JPH0626713A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0626713A
JPH0626713A JP4184174A JP18417492A JPH0626713A JP H0626713 A JPH0626713 A JP H0626713A JP 4184174 A JP4184174 A JP 4184174A JP 18417492 A JP18417492 A JP 18417492A JP H0626713 A JPH0626713 A JP H0626713A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
compressor
detected
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4184174A
Other languages
Japanese (ja)
Inventor
Miki Fujita
田 幹 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4184174A priority Critical patent/JPH0626713A/en
Publication of JPH0626713A publication Critical patent/JPH0626713A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To reduce noise by controlling rotational acceleration in response to overheating of an evaporator so that a compressor is started according to the state of the evaporator. CONSTITUTION:An air conditioner includes a first temperature detector 6 for detecting temperature at an outlet side of a refrigerant piping of an evaporator 4, and a second temperature detector 7 for detecting temperature at a middle portion of the refrigerant piping of the evaporator. It further includes a control part 5 which controls variations of acceleration which is changed to revolutions of the compressor determined in response to overheating detected on the basis of a detected temperature difference between the first and second temperature detectors 7 and 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機の加速度を蒸発
器の状態に適合させて制御するようにした空気調和機に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner adapted to control the acceleration of a compressor by adjusting it to the condition of an evaporator.

【0002】[0002]

【従来の技術】従来、圧縮機の回転数をインバータによ
って制御する空気調和機では、圧縮機を起動してからそ
の回転数が目標の回転数に達するまで、加速度を一定に
するように制御している。他方、圧縮機の吐出ガスの温
度を検出するセンサを設け、圧縮機の吐出温度に応じて
回転加速度を増減する制御も行なえるようにした空気調
和機も知られている。
2. Description of the Related Art Conventionally, in an air conditioner in which the number of revolutions of a compressor is controlled by an inverter, the acceleration is controlled to be constant until the number of revolutions reaches a target number of revolutions after starting the compressor. ing. On the other hand, there is also known an air conditioner that is provided with a sensor that detects the temperature of the gas discharged from the compressor and that can also perform control to increase or decrease the rotational acceleration according to the discharge temperature of the compressor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、圧縮機
の回転加速度を一定に制御するときには、冷房開始時の
騒音が大きいことが問題となっている。これは、圧縮機
起動時に蒸発器の内部で発生する混相流によるものと考
えられている。同様に、吐出温度に応じて回転加速度を
制御する場合でも、蒸発器の状態とは無関係に制御する
ので、騒音が発生するのを防ぐことができない。このた
め、従来から起動時の騒音を抑制しながら圧縮機の回転
数を上げて静粛な運転を開始できるようにすることが課
題とされている。
However, when the rotational acceleration of the compressor is controlled to be constant, there is a problem that the noise at the start of cooling is large. It is considered that this is due to the multiphase flow generated inside the evaporator when the compressor is started. Similarly, even when the rotational acceleration is controlled according to the discharge temperature, since it is controlled regardless of the state of the evaporator, it is not possible to prevent noise from being generated. For this reason, it has been a conventional problem to increase the rotational speed of the compressor while suppressing noise at the time of startup so that quiet operation can be started.

【0004】そこで、本発明の目的は、上記従来技術の
有する問題点を解消し、圧縮機の回転加速度を蒸発器の
状態に適合させながら制御することで、騒音の低減を図
ることのできる空気調和機を提供することにある。
Therefore, an object of the present invention is to eliminate the problems of the above-mentioned prior art and to control the rotational acceleration of the compressor while adjusting it to the state of the evaporator, thereby reducing noise. To provide a harmony machine.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、室内温度検出器と、この室内温度検出器
で検出された室温と、設定温度との差に応じて圧縮機の
回転数を決定し、圧縮機の回転を制御するようにした空
気調和機において、蒸発器の冷媒配管出口側の温度を検
出する第1の温度検出器と、前記蒸発器の冷媒配管中間
部分の温度を検出する第2の温度検出器と、前記第2の
温度検出器と第1の温度検出器との検出温度差に基づい
て検出された過熱度に応じて、前記決定された圧縮器の
回転数へ移行する加速度を増減制御するようにした制御
部を設けて構成したものである。
In order to achieve the above-mentioned object, the present invention provides an indoor temperature detector, and a compressor of a compressor according to a difference between a room temperature detected by the indoor temperature detector and a preset temperature. In an air conditioner that determines the number of revolutions and controls the rotation of the compressor, a first temperature detector that detects the temperature on the refrigerant pipe outlet side of the evaporator and an intermediate portion of the refrigerant pipe of the evaporator. A second temperature detector for detecting a temperature, and a degree of superheat detected based on a detected temperature difference between the second temperature detector and the first temperature detector The control unit is configured to increase or decrease the acceleration that shifts to the rotation speed.

【0006】[0006]

【作用】本発明によれば、蒸発器の冷媒配管出口側およ
び中間部分の温度が検出され、その温度差から蒸発器の
過熱度が検出される。圧縮機を起動してその回転数が設
定温度と室温との温度差から決定された回転数に移行す
るまでは、この過熱度の程度に応じて回転加速度が増減
されるので、起動時における蒸発器の状態に適した圧縮
機の回転数制御が可能となる。
According to the present invention, the temperatures of the refrigerant pipe outlet side and the intermediate portion of the evaporator are detected, and the degree of superheat of the evaporator is detected from the temperature difference. Until the number of revolutions of the compressor starts to reach the number of revolutions determined by the temperature difference between the set temperature and room temperature, the rotational acceleration is increased or decreased according to the degree of superheat. It is possible to control the rotation speed of the compressor suitable for the condition of the compressor.

【0007】[0007]

【実施例】以下、本発明による空気調和機の一実施例に
ついて添付の図面を参照して説明する。図1は、本実施
例による空気調和機の冷凍サイクルを表した模式図であ
る。圧縮機1の吐出側に接続される凝縮機2は膨張弁3
を介して蒸発器4に接続され、この蒸発器4の出口側が
圧縮機1の吸い込み側に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an air conditioner according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing a refrigeration cycle of an air conditioner according to this embodiment. The condenser 2 connected to the discharge side of the compressor 1 has an expansion valve 3
Is connected to the evaporator 4 via the, and the outlet side of the evaporator 4 is connected to the suction side of the compressor 1.

【0008】圧縮機1は、インバータ(図示せず)の周
波数の変化により回転数が変化する圧縮機で、全般の動
作は制御部5により制御されるようになっている。
The compressor 1 is a compressor whose rotational speed changes with a change in frequency of an inverter (not shown), and the overall operation is controlled by the controller 5.

【0009】この制御部5には、蒸発器4の冷媒配管出
口側の温度Teを検出する第1温度センサ6および蒸発
器4の冷媒配管中間部分に取り付けられてこの部分の温
度Tcを検出する第2温度センサ7および室内機の空気
吸い込み口に配置されて室内温度を検出する室温センサ
8とが接続されるとともに、操作盤などに組込まれた温
度設定器9からの設定信号を受信するようになってい
る。このような制御部5は、図2に示す流れ図のプログ
ラムに従って動作し、室温Taと設定温度Trとの差に
応じて圧縮機1の目標回転数Nを決定するとともに、
第1温度センサ6、第2温度センサによって検出した検
出温度差に基づいて蒸発器4の過熱度を検出し、圧縮機
1の回転数が目標回転数Nに移行するまで加速度を蒸
発器4の過熱度に応じた値に増減する制御を実行する。
The control unit 5 is attached to a first temperature sensor 6 for detecting the temperature Te on the refrigerant pipe outlet side of the evaporator 4 and an intermediate portion of the refrigerant pipe of the evaporator 4 for detecting the temperature Tc of this portion. The second temperature sensor 7 and the room temperature sensor 8 arranged at the air inlet of the indoor unit for detecting the indoor temperature are connected, and the setting signal from the temperature setting device 9 incorporated in the operation panel or the like is received. It has become. Such a control unit 5 operates according to the program of the flow chart shown in FIG. 2, determines the target rotation speed N 1 of the compressor 1 according to the difference between the room temperature Ta and the set temperature Tr, and
The superheat degree of the evaporator 4 is detected based on the detected temperature difference detected by the first temperature sensor 6 and the second temperature sensor, and the acceleration is increased until the rotation speed of the compressor 1 shifts to the target rotation speed N 1. The control is executed to increase or decrease the value according to the degree of superheat of.

【0010】ここで、図3は、圧縮機1の目標回転数N
を決定する手法を説明するグラフで、温度設定器9を
介して設定した設定温度Trと室温センサ8によって検
出した室温Taとの温度差ΔTaの大きさならびにその
正負に応じて回転数を設定するようにしている。この実
施例では、設定温度Trと室温Taとの温度差が等しい
とき (ΔTa=0)の場合に予め決まっている回転数
を基準として、温度差ΔTaの値に応じて段階的に回転
数を増減させている。例えば、設定温度Trと室温Ta
との温度差ΔTaが+1度と+2度の間にあるときに
は、基準回転数に対応する周波数よりも+2だけ大きな
周波数に設定することで、目標回転数Nを基準回転数
よりも大きな回転数に修正している。
Here, FIG. 3 shows the target rotational speed N of the compressor 1.
In the graph for explaining the method for determining 1 , the number of revolutions is set according to the magnitude of the temperature difference ΔTa between the set temperature Tr set via the temperature setter 9 and the room temperature Ta detected by the room temperature sensor 8 and its sign. I am trying to do it. In this embodiment, when the temperature difference between the set temperature Tr and the room temperature Ta is equal (ΔTa = 0), the rotation speed determined in advance is used as a reference, and the rotation speed is changed stepwise according to the value of the temperature difference ΔTa. It is increasing or decreasing. For example, the set temperature Tr and the room temperature Ta
When the temperature difference ΔTa between and is between +1 degree and +2 degrees, by setting the frequency by +2 higher than the frequency corresponding to the reference rotation speed, the target rotation speed N 1 is higher than the reference rotation speed. Has been fixed.

【0011】次に、図4は、本実施例における圧縮機1
の回転加速度の設定についてのグラフである。図中、Δ
Tは第2温度センサ7による蒸発器4の冷媒配管中間部
分の検出温度Tcと第1温度センサ6による冷媒配管出
口側の検出温度Teとの検出温度差であり、この検出温
度差ΔTの値に応じて予め加速度について三段階のゾー
ンを設定している。ここでは、蒸発器4の容量等の条件
により定まる検出温度差ΔTの所定の値dと、両検出温
度Tc、Teが等しい場合(ΔT=0)とを境界として
ゾーンI、II、III を設定している。そして、どのゾー
ンに検出温度差ΔTがあるかによって、蒸発器4の過熱
度を求め、この過熱度に応じて加速度を増減するように
なっている。すなわち、ゾーンIに検出温度差ΔTがあ
るときは、蒸発器4の過熱度が低い場合で圧縮機1の回
転加速度を初期設定加速度αからこれよりも大きい所定
の値に設定し直し、ゾーンIIに検出温度差ΔTがあると
きは蒸発器の過熱度が高い場合であって、逆に圧縮機1
の回転加速度を初期設定加速度αよりも小さい値に設定
する。なお、検出温度差ΔTがゾーンIII に入っている
場合は、初期設定加速度αを維持するようにしている。
Next, FIG. 4 shows the compressor 1 in this embodiment.
5 is a graph for setting the rotational acceleration of the. In the figure, Δ
T is the temperature difference between the temperature Tc detected by the second temperature sensor 7 in the middle portion of the refrigerant pipe of the evaporator 4 and the temperature Te detected by the first temperature sensor 6 on the refrigerant pipe outlet side, and the value of the detected temperature difference ΔT. According to the above, three zones of acceleration are set in advance. Here, zones I, II, and III are set with the predetermined value d of the detected temperature difference ΔT determined by the conditions such as the capacity of the evaporator 4 and the case where both detected temperatures Tc and Te are equal (ΔT = 0) as boundaries. is doing. Then, the degree of superheat of the evaporator 4 is obtained depending on which zone has the detected temperature difference ΔT, and the acceleration is increased or decreased according to the degree of superheat. That is, when the detected temperature difference ΔT exists in the zone I, the rotational acceleration of the compressor 1 is reset from the initial set acceleration α to a predetermined value larger than this when the superheat degree of the evaporator 4 is low, and the zone II is set. When there is a detected temperature difference ΔT in the case where the degree of superheat of the evaporator is high, conversely, the compressor 1
The rotational acceleration of is set to a value smaller than the initial setting acceleration α. When the detected temperature difference ΔT is in the zone III, the initial acceleration α is maintained.

【0012】以下、図2のフローチャートを参照して、
制御部5の動作について説明する。
Below, referring to the flow chart of FIG.
The operation of the control unit 5 will be described.

【0013】まず、制御部5は、温度設定器9から送信
される設定温度Trを受信するとともに(ステップS
1)、吸い込み口の室温センサ8の出力に基づき室温T
aを検出する(ステップS2)。次に、この設定温度T
rと室温Taとの温度差ΔTa=Tr−Taを算出し、
上述した図3に基づき温度差ΔTaに応じて目標回転数
を決定する(ステップS3)。
First, the control unit 5 receives the set temperature Tr transmitted from the temperature setter 9 (step S
1) Based on the output of the room temperature sensor 8 at the suction port, the room temperature T
a is detected (step S2). Next, this set temperature T
The temperature difference ΔTa = Tr−Ta between r and room temperature Ta is calculated,
Based on FIG. 3 described above, the target rotation speed N 1 is determined according to the temperature difference ΔTa (step S3).

【0014】圧縮機1を起動する信号を送信して加速を
開始すると(ステップS4)、まず、回転数Nがステッ
プS3で決定した目標回転数N1に達したかどうかを判
断する。 起動当初は回転数は目標回転数まで達してい
ないので、次いで、第2温度センサ7の出力から蒸発器
4の冷媒配管中間部分の温度Tcと、第1温度センサ6
の出力から蒸発器4の冷媒配管出口側の温度Teを検出
し(ステップS6,ステップS7)、上述した図4のど
のゾーンに検出温度差ΔTがあるか、つまり蒸発器4の
過熱度によって、圧縮機1の加速度を初期設定加速度α
から増加(ステップS9)、減少(ステップS10)あ
るいは維持する(ステップS11)。
When a signal for activating the compressor 1 is transmitted to start acceleration (step S4), first, it is determined whether or not the rotation speed N has reached the target rotation speed N1 determined in step S3. Since the number of revolutions does not reach the target number of revolutions at the beginning of startup, the output of the second temperature sensor 7 is then used to determine the temperature Tc of the middle portion of the refrigerant pipe of the evaporator 4 and the first temperature sensor 6.
The temperature Te on the outlet side of the refrigerant pipe of the evaporator 4 is detected from the output (step S6, step S7), and in which zone in FIG. 4 the detected temperature difference ΔT exists, that is, depending on the degree of superheat of the evaporator 4, The acceleration of the compressor 1 is set to the initial acceleration α
From (step S9), decrease (step S10) or maintain (step S11).

【0015】その後は、ステップS4に戻って、圧縮機
1の回転数が実際に目標回転数Nになるまで以上の制
御を継続する。
After that, returning to step S4, the above control is continued until the rotation speed of the compressor 1 actually reaches the target rotation speed N 1 .

【0016】このように、蒸発器4の冷媒配管中間部分
の温度Tcと出口側の温度Teとの検出温度差ΔT、す
なわち過熱度に応じて、目標回転数Nに移行するまで
の加速度を増加させたり、減少させたりしているので、
例えば、圧縮機起動時における蒸発器4の状態がその冷
媒配管の中間部分の温度が高く、逆に出口側の温度が低
く、つまり蒸発器4の過熱度が低い場合には、検出温度
差ΔTはゾーンIに該当する。この場合は、所定の割合
で加速度αを増加させて目標回転数N1まで圧縮機の回
転数を上げていくことになる。そして、過熱度が低い状
態に蒸発器4がある場合には、以上のような回転数制御
を行なっても騒音の発生などの問題は生じない。
As described above, the acceleration until the target rotational speed N 1 is reached according to the detected temperature difference ΔT between the temperature Tc of the refrigerant pipe intermediate portion of the evaporator 4 and the outlet side temperature Te, that is, the degree of superheat. I'm increasing or decreasing it,
For example, when the temperature of the middle portion of the refrigerant pipe of the evaporator 4 at the time of starting the compressor is high and the temperature on the outlet side is low, that is, when the degree of superheat of the evaporator 4 is low, the detected temperature difference ΔT Corresponds to zone I. In this case, the acceleration α is increased at a predetermined rate to increase the rotation speed of the compressor to the target rotation speed N1. When the evaporator 4 is in a state where the degree of superheat is low, the problem such as the generation of noise does not occur even if the above rotation speed control is performed.

【0017】一方、これとは逆に、蒸発器4の状態が冷
媒配管の中間部分の温度Tcが低く、出口側の温度Te
が高いような過熱度が高い状態にある場合には、検出温
度差ΔTは、図4におけるゾーンIIに入っているので、
ステップS8からステップS10に進んで、加速度αを
下げて圧縮機1を運転する。従って、蒸発器4が過熱状
態の高いままで急激に圧縮機1の回転を上げるような操
作にならないので、蒸発機4の内部の混相流による騒音
発生を防止することができる。
On the other hand, conversely, in the state of the evaporator 4, the temperature Tc of the middle portion of the refrigerant pipe is low, and the temperature Te on the outlet side is Te.
When the superheat degree is high such that the temperature difference is high, the detected temperature difference ΔT is in the zone II in FIG.
From step S8 to step S10, the acceleration α is reduced and the compressor 1 is operated. Therefore, since the operation of rapidly increasing the rotation of the compressor 1 while the evaporator 4 is still in a high overheated state is not performed, noise generation due to the multiphase flow inside the evaporator 4 can be prevented.

【0018】[0018]

【発明の効果】以上の説明から明らかなように、本発明
によれば、蒸発器の冷媒配管の出口側および中間部の温
度を検出するとともに、その検出温度差に基づいて蒸発
器の過熱度を検出し、この過熱度に応じて設定温度と検
出室温との温度差から決定された回転数に移行するまで
の加速度を増減する制御を行なうので、圧縮機起動時に
おける蒸発器の状態に適した回転数制御が可能となり、
冷暖房開始直後の混相流に起因する騒音を低減して静粛
な運転をすることができる。
As is apparent from the above description, according to the present invention, the temperature of the outlet side and the intermediate portion of the refrigerant pipe of the evaporator is detected, and the degree of superheat of the evaporator is detected based on the detected temperature difference. Is detected, and the acceleration and deceleration until the number of revolutions is changed from the temperature difference between the set temperature and the detected room temperature is controlled according to this superheat, so it is suitable for the state of the evaporator when the compressor is started. It is possible to control the number of revolutions
It is possible to reduce noise caused by the multiphase flow immediately after the start of cooling and heating, and to perform quiet operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による空気調和機の一実施例の冷凍サイ
クルを示すブロック図。
FIG. 1 is a block diagram showing a refrigeration cycle of an embodiment of an air conditioner according to the present invention.

【図2】本実施例における制御部の動作を表したフロー
チャート。
FIG. 2 is a flowchart showing the operation of the control unit in this embodiment.

【図3】設定温度と室温との差から圧縮機の目標回転数
を決定する手順の説明に供するグラフ。
FIG. 3 is a graph used to explain a procedure for determining a target rotation speed of a compressor based on a difference between a set temperature and a room temperature.

【図4】蒸発器の冷媒配管出口側温度と中間部分の温度
差から圧縮機の回転加速度を決定する手順の説明に供す
るグラフ。
FIG. 4 is a graph used for explaining a procedure for determining the rotational acceleration of the compressor from the temperature difference between the refrigerant pipe outlet side of the evaporator and the temperature of the intermediate portion.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 膨張弁 4 蒸発器 5 制御部 6 蒸発器の冷媒配管出口側の温度を検出する温度セン
サ 7 蒸発器の冷媒配管中間部分の温度を検出する温度セ
ンサ 8 室温センサ 9 温度設定器
1 Compressor 2 Condenser 3 Expansion valve 4 Evaporator 5 Control part 6 Temperature sensor which detects the temperature of the refrigerant piping outlet side of the evaporator 7 Temperature sensor which detects the temperature of the refrigerant piping middle part of the evaporator 8 Room temperature sensor 9 Temperature Setting device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】室内温度検出器と、この室内温度検出器で
検出された室温と、設定温度との差に応じて圧縮機の回
転数を決定し、圧縮機の回転を制御するようにした空気
調和機において、蒸発器の冷媒配管出口側の温度を検出
する第1の温度検出器と、前記蒸発器の冷媒配管中間部
分の温度を検出する第2の温度検出器と、前記第2の温
度検出器と第1の温度検出器との検出温度差に基づいて
検出された過熱度に応じて、前記決定された圧縮器の回
転数へ移行する加速度を増減制御するようにした制御部
を備えたことを特徴とする空気調和機。
1. A rotation speed of a compressor is determined according to a difference between an indoor temperature detector, a room temperature detected by the indoor temperature detector, and a set temperature, and the rotation of the compressor is controlled. In the air conditioner, a first temperature detector that detects the temperature of the refrigerant pipe outlet side of the evaporator, a second temperature detector that detects the temperature of the refrigerant pipe intermediate portion of the evaporator, and the second temperature detector. According to the degree of superheat detected based on the detected temperature difference between the temperature detector and the first temperature detector, a control unit configured to increase / decrease the acceleration that shifts to the determined rotational speed of the compressor. An air conditioner characterized by being equipped.
JP4184174A 1992-07-10 1992-07-10 Air conditioner Pending JPH0626713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4184174A JPH0626713A (en) 1992-07-10 1992-07-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4184174A JPH0626713A (en) 1992-07-10 1992-07-10 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0626713A true JPH0626713A (en) 1994-02-04

Family

ID=16148662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4184174A Pending JPH0626713A (en) 1992-07-10 1992-07-10 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0626713A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458305A1 (en) * 2009-07-22 2012-05-30 Mitsubishi Electric Corporation Heat pump device
CN113970160A (en) * 2021-11-01 2022-01-25 珠海格力电器股份有限公司 Method and device for reducing noise of air conditioner and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458305A1 (en) * 2009-07-22 2012-05-30 Mitsubishi Electric Corporation Heat pump device
EP2458305A4 (en) * 2009-07-22 2014-06-25 Mitsubishi Electric Corp Heat pump device
US9557085B2 (en) 2009-07-22 2017-01-31 Mitsubishi Electric Corporation Heat pump apparatus
CN113970160A (en) * 2021-11-01 2022-01-25 珠海格力电器股份有限公司 Method and device for reducing noise of air conditioner and air conditioner

Similar Documents

Publication Publication Date Title
JP2723339B2 (en) Heat pump heating equipment
JPH0479850B2 (en)
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
JPH04106357A (en) Air conditioner
JPH0626713A (en) Air conditioner
JP4827416B2 (en) Cooling system
JP3213662B2 (en) Air conditioner
JPH09243210A (en) Control method for air conditioner and apparatus therefor
KR100347899B1 (en) Control method of inverter compressor of air conditioner
JP2508191B2 (en) Refrigeration equipment
JP3646668B2 (en) Refrigeration equipment
JPH04320753A (en) Air conditioner
JP2870928B2 (en) Air flow control method for air conditioner
JP3169485B2 (en) Air conditioner
JPH0772648B2 (en) Refrigerant flow control method
KR20000055144A (en) Method for preventing freezing of the heat exchanger in the air conditioner
JPH10153336A (en) Method for controlling air-conditioner
JPH0518618A (en) Method of controlling operation of air conditioner
JPH08271016A (en) Air conditioner of multi-room type
JPS6256425B2 (en)
JPH0719575A (en) Air conditioner
JPH09236299A (en) Running control device for air conditioning apparatus
JPH10306941A (en) Method for controlling air conditioner
JPH0697125B2 (en) Frequency controller for multi refrigeration cycle
JP2760227B2 (en) Operation control device for refrigeration equipment