JPH06265834A - Lamination type optical polarization control element for near infrared and visible light region - Google Patents
Lamination type optical polarization control element for near infrared and visible light regionInfo
- Publication number
- JPH06265834A JPH06265834A JP5055900A JP5590093A JPH06265834A JP H06265834 A JPH06265834 A JP H06265834A JP 5055900 A JP5055900 A JP 5055900A JP 5590093 A JP5590093 A JP 5590093A JP H06265834 A JPH06265834 A JP H06265834A
- Authority
- JP
- Japan
- Prior art keywords
- polarization control
- control element
- semiconductor thin
- film
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polarising Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、近赤外乃至可視光領域
用光偏光制御素子に関するものである。光偏光制御素子
は、光アイソレータ、光スイッチなどのような光デバイ
ス、および各種光センサーに有用なものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light polarization control element for near infrared to visible light. The optical polarization control element is useful for optical devices such as optical isolators and optical switches, and various optical sensors.
【0002】[0002]
【従来の技術】光偏光制御素子は、最も基本的な光受動
素子のひとつであり、多くの光デバイスおよび光センサ
ーを構成する上で必要不可欠な要素である。近年、光偏
光制御素子に対し、小型化、高性能化および高生産性化
が要求されており、この要求にこたえるものとして、誘
電体と金属又は半導体を交互に積層させて得られる多層
積層構造を有する光偏光制御素子が提案されている(例
えばS.Kawakami,Appl.Opt.,Vo
l.22,2426(1983))。2. Description of the Related Art An optical polarization control element is one of the most basic optical passive elements, and is an essential element for constructing many optical devices and optical sensors. In recent years, there has been a demand for miniaturization, high performance, and high productivity of optical polarization control elements. To meet these requirements, a multilayer laminated structure obtained by alternately laminating dielectrics and metals or semiconductors. Has been proposed (for example, S. Kawakami, Appl. Opt., Vo.
l. 22, 2426 (1983)).
【0003】この積層型光偏光制御素子は、図1に示さ
れているように、複数個の誘電体膜1と、複数個の半導
体又は金属の薄膜2とが交互に積層された多層積層体で
あって、光通信波長1.3μmおよび1.55μm(長
波長領域)に用いられる場合、通常、誘電体膜1はSi
O2 から形成され、金属薄膜は、Alから形成される。
この場合、誘電体膜は1〜1.2μmの厚さを有し、金
属薄膜は60〜70オングストロームの厚さを有してい
る。このような従来の光偏光制御素子は例えば光路長3
0μm当り、消光比60dB、および挿入損失0.3dBの
光偏光制御特性を示す(住友セメント(株)、光偏光制
御素子カタログ)。As shown in FIG. 1, this laminated type optical polarization control element is a multilayer laminated body in which a plurality of dielectric films 1 and a plurality of semiconductor or metal thin films 2 are alternately laminated. When used for optical communication wavelengths of 1.3 μm and 1.55 μm (long wavelength region), the dielectric film 1 is usually made of Si.
The thin metal film is formed of O 2, and the thin metal film is formed of Al.
In this case, the dielectric film has a thickness of 1 to 1.2 μm, and the metal thin film has a thickness of 60 to 70 Å. Such a conventional optical polarization control element has, for example, an optical path length of 3
It shows optical polarization control characteristics with an extinction ratio of 60 dB and an insertion loss of 0.3 dB per 0 μm (Sumitomo Cement Co., Ltd. optical polarization control element catalog).
【0004】光ファイバジャイロ、および光センサー
(電圧センサー)には波長0.85μm(短波長領域)
の光が使用されているが、これに上述の構造を有する光
偏光制御素子を用いると、光の挿入損失値が1dBより大
きくなるため、その実用は困難である。The optical fiber gyro and the optical sensor (voltage sensor) have a wavelength of 0.85 μm (short wavelength range).
However, if the light polarization control element having the above-mentioned structure is used for this, the insertion loss value of the light will be larger than 1 dB, so that its practical use is difficult.
【0005】上記の困難を克服するために、短波長領域
において用いられる多層構造光偏光制御素子として、S
iO2 膜(誘電体膜)と、ゲルマニウム(Ge)薄膜
(半導体薄膜)との組み合わせが提案されている(馬、
川上 電子情報通信学会春季全国大会 C−273(1
991)、および馬、内田、川上 電子情報通信学会、
91−47、pp11(1991))。例えばSiO2
層の厚さを1μm、Ge層の厚さを60オングストロー
ムとしたとき、得られた光偏光制御素子は、光路長1μ
m当り、消光比2.9dB、および挿入損失0.018dB
を示し、従って、短波長領域において光偏光制御が可能
であることが示唆されている。In order to overcome the above-mentioned difficulties, as a multilayer structure optical polarization control element used in the short wavelength region, S
A combination of an io 2 film (dielectric film) and a germanium (Ge) thin film (semiconductor thin film) has been proposed (Hama,
Kawakami IEICE Spring National Convention C-273 (1
991), and Ma, Uchida, Kawakami Institute of Electronics, Information and Communication Engineers,
91-47, pp11 (1991)). For example SiO 2
When the layer thickness is 1 μm and the Ge layer thickness is 60 Å, the optical polarization control element obtained has an optical path length of 1 μm.
Extinction ratio 2.9 dB and insertion loss 0.018 dB per m
Therefore, it is suggested that light polarization control is possible in the short wavelength region.
【0006】[0006]
【発明が解決しようとする課題】上述のような従来の多
層積層構造を有する短波長領域用積層型光偏光制御素子
は、その構成膜間の界面結合力が小さく、このため、多
層構造の合計膜厚さに制限があり、すなわちこの合計膜
厚さは、一般に60μm程度が上限であって、これより
厚いものの製造が困難であった。また、上記多層構造を
有する従来の光偏光制御素子は、その研磨加工の際に、
多層積層構造が破壊され易く、製品歩留が、著しく低い
という問題点を有していた。The laminated optical polarization control element for the short wavelength region having the above-mentioned conventional multilayer laminated structure has a small interfacial bonding force between its constituent films, and therefore the total of the multilayered structures is reduced. There is a limit to the film thickness, that is, the total film thickness is generally about 60 μm at the upper limit, and it is difficult to manufacture a thicker film. Further, the conventional light polarization control element having the above-mentioned multi-layer structure, during the polishing process,
The multilayer laminated structure is easily broken, and the product yield is extremely low.
【0007】一般に多層積層構造を有する光偏光制御素
子は、その大部分の用途において、光ファイバコアに接
合される。この接合工程を機械化した場合、その操作を
容易にするためには、多層膜の厚さが大きいことが望ま
しい。また、高生産性を達成するためには、光偏光制御
素子の製造歩留りが、高いことが要求される。さらに、
光偏光制御素子は、光受動素子として、最も基本的なも
のであり、多くの光デバイスおよび光センサーの必要不
可欠な構成要素の一つであるから、それが安価に供給さ
れることが望ましい。Optical polarization control elements, which generally have a multilayer stack structure, are bonded to the optical fiber core in most of its applications. When the bonding process is mechanized, it is desirable that the multilayer film has a large thickness in order to facilitate the operation. Moreover, in order to achieve high productivity, it is required that the manufacturing yield of the optical polarization control element is high. further,
The optical polarization control element is the most basic element as an optical passive element, and is one of the indispensable constituent elements of many optical devices and optical sensors, so it is desirable to supply it at low cost.
【0008】また、半導体膜としてGe膜を用いた従来
の積層型光偏光制御素子においては、素子内で吸収し得
る光偏波の吸収率が、用いられる光の波長に大きく依存
し、使用される光の波長が短くなる程素子の挿入損失が
大きくなり、かつ素子の光導波路内に高次の光伝播モー
ドが励振されるため、素子の消光比が低下するという問
題を有している。Further, in the conventional laminated type optical polarization control device using a Ge film as a semiconductor film, the absorptance of optical polarization that can be absorbed in the device is largely dependent on the wavelength of the light used. The shorter the wavelength of the incident light is, the larger the insertion loss of the element is, and the higher-order light propagation mode is excited in the optical waveguide of the element, so that the extinction ratio of the element is lowered.
【0009】近年、光ファイバジャイロ、および電圧セ
ンサーにより代表される光センサーにおける光偏光制御
素子の需要が増大しているが、このような用途における
光源としては、広範囲のスペクトルを有するものが用い
られている。また、光源に関する技術の最近の著しい進
歩により、発光スペクトルの短波長化が促進されてい
る。上記のような事情から、600〜850mmの領域に
わたって、高消光比を示し、かつ挿入損失の低い光偏光
制御素子の開発が強く望まれている。In recent years, there is an increasing demand for an optical polarization control element in an optical sensor represented by an optical fiber gyro and a voltage sensor. As a light source for such an application, a light source having a wide spectrum is used. ing. In addition, the recent remarkable progress in the technology relating to the light source has promoted the shortening of the emission spectrum wavelength. Under the circumstances as described above, it is strongly desired to develop an optical polarization control element having a high extinction ratio and a low insertion loss over a region of 600 to 850 mm.
【0010】本発明は、安定な多層積層構造を有し、そ
の厚さが大きく、製品歩留りが高く、600〜850mm
の近赤外乃至可視光領域において、高消光比および低挿
入損失を示すことができる積層型光偏光制御素子を提供
しようとするものである。The present invention has a stable multi-layer laminated structure, its thickness is large, the product yield is high, and it is 600-850 mm.
Another object of the present invention is to provide a laminated optical polarization control element capable of exhibiting a high extinction ratio and a low insertion loss in the near infrared to visible light region.
【0011】[0011]
【課題を解決するための手段】本発明者らは、従来技術
の問題点解消のために鋭意研究の結果、多層積層構造を
有する光偏光制御素子において、半導体薄膜の両側に、
導電体膜と安定に接合し得る特定の側面層を配置するこ
とによって、上記課題の解決に成功したのである。DISCLOSURE OF THE INVENTION As a result of intensive studies for solving the problems of the prior art, the present inventors have found that in a light polarization control element having a multilayer laminated structure, both sides of a semiconductor thin film are
By arranging a specific side surface layer that can be stably joined to the conductor film, the above problem was successfully solved.
【0012】本発明の近赤外乃至可視光領域用積層型光
偏光制御素子は、複数個の半導体薄膜と、複数個の誘電
体膜とが交互に積層されている多層膜からなる素子であ
って、前記半導体薄膜の各々が、(A)ゲルマニウム、
又はゲルマニウム合金からなる半導体薄膜芯層、および
(B)前記半導体薄膜芯層の両側に積層され、前記誘電
体膜を構成している元素の1種を含み、かつ前記誘電体
膜に接合している一対の半導体側面層からなることを特
徴とするものである。The near-infrared or visible light laminated light polarization control element of the present invention is an element comprising a multilayer film in which a plurality of semiconductor thin films and a plurality of dielectric films are alternately laminated. And each of the semiconductor thin films comprises (A) germanium,
Or a semiconductor thin film core layer made of a germanium alloy, and (B) laminated on both sides of the semiconductor thin film core layer, containing one of the elements constituting the dielectric film, and being bonded to the dielectric film. It is characterized by comprising a pair of semiconductor lateral layers.
【0013】また、本発明の積層型光偏光制御素子にお
いて、前記半導体薄膜および誘電体膜の各々は、前記素
子内の光伝播が基本モードのみになる厚さを有すること
が好ましい。Further, in the laminated optical polarization control element of the present invention, it is preferable that each of the semiconductor thin film and the dielectric film has a thickness such that light propagation in the element becomes only a fundamental mode.
【0014】[0014]
【作用】図2に、本発明の積層型光偏光制御素子の一例
の構成が示されている。図2において、この素子におい
て、複数個の誘電体膜1と、複数個の半導体薄膜3とが
交互に積層されて、多層構造を形成している。この半導
体薄膜3の各々は、ゲルマニウム(Ge)、又はゲルマ
ニウム合金などの半導体材料からなる半導体薄膜芯層4
と、この半導体薄膜芯層4の両側に積層され、誘電体膜
1と、半導体薄膜芯層4とを安定に接合している一対の
半導体側面層5とから構成される。FIG. 2 shows the structure of an example of the laminated light polarization control element of the present invention. In FIG. 2, in this device, a plurality of dielectric films 1 and a plurality of semiconductor thin films 3 are alternately laminated to form a multilayer structure. Each of the semiconductor thin films 3 is a semiconductor thin film core layer 4 made of a semiconductor material such as germanium (Ge) or germanium alloy.
And a pair of semiconductor side layers 5 that are laminated on both sides of the semiconductor thin film core layer 4 and stably join the dielectric film 1 and the semiconductor thin film core layer 4.
【0015】誘電体膜1は、一般にSiO2 のような誘
電体から構成され、半導体側面層5は、誘電体膜を構成
している元素の1種、例えばSiを含むもの、すなわち
Si単体、或はSi合金又はSi化合物、例えばSi1
−xGexから構成される。このため、半導体薄膜芯層
4と一対の半導体側面層5とは、全体として半導体特性
を示し、半導体薄膜として機能する。The dielectric film 1 is generally composed of a dielectric material such as SiO 2 , and the semiconductor side surface layer 5 contains one of the elements constituting the dielectric film, for example, one containing Si, that is, Si alone, Or Si alloys or Si compounds, such as Si 1
-XGex. Therefore, the semiconductor thin film core layer 4 and the pair of semiconductor side surface layers 5 exhibit semiconductor characteristics as a whole and function as a semiconductor thin film.
【0016】多層膜構造を安定化させるには、異種膜間
の接合力(付着力)を強くすることが重要である。本発
明においては、誘電体膜と、半導体薄膜芯層とが、半導
体側面層を介して強固に接合されている。これら異種膜
間の付着力は、菊池、馬場、金原、「真空」第29巻、
第5号、p337(1986)に記載の方法により測定
評価することができる。In order to stabilize the multilayer film structure, it is important to strengthen the bonding force (adhesive force) between different kinds of films. In the present invention, the dielectric film and the semiconductor thin film core layer are firmly bonded via the semiconductor side surface layer. Adhesive force between these different types of films is Kikuchi, Baba, Kanehara, "Vacuum," Vol. 29,
It can be measured and evaluated by the method described in No. 5, p337 (1986).
【0017】図3には、SiO2 からなる誘電体膜と、
Geからなる半導体薄膜芯層との間に、0〜30オング
ストロームの厚さを有する半導体側面層(Siからな
る)を配置したときの付着力が示されている。図3にお
いて、半導体側面層がない場合(厚さ=0)、SiO2
/Ge界面の付着力は5gfである。しかし厚さ5オング
ストロームのSi半導体側面層を設けると、前記付着力
は約40gf(5gfの約8倍)に急上昇し、その厚さが1
0オングストローム以上になると、前記付着力は、ほゞ
50gf(5gfの約10倍)において飽和する。FIG. 3 shows a dielectric film made of SiO 2 .
The adhesive force is shown when a semiconductor side surface layer (made of Si) having a thickness of 0 to 30 angstrom is arranged between the semiconductor thin film core layer made of Ge and the semiconductor thin film core layer. In FIG. 3, when there is no semiconductor side surface layer (thickness = 0), SiO 2
The adhesion force at the / Ge interface is 5 gf. However, when a side surface layer of Si semiconductor having a thickness of 5 angstrom is provided, the adhesive force sharply increases to about 40 gf (about 8 times 5 gf), and the thickness is 1
Above 0 Å, the adhesion saturates at about 50 gf (about 10 times 5 gf).
【0018】図3から、Siからなる半導体側面層が、
SiO2 誘電体膜と、Ge半導体薄膜芯層との間のバイ
ンダーとして機能すること、およびバインダーとして機
能するSi半導体側面層の厚さは、ほゞ10オングスト
ローム以上であれば十分であることを示している。From FIG. 3, the semiconductor side surface layer made of Si is
It is shown that the thickness of the Si semiconductor side surface layer that functions as a binder between the SiO 2 dielectric film and the Ge semiconductor thin film core layer and that functions as a binder should be approximately 10 Å or more. ing.
【0019】上記のように、本発明によりSiO2 誘電
体膜と、Ge半導体薄膜芯層との間の付着力を著しく高
めることが可能となり、その結果300μm以上の合計
膜厚を有する実用的積層型光偏光制御素子の製造が可能
になった。As described above, according to the present invention, it becomes possible to remarkably increase the adhesion between the SiO 2 dielectric film and the Ge semiconductor thin film core layer, and as a result, a practical laminated structure having a total film thickness of 300 μm or more is obtained. It has become possible to manufacture a type optical polarization control element.
【0020】本発明の積層型光偏光制御素子において、
誘電体膜の厚さ(d2 )は0.8〜1μmであることが
好ましく、半導体薄膜の厚さ(d1 )は55〜100オ
ングストロームであることが好ましく、半導体薄膜内の
半導体薄膜芯層の厚さは45〜60オングストロームで
あることが好ましく、また、半導体側面層の厚さは10
〜20オングストロームであることが好ましい。In the laminated optical polarization control element of the present invention,
The thickness (d 2 ) of the dielectric film is preferably 0.8 to 1 μm, the thickness (d 1 ) of the semiconductor thin film is preferably 55 to 100 Å, and the semiconductor thin film core layer in the semiconductor thin film is Is preferably 45 to 60 angstroms, and the thickness of the semiconductor side layer is 10 to 10.
It is preferably about 20 angstroms.
【0021】図2に示されている本発明の光偏光制御素
子において、Y方向に振動する光偏波をTE波とし、X
方向に振動する光偏波をTM波とする。また、光が、d
1 で表わされる膜厚さ、およびεS1で表わされる複素誘
電率を有する半導体薄膜3と、d2 で表わされる膜厚さ
と、εS2で表わされる複素誘電率を有する誘電体膜1と
から構成される多層型光偏光制御素子を通過する際、半
導体薄膜3の光伝播定数をP1 とし、誘電体膜1の光伝
播定数をP2 とする。この場合、この光偏光制御素子内
で吸収し得る偏光成分(TE波およびTM波)に対する
当該素子の特性方程式は下記式(1),(2)および
(3)で表わされ、また、Z方向の光伝播係数γ(=α
+jβ)は、下記式(4)で示されることが知られてい
る(S.Kawakami,Appl.Opt.,Vo
l.22,2426(1983))In the optical polarization control element of the present invention shown in FIG. 2, the optical polarization vibrating in the Y direction is a TE wave, and X is
An optical polarization that oscillates in the direction is called a TM wave. Also, the light is d
A semiconductor thin film 3 having a film thickness represented by 1 and a complex dielectric constant represented by ε S1 , a film thickness represented by d 2 and a dielectric film 1 having a complex dielectric constant represented by ε S2. Let the light propagation constant of the semiconductor thin film 3 be P 1 and the light propagation constant of the dielectric film 1 be P 2 when passing through the multilayered optical polarization control element. In this case, the characteristic equations of the element for the polarization components (TE wave and TM wave) that can be absorbed in this optical polarization control element are represented by the following equations (1), (2) and (3), and Z Light propagation coefficient γ (= α
+ Jβ) is known to be represented by the following formula (4) (S. Kawakami, Appl. Opt., Vo).
l. 22, 2426 (1983))
【0022】[0022]
【数1】 [Equation 1]
【数2】 [Equation 2]
【数3】 [Equation 3]
【数4】 [Equation 4]
【0023】積層型光偏光制御素子においては、光の最
低次モードに対する吸収係数αO にくらべて、より小さ
な吸収係数を有する高次導波モードが励振される可能性
がある。このような高次導波モードも、前記(1)〜
(4)式に従うため、各モードの吸収係数αn (n=
0,1,2,……)は、素子を構成する成分膜の膜厚さ
(d1 ,d2 )、および、光学定数(εS1,εS2)か
ら、数値解法により予想することが可能である。[0023] In the stacked light polarization control element, in comparison with the absorption coefficient alpha O for light lowest order mode of the high-order waveguide mode is likely to be excited with smaller absorption coefficient. Such high-order guided modes also have the above (1) to
Since the equation (4) is followed, the absorption coefficient α n (n =
0, 1, 2, ...) can be predicted by a numerical method from the film thicknesses (d 1 , d 2 ) of the component films constituting the device and the optical constants (ε S1 , ε S2 ). Is.
【0024】素子内において、TE波に対し高次の導波
モードが励振された場合、TE波の吸収が小さくなり、
このため、積層型光偏光制御素子の消光比が著しく低下
する。従って、性能の高い積層型光偏光制御素子を得る
ためには、当該素子内において、TE波に対し高次の導
波モードが励振されないように半導体膜および誘電体膜
の膜厚さを設計することが必要不可欠である。When a higher-order guided mode is excited with respect to the TE wave in the element, the TE wave is absorbed less,
Therefore, the extinction ratio of the laminated optical polarization control element is significantly reduced. Therefore, in order to obtain a laminated optical polarization control element having high performance, the film thicknesses of the semiconductor film and the dielectric film are designed so that a higher-order waveguide mode with respect to the TE wave is not excited in the element. Is essential.
【0025】半導体薄膜の膜厚さd1 を一定にし、(す
なわち、εS1も定まる)、誘電体膜の膜厚さd2 を変化
させた場合の積層膜1単位(1半導体薄膜(d1 )+1
誘電体膜(d2 ))の電磁界分布を解析し、その結果、
光センサーに使用される波長領域600〜850nmにお
いては、本発明の素子内において励振される高次モード
は、TE波に対しては一次モードのみであり、TM波に
対しては、高次モードは励振されないことが明らかにな
った。When the thickness d 1 of the semiconductor thin film is fixed (that is, ε S1 is also determined) and the thickness d 2 of the dielectric film is changed, one unit of laminated film (1 semiconductor thin film (d 1 ) +1
The electromagnetic field distribution of the dielectric film (d 2 ) was analyzed, and as a result,
In the wavelength region of 600 to 850 nm used for the optical sensor, the higher-order mode excited in the device of the present invention is only the first-order mode for the TE wave and the higher-order mode for the TM wave. It became clear that he was not excited.
【0026】そこで、本発明においては、光偏光制御素
子の誘電体膜の厚さを、素子内の光伝播が基本モードの
みになり、TE波の一次モードを励振させないように、
数値解法により算出し、これを素子設計に組み込んでい
る。これによって、本発明の積層型光偏光制御素子は、
波長850nmの光の場合、光路長30μm当りの消光比
を、54dBにすることが可能になった。Therefore, in the present invention, the thickness of the dielectric film of the optical polarization control element is set so that the light propagation in the element is limited to the fundamental mode and the first-order mode of the TE wave is not excited.
It is calculated by the numerical method and incorporated into the device design. Thereby, the laminated light polarization control element of the present invention,
In the case of light having a wavelength of 850 nm, the extinction ratio per optical path length of 30 μm can be set to 54 dB.
【0027】また、半導体薄膜として、従来提案されて
いるGe単一膜を用いる場合、光センサーに使用される
波長領域600〜850nmにおいては、Ge薄膜の複素
誘電率の波長分散が大きく、かつ、波長が短かくなる
程、Ge薄膜への電磁界集中が大きくなり、このため、
Ge薄膜による光の吸収率が増大し、素子内の光挿入損
失が大きくなる。When a conventionally proposed Ge single film is used as the semiconductor thin film, the wavelength dispersion of the complex dielectric constant of the Ge thin film is large in the wavelength range of 600 to 850 nm used for the optical sensor, and The shorter the wavelength, the greater the concentration of electromagnetic field on the Ge thin film.
The light absorption rate of the Ge thin film increases, and the optical insertion loss in the device increases.
【0028】本発明においては、Geからなる半導体中
央薄膜の両側に複素誘電率の低い半導体側面層を積層す
ることにより、半導体薄膜全体の実行的誘電率を低下さ
せ、それにより、複素誘電率の波長分散および半導体薄
膜への導波モードの局在化を低減させている。上記の積
層構造を有する半導体薄膜を用いることにより、600
〜850nmの波長領域において、本発明の積層型光偏光
制御素子の消光比および光挿入損失は、波長依存性をほ
とんど示さなくなる。In the present invention, by laminating the semiconductor lateral layers having a low complex dielectric constant on both sides of the semiconductor central thin film made of Ge, the effective dielectric constant of the entire semiconductor thin film is lowered, and thereby the complex dielectric constant is reduced. It reduces wavelength dispersion and localization of guided modes in semiconductor thin films. By using the semiconductor thin film having the above laminated structure, 600
In the wavelength region of ˜850 nm, the extinction ratio and optical insertion loss of the laminated optical polarization control element of the present invention show almost no wavelength dependence.
【0029】[0029]
【実施例】本発明を下記実施例により更に説明する。実施例1および比較例1 実施例1においてGeよりなる厚さ60オングストロー
ムの半導体薄膜芯層と、その両側に配置され、Siより
なり、かつ10オングストロームの厚さを有する半導体
側面層とからなるSi/Ge/Si半導体薄膜と、Si
O2 からなり、0.9μmの厚さを有する誘電体膜とを
交互に積層し積層型光偏光制御素子を作製した。Ge膜
およびSi膜の複素誘電率は下記の通り、 Ge芯層 : 25.662−j6.460 Si側面層: 9.681−j1.811The present invention will be further described with reference to the following examples. Example 1 and Comparative Example 1 In Example 1, Si is composed of a semiconductor thin film core layer of Ge having a thickness of 60 angstroms, and semiconductor side layers which are arranged on both sides of the core layer and which are made of Si and have a thickness of 10 angstroms. / Ge / Si semiconductor thin film and Si
Dielectric films made of O 2 and having a thickness of 0.9 μm were alternately laminated to prepare a laminated optical polarization control element. The complex permittivities of the Ge film and the Si film are as follows: Ge core layer: 25.662-j6.460 Si side layer: 9.681-j1.811
【0030】この素子の波長(600〜850nm)と、
光路長30μm当りの、消光比との関係を図4に示す。
またこの素子の波長(600〜850nm)と、光路長3
0μm当りの光挿入損失との関係を図5に示す。The wavelength of this device (600 to 850 nm)
FIG. 4 shows the relationship with the extinction ratio per optical path length of 30 μm.
The wavelength of this device (600-850nm) and the optical path length 3
The relationship with the optical insertion loss per 0 μm is shown in FIG.
【0031】比較例1において、実施例1と同様にし
て、積層型光偏光制御素子を作成した。但し、半導体薄
膜はGe単一層(厚さ:60オングストローム)からな
り、誘電体(SiO2 )膜は1μmの厚さを有してい
た。得られた素子の、波長と消光比および光挿入損失と
の関係をそれぞれ図4、図5に示す。In Comparative Example 1, a laminated optical polarization control element was prepared in the same manner as in Example 1. However, the semiconductor thin film was composed of a Ge single layer (thickness: 60 angstrom), and the dielectric (SiO 2 ) film had a thickness of 1 μm. The relationship between the wavelength, the extinction ratio, and the optical insertion loss of the obtained device is shown in FIGS. 4 and 5, respectively.
【0032】図4から明らかなように、比較例1の従来
積層型光偏光制御素子においては、波長が短かくなる程
消光比が低下する。しかし、実施例1の素子において
は、波長領域600〜850nmにおいて、その消光比
は、波長に依存することなく、約54dBの一定値を示
す。As is apparent from FIG. 4, in the conventional laminated optical polarization control element of Comparative Example 1, the extinction ratio decreases as the wavelength becomes shorter. However, in the device of Example 1, the extinction ratio shows a constant value of about 54 dB in the wavelength region of 600 to 850 nm without depending on the wavelength.
【0033】また、図5から明らかなように、比較例1
の従来積層型光偏光制御素子においては、波長が短かく
なる程光挿入損失が大きくなるが、実施例1の素子にお
いては、600〜850nmの波長領域において、その光
挿入損失は波長に依存することなく、約0.34dB以下
の低い一定値を示す。また、実施例1の素子における光
伝播は基本モードのみであった。Further, as is clear from FIG. 5, Comparative Example 1
In the conventional laminated type optical polarization control element of No. 1, the optical insertion loss increases as the wavelength becomes shorter, but in the element of Example 1, the optical insertion loss depends on the wavelength in the wavelength range of 600 to 850 nm. However, it shows a low constant value of about 0.34 dB or less. The light propagation in the device of Example 1 was only the fundamental mode.
【0034】実施例2 下記事項を除き、実施例1と同様にして積層型光偏光制
御素子を作製した。 (1)半導体薄膜中の半導体側面層を、Si1 −xGe
x合金により形成した。 (2)複素誘電率 Ge芯層 : 23.112−j4.36
7 Si1 −xGex側面層: 12.254−j2.18
9 (3)膜厚さ Ge芯層 : 50オングストローム Si1 −xGex側面層: 10オングストローム 半導体薄膜 : 70オングストローム 誘電体(SiO2 )膜 : 0.8μm 得られた素子は、600〜850nmの波長領域におい
て、光路長30μm当り、ほゞ一定の消光比60dB、お
よび光挿入損失0.4dBを示した。また、実施例2の素
子における光伝播は、基本モードのみであった。 Example 2 A laminated optical polarization control element was produced in the same manner as in Example 1 except for the following matters. (1) The semiconductor side surface layer in the semiconductor thin film is formed of Si 1 -xGe
x alloy. (2) Complex permittivity Ge core layer: 23.112-j4.36
7 Si 1 -xGex side layer: 12.254-j2.18
9 (3) Thickness Ge core layer: 50 angstrom Si 1 -xGex side layer: 10 angstrom semiconductor thin film: 70 angstrom dielectric (SiO 2 ) film: 0.8 μm The obtained device has a wavelength range of 600 to 850 nm. In the above, a nearly constant extinction ratio of 60 dB and an optical insertion loss of 0.4 dB per 30 μm optical path length were exhibited. The light propagation in the device of Example 2 was only the fundamental mode.
【0035】実施例1および2の光偏光制御素子におけ
る界面(誘電体膜/半導体薄膜)付着力、並びに、波長
850nmの光に対する光路長30μm当りの消光比およ
び挿入損失を表1に示す。Table 1 shows the interface (dielectric film / semiconductor thin film) adhesion in the optical polarization control elements of Examples 1 and 2, and the extinction ratio and insertion loss per 30 μm of the optical path length for light of wavelength 850 nm.
【0036】[0036]
【表1】 [Table 1]
【0037】[0037]
【発明の効果】本発明の積層型光偏光制御素子におい
て、誘電体膜と、半導体中央薄膜層と間に、誘電体膜形
成元素を含み、低複素誘電率を有する半導体側面層を設
けることにより、膜間界面の付着力を著しく向上させ、
その結果、素子の多層積層構造の安定性が著しく向上
し、素子加工の際の積層構造の破壊現象が防止され、か
つ、300μm以上という全厚さ(これは従来の5倍以
上に相当する)の素子を得ることが可能になった。ま
た、半導体側面層を配置することにより光吸収層の実行
的誘電率が低下し、このため、光吸収に対する波長分
散、および半導体薄膜への導波モードの局在化を低減さ
せるという効果が発現する。更に、半導体層および誘電
体膜の厚さを基本モードのみを伝播させるように規定す
ることによって、600〜850nmの波長領域におい
て、例えば光路長30μm当り、消光比を54dB以上
の、また挿入損失を約0.3dB付近の一定値にすること
ができる。According to the laminated optical polarization control element of the present invention, by providing a semiconductor side surface layer having a low complex dielectric constant and containing a dielectric film forming element between the dielectric film and the semiconductor central thin film layer. , Significantly improves the adhesive force at the interface between films,
As a result, the stability of the multi-layer laminated structure of the device is remarkably improved, the destruction of the laminated structure during the processing of the device is prevented, and the total thickness of 300 μm or more (which corresponds to 5 times or more of the conventional thickness). It became possible to obtain the element of. In addition, by arranging the semiconductor side surface layer, the effective dielectric constant of the light absorption layer is lowered, and therefore, the effect of reducing wavelength dispersion with respect to light absorption and localization of the guided mode to the semiconductor thin film is exhibited. To do. Furthermore, by defining the thicknesses of the semiconductor layer and the dielectric film so that only the fundamental mode propagates, for example, in the wavelength region of 600 to 850 nm, the extinction ratio is 54 dB or more per 30 μm of the optical path length, and the insertion loss is It can be set to a constant value around 0.3 dB.
【図1】図1は、従来の積層型光偏光制御素子の一例の
積層構造を示す説明図。FIG. 1 is an explanatory view showing a laminated structure of an example of a conventional laminated light polarization control element.
【図2】図2は、本発明の積層型光偏光制御素子の一例
の積層構造を示す説明図。FIG. 2 is an explanatory diagram showing a laminated structure of an example of the laminated optical polarization control element of the present invention.
【図3】図3は、本発明の積層型光偏光制御素子の半導
体側面層の厚さと、界面付着力の関係の一例を示すグラ
フ。FIG. 3 is a graph showing an example of the relationship between the thickness of the semiconductor side surface layer of the laminated optical polarization control element of the present invention and the interfacial adhesion force.
【図4】図4は、実施例1および比較例1の積層型光偏
光制御素子の、波長と消光比との関係を示すグラフ。FIG. 4 is a graph showing the relationship between wavelength and extinction ratio of the laminated optical polarization control elements of Example 1 and Comparative Example 1.
【図5】図5は、実施例1および比較例1の積層型光偏
光制御素子の、波長と挿入損失との関係を示すグラフ。FIG. 5 is a graph showing the relationship between wavelength and insertion loss of the laminated optical polarization control elements of Example 1 and Comparative Example 1.
1…誘電体膜 2…半導体薄膜(従来技術) 3…半導体薄膜(本発明) 4…半導体薄膜芯層 5…半導体側面層 d1 …半導体薄膜の厚さ d2 …誘電体膜の厚さ L…光路長1 ... The thickness of the dielectric film 2 ... semiconductor thin film (prior art) 3 ... semiconductor thin film (the present invention) 4 ... semiconductor thin core layer 5 ... semiconductor side layer d 1 ... of the semiconductor thin film thickness d 2 ... dielectric film L … Optical path length
Claims (2)
とが、交互に積層されている多層膜から素子であって、 前記半導体薄膜の各が、(A)ゲルマニウム又はゲルマ
ニウム合金からなる半導体薄膜芯層および(B)前記半
導体薄膜芯層の両側に積層され、前記誘電体膜を構成し
ている元素の1種を含み、かつ前記誘導体膜に接合して
いる一対の半導体側面層からなることを特徴とする、近
赤外乃至可視光領域用積層光偏光制御素子。1. A device comprising a multilayer film in which a plurality of semiconductor thin films and a plurality of dielectric films are alternately laminated, each semiconductor thin film comprising (A) germanium or a germanium alloy. A semiconductor thin-film core layer and (B) a pair of semiconductor side-layers laminated on both sides of the semiconductor thin-film core layer, containing one of the elements forming the dielectric film, and bonded to the dielectric film. A laminated light polarization control element for near-infrared to visible light region, wherein:
が、前記素子内の光伝播が基本モードのみになる厚さを
有する、請求項1に記載の近赤外乃至可視光領域用積層
型光偏光制御素子2. The laminated type for near-infrared to visible light region according to claim 1, wherein each of the semiconductor thin film layer and the dielectric film has a thickness such that light propagation in the device is limited to a fundamental mode. Optical polarization control element
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5055900A JP2783491B2 (en) | 1993-03-16 | 1993-03-16 | Laminated light polarization control device for near infrared to visible light region |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5055900A JP2783491B2 (en) | 1993-03-16 | 1993-03-16 | Laminated light polarization control device for near infrared to visible light region |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06265834A true JPH06265834A (en) | 1994-09-22 |
JP2783491B2 JP2783491B2 (en) | 1998-08-06 |
Family
ID=13011996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5055900A Expired - Fee Related JP2783491B2 (en) | 1993-03-16 | 1993-03-16 | Laminated light polarization control device for near infrared to visible light region |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2783491B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4488033B2 (en) | 2007-02-06 | 2010-06-23 | ソニー株式会社 | Polarizing element and liquid crystal projector |
US7957062B2 (en) | 2007-02-06 | 2011-06-07 | Sony Corporation | Polarizing element and liquid crystal projector |
-
1993
- 1993-03-16 JP JP5055900A patent/JP2783491B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2783491B2 (en) | 1998-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7199927B2 (en) | Optical element and optical add-drop module | |
EP0118746A2 (en) | Semiconductor laser device | |
JPS63113507A (en) | Light guide and its production | |
JP2004317701A (en) | Multilayer film optical filter and optical component | |
JPH06265834A (en) | Lamination type optical polarization control element for near infrared and visible light region | |
JP2697882B2 (en) | Optical filter | |
US5185842A (en) | Optical waveguide type wavelength filter | |
JPH08262203A (en) | Reflection preventing layer for display device | |
EP3879336A1 (en) | Composite substrate for electro-optical element and production method therefor | |
JP3584257B2 (en) | Polarizing beam splitter | |
JP2002311402A (en) | Faraday rotator | |
JP2003101126A (en) | Semiconductor laser device and method of manufacturing the same | |
JP2003043245A (en) | Optical filter | |
Pervak et al. | Influence of transition film-substrate layers on optical properties of the multilayer structures | |
JPH0756004A (en) | Conductive antireflection film | |
JP5273336B2 (en) | Optical element and optical integrated device | |
JPH09258116A (en) | Variable wavelength filter | |
JPH0418784A (en) | Protective film for semiconductor laser element | |
JP3002059B2 (en) | Optical filter | |
US20240128653A1 (en) | Meta-structure | |
JPH027042B2 (en) | ||
JPS60169804A (en) | Polarization separation film | |
JPH11142623A (en) | Prism type beam splitter | |
JPS6086506A (en) | Interference filter passing short wavelength | |
KR100534659B1 (en) | Planar optical waveguide using Bragg-reflection and method of fabrication thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080522 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090522 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |