㎜이하가 적당하고 몰리브덴부재(3)의 두께 등의 걸맞게 선정할 필요가 있다.Therefore, in this embodiment, only the semiconductor mounting side has a structure in which the first, third copper members 2A, 2C, and molybdenum member 3 are laminated, and the second side is the second copper member 2B as shown in FIG. It is made of structure. The result is a good, simple, and inexpensive structure. The second copper member 2B is provided because the molybdenum member 3 needs to be slightly thickened for the purpose of soldering in the post-process, and to balance the second copper member 2B in the absence of the second copper member 2B. The thickness is preferably 0.3 mm or less to prevent cracking of the alumina member 1 and suitably selected such as the thickness of the molybdenum member 3.

예를들면 반도체측의 제1, 제3동부재(2A), (2C)의 두께를 0.3㎜, 몰리브덴부재(3)의 두께를 0.1㎜로 한 경우 반대측의 제2동부재(2B)는 0.1㎜의 두께가 적당하다.For example, when the thickness of the first and third copper members 2A and 2C on the semiconductor side is 0.3 mm and the thickness of the molybdenum member 3 is 0.1 mm, the second copper member 2B on the opposite side is 0.1 mm. A thickness of mm is suitable.

이와 같은 구조의 복합기판으로 함으로써 기판의 가열·냉각중에도 굽힘이 발생하지않는 기판을 얻을 수 있다.By using the composite substrate having such a structure, it is possible to obtain a substrate which does not bend during heating and cooling of the substrate.

이상과 같이 실시예에 의하면 간단한 구조로 과혹한 사용환경하에서도 반도체에서 발생하는 열을 방산하고 알루미나부재(1)등이 파괴되지 않는 신뢰성높고 대용량 파워트랜지스터 모듈용 기판에 적용할 수 있는 세라믹-금속복합기판을 얻게 된다.As described above, according to the embodiment, the ceramic-metal can be applied to a reliable and high-capacity power transistor module substrate that dissipates heat generated in a semiconductor even in a harsh use environment and does not destroy the alumina member 1. You get a composite board.

제2도는 이 발명에 의한 몰리브덴부재(3)의 두께와 내열사이클회수의 관계에 대한 한예를 표시하는 특성도이다. 횡축에 몰리브덴부재(3)의 두께를 종축에 내열사이클회수(알루미나부재(1)가 균열되기까지의 열사이클회수)를 나타낸다.2 is a characteristic diagram showing an example of the relationship between the thickness of the molybdenum member 3 and the heat resistance cycle recovery according to the present invention. The thickness of the molybdenum member 3 is shown on the horizontal axis, and the heat cycle recovery (heat cycle recovery until the alumina member 1 is cracked) is indicated on the vertical axis.

대칭구조의 세라믹-금속복합기판의 열사이클시험결과를 표시하는 것으로 몰리브덴부재(3)가 개재되는 2층으로된 동부재의 총두께는 1.0㎜, 알루미나부재(1)의 두께는 0.63㎜, 열사이클조건은 -40℃∼150℃이다.The thermal cycle test results of the symmetrical ceramic-metal composite substrate are shown. The total thickness of the two-layer eastern material with molybdenum member 3 is 1.0 mm, the thickness of the alumina member 1 is 0.63 mm, and the thermal cycle. Conditions are -40 degreeC-150 degreeC.

제2도에서 몰리브덴부재(3)의 두께를 0.05㎜이상으로 함으로써 내열사이클 특성이 급격하게 개선되는 것을 알수 있다.In FIG. 2, it can be seen that the heat resistance cycle characteristics are drastically improved by making the thickness of the molybdenum member 3 be 0.05 mm or more.

이와 같이 몰리브덴·동간에서 발생하는 응력을 동의 변형으로 흡수시킴으로써 동·알루미나간의 응력을 저하시키고, 동부재의 두께의 1/10 정도의 얇은 몰리브덴부재(3)를 추가하는 것만으로 내열사이클특성을 10배이상 향상시킬 수 있음이 실증되었다. 이 효과는 동부재의 두께가 1.0㎜일때에만 성립되는 것이 아님은 말할 것도 없다. 몰리브덴부재(3)의 두께로서는 동부재의 총두께의 1/20∼1/3이 적당하며 이 범위내에서 몰리브덴두께를 변화시킴으로써 내열 사이클특성, 열저항, 기판비용을 변화시킬 수 있다. 1/20이하의 두께의 몰리브덴부재(3)에 의하면 내열사이클특성의 개선이 충분하지 않고, 1/3 이상의 두께의 몰리브덴부재(3)에 의하면 열저항이 높아지는 결과 반도체로부터의 열방산이 불충분하므로 고기능화에 지장이 있고 또 기판비용도 고가로 되므로 공업용 이용 가치가 저하한다. 또 반대측에 배치하는 제2동부재(2B)의 두께는 0.3㎜ 이상에서는 굽힘이 발생하므로 문제가 있다.In this way, the stress generated in molybdenum and copper is absorbed by copper strain to reduce the stress between copper and alumina, and the heat resistance cycle characteristics are increased by 10 times only by adding a thin molybdenum member 3 of about 1/10 of the thickness of the eastern material. It has been demonstrated that the above improvement can be achieved. Needless to say, this effect is not realized only when the thickness of the eastern material is 1.0 mm. As the thickness of the molybdenum member 3, 1/20 to 1/3 of the total thickness of the eastern material is suitable, and by changing the molybdenum thickness within this range, the heat cycle characteristics, heat resistance, and substrate cost can be changed. The molybdenum member 3 having a thickness of 1/20 or less is not enough to improve the heat cycle characteristics, and the molybdenum member 3 having a thickness of 1/3 or more results in high heat resistance, resulting in insufficient heat dissipation from the semiconductor. In addition, the use of the substrate is expensive, and the cost of industrial use is lowered. Moreover, since the bending of the thickness of the 2nd copper member 2B arrange | positioned on the opposite side is 0.3 mm or more, there exists a problem.

그리고 세라믹과 동을 접합한 구조재에 있어서, 열팽창 차에 의한 내부응력을 완화시키는 방법으로서 양자의 접합면 사이에 예를들면 알루미늄, 동등의 비교적 연한 금속층, 니오브 혹은 니오브/몰리브덴, 니오브/텅스텐의 적층 중간층을 수 ㎜설치하는 방법이 제안되어 있다(일본잡지 : 금속 1986년 5월호 45∼50쪽).In the structural material in which ceramic and copper are bonded, a method of alleviating internal stress due to thermal expansion difference is, for example, lamination of aluminum, an equivalent relatively soft metal layer, niobium or niobium / molybdenum, niobium / tungsten between the bonding surfaces of both. A method of installing a few millimeters of the intermediate layer has been proposed (Japanese Magazine: Metal May 1986, pages 45-50).

그런데 반도체 실장용 기판으로서는 상술한 바와같이 수 ㎜가 되는 중간층을 설치하는 것은 열방산성이 대단히 약화되고 대용량 고기능화할 수 없으므로 문제가 된다.However, as the above-mentioned substrate for mounting a semiconductor, providing an intermediate layer of several millimeters as described above is problematic because heat dissipation is greatly weakened and a large capacity cannot be improved.

또 상기 실시예에서는 몰리브덴부재(3)를 동일 두께의 제1, 제2동부재(2A), (2C)사이에 설치하였으나 제1, 제2동부재(2A), (2C)의 두께가 달라도 같은 효과를 기대할 수 있다. 또한 제1, 제2동부재(2A), (2C)를 일체화하여도 몰리브덴부재(3)를 단일 동부재의 표면 혹은 동부재와 알루미나부재 사이에 배치하여도 같은 효과를 기대할 수 있따.In the above embodiment, the molybdenum member 3 is installed between the first and second copper members 2A and 2C having the same thickness, but the thicknesses of the first and second copper members 2A and 2C are different. The same effect can be expected. In addition, even when the first and second copper members 2A and 2C are integrated, the same effect can be expected when the molybdenum member 3 is disposed on the surface of a single eastern member or between the eastern member and the alumina member.

제3도는 몰리브덴부재(3)를 제4동부재(2D)의 표면에 배치한 경우 이 발명의 다른 실시예를 표시하는 단면도이다.3 is a cross-sectional view showing another embodiment of the present invention when the molybdenum member 3 is disposed on the surface of the fourth copper member 2D.

이 실시예에 있어서는 열팽창계수가 작은 몰리브덴부재(3)가 표면에 있기 때문에 이 위에 실장하는 반도체(도시생략)와의 열팽창의 매칭(matching)이 더욱 양호하게 된다.In this embodiment, since the molybdenum member 3 having a small thermal expansion coefficient is on the surface, matching of thermal expansion with a semiconductor (not shown) mounted thereon becomes more favorable.

제4도는 몰리브덴부재(3)를 제4동부재(2D)와 알루미나부재(1)간에 배치한 경우의 이 발명의 또다른 실시예를 표시하는 단면도이다.4 is a cross-sectional view showing still another embodiment of the present invention in the case where the molybdenum member 3 is disposed between the fourth copper member 2D and the alumina member 1.

이 실시예에 있어서는 몰리브덴부재(3)가 알루미나부재(1)와 접하고 있기때문에 알루미나부재(1)의 균열이 더욱 방지할 수 있게 된다. 또 몰리브덴부재는 1층일 필요는 없으며 요는 그 총두께가 동부재의 1/20∼1/3이 되도록 하고 반도체의 특성, 세라믹부재의 특성에 따라 배치하면 된다.In this embodiment, since the molybdenum member 3 is in contact with the alumina member 1, cracking of the alumina member 1 can be further prevented. The molybdenum member does not need to be one layer, and the urine may be arranged so that the total thickness thereof is 1/20 to 1/3 of the eastern material, and arranged according to the characteristics of the semiconductor and the ceramic member.

또한 세라믹-금속복합기판의 접합방법은 상술한 바와같이 예를들면 폭발압접, DBC법등의 종래 방법을 이용할 수 있으나, 이 발명의 기판은 각각 공고히 접합되고 서로 구속하는 것이 필요하므로 융점이 낮고 연성의 예컨대 공정(eutectic) 땜납과 같은 연성납에 의한 접합방법은 피하는 것이 좋다.The ceramic-metal composite substrate can be bonded by using conventional methods such as explosion welding, DBC, etc. as described above. However, since the substrates of the present invention need to be firmly bonded and constrained to each other, the melting point is low and ductile. For example, a method of joining by soft solder such as eutectic solder is preferably avoided.

그리고 또한 상기 실시예에서는 세라믹기재(1)로서 알루미나부재, 구속부재(3)로서 몰리브덴부재를 이용하는 경우를 기술하였으나, 알루미나부재 대신에 질화알루미늄부재나 실리콘카바이드부재등의 열팽창계수가 작고 취약성의 절연기판재료에 있어서도 동부재의 1/20∼1/3 범위내의 얇은 구속부재에 의하여 같은 효과를 기대할 수 있다. 또 몰리브덴부재 대신에 대략 같은 정도의 열팽창계수, 내력, 열전도율을 가진 텅스텐부재를 이용할 수도 있다. 또 세라믹부재, 동부재, 구속부재는 각각 100% 동일재료로 만들 필요도 없고 특히 동부재, 구속부재는 열팽창계수, 전기전도도, 내력 등의 물성치가 대폭 변화하지 않는한 상기 성분을 주성분으로하는 합성물질 예를들면 동합금, 몰리브덴 합금, 텅스텐합금이라도 된다.In addition, in the above embodiment, the case where the alumina member is used as the ceramic substrate 1 and the molybdenum member is used as the restraining member 3 is described. However, instead of the alumina member, the thermal expansion coefficient of the aluminum nitride member or the silicon carbide member is small and the insulation is fragile. Also in the substrate material, the same effect can be expected by the thin restraint member within the range of 1/20 to 1/3 of the eastern material. Instead of the molybdenum member, a tungsten member having approximately the same coefficient of thermal expansion, bearing strength, and thermal conductivity may be used. In addition, the ceramic member, the eastern member, and the restraining member do not have to be made of the same material as 100%, respectively. In particular, the eastern member and the restraining member have a synthetic composition containing the above components as long as the physical properties such as coefficient of thermal expansion, electrical conductivity, and strength do not change significantly. Substances such as copper alloy, molybdenum alloy and tungsten alloy may be used.

이상과 같이 이 발명에 의하면 세라믹기재에 동 또는 동합금부재를 접합하여서 형성하는 복합기판에 있어서, 몰리브덴, 텅스텐 및 그 합금중 어느 하나로 되고 상기 동 또는 동합금부재의 두께의 1/20∼1/3 두께의 구속부재를 상기 동 또는 동합금부재에 접속하여서 설치함으로써 취약성 재료인 세라믹기재에 발생하는 열응력을 저하시키고, 과혹한 사용환경하에서도 세라믹기재나 실장되는 반도체의 파괴를 방지할 수 있는 세라믹-금속복합기판을 얻는 효과가 있다.As described above, according to the present invention, in a composite substrate formed by joining copper or copper alloy members to a ceramic substrate, one of molybdenum, tungsten, and alloys thereof is 1/20 to 1/3 thickness of the thickness of the copper or copper alloy members. By connecting the restraining member to the copper or copper alloy member to reduce the thermal stress generated in the ceramic substrate, which is a fragile material, and to prevent the destruction of the ceramic substrate or the semiconductor to be mounted even under severe use environments. It is effective to obtain a composite substrate.

Claims (1)

세라믹기재에 동 또는 동합금부재를 접합하여서 형성하는 복합기판에 있어서, 몰리브덴, 텅스텐 및 그 합금중 어느 하나로 되고 상기 동 또는 동합금부재의 두께의 1/20∼1/3 두께의 구속부재를 상기 동 또는 동합금부재에 접속하여서 설치한 것을 특징으로하는 세라믹-금속복합기판.A composite substrate formed by joining copper or copper alloy members to a ceramic substrate, the composite substrate comprising any one of molybdenum, tungsten, and alloys thereof, and a restraining member having a thickness of 1/20 to 1/3 of the thickness of the copper or copper alloy member. A ceramic-metal composite board, which is installed in connection with a copper alloy member.
KR1019890010225A 1988-07-22 1989-07-19 Ceramic-metal composite KR920007021B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63-184033 1988-07-22
JP63184033A JP2738840B2 (en) 1988-07-22 1988-07-22 Ceramic-metal composite substrate
JP63-332253 1988-12-28
JP63332253A JPH02177463A (en) 1988-12-28 1988-12-28 Manufacture of ceramic-metal composite board

Publications (2)

Publication Number Publication Date
KR900009505A KR900009505A (en) 1990-07-04
KR920007021B1 true KR920007021B1 (en) 1992-08-24

Family

ID=26502241

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890010225A KR920007021B1 (en) 1988-07-22 1989-07-19 Ceramic-metal composite

Country Status (1)

Country Link
KR (1) KR920007021B1 (en)

Also Published As

Publication number Publication date
KR900009505A (en) 1990-07-04

Similar Documents

Publication Publication Date Title
US7538436B2 (en) Press pack power semiconductor module
JP4967447B2 (en) Power semiconductor module
EP0989606B1 (en) Power module substrate, method of producing the same, and semiconductor device including the substrate
US4340902A (en) Semiconductor device
US5508560A (en) Semiconductor module
US6380622B1 (en) Electric apparatus having a contact intermediary member and method for manufacturing the same
EP0111709A2 (en) Telescoping thermal conduction element for cooling semiconductor devices
US8222741B2 (en) Semiconductor module with current connection element
KR100705868B1 (en) Semiconductor device and the method of manufacturing the same
JPS6038867B2 (en) Isolated semiconductor device
CN109599384B (en) Semiconductor device with a plurality of transistors
CN109155305B (en) Power semiconductor device
WO2016061306A1 (en) Low cost high strength surface mount package
US20220302072A1 (en) Semiconductor module comprising a semiconductor and comprising a shaped metal body that is electrically contacted by the semiconductor
JP2002359328A (en) Semiconductor device
JP2019134018A (en) Semiconductor device
KR920007021B1 (en) Ceramic-metal composite
US8018064B2 (en) Arrangement including a semiconductor device and a connecting element
JPH0680873B2 (en) Circuit board
JPH10144967A (en) Thermoelectric element module for cooling
JP2738840B2 (en) Ceramic-metal composite substrate
EP4187595A1 (en) Terminal element or bus bar, and power semiconductor module arrangement comprising a terminal element or bus bar
JP2000323647A (en) Module semiconductor device and manufacture thereof
KR100354462B1 (en) Module type semiconductor device
JPH03218054A (en) Substrate for heater element

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000816

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee