JP2697882B2 - Optical filter - Google Patents

Optical filter

Info

Publication number
JP2697882B2
JP2697882B2 JP834589A JP834589A JP2697882B2 JP 2697882 B2 JP2697882 B2 JP 2697882B2 JP 834589 A JP834589 A JP 834589A JP 834589 A JP834589 A JP 834589A JP 2697882 B2 JP2697882 B2 JP 2697882B2
Authority
JP
Japan
Prior art keywords
wavelength
optical
layer
semiconductor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP834589A
Other languages
Japanese (ja)
Other versions
JPH02187732A (en
Inventor
俊彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP834589A priority Critical patent/JP2697882B2/en
Publication of JPH02187732A publication Critical patent/JPH02187732A/en
Application granted granted Critical
Publication of JP2697882B2 publication Critical patent/JP2697882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/218Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference using semi-conducting materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気的に通過中心波長を変えることのでき
る光学フィルターに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical filter capable of electrically changing a center wavelength of light passing therethrough.

〔従来の技術〕[Conventional technology]

屈折率の高い誘電体薄膜と屈折率の高い誘電体薄膜を
1/4波長の光学的厚さで交互に繰り返し積層された多層
薄膜は、干渉を利用した光学フィルターとして広く用い
られている。例えば第2図に示すように、高屈折率の薄
膜としてTiO2層(8)(屈折率2.3)を、低屈折率の薄
膜としてSiO2層(9)(屈折率1.5)を光学的厚さが1/4
波長厚さで交互に繰り返し積層すると、中心波長λ
(1/4波長が薄膜となる波長)において反射率が最大
となる高反射ミラーが得られる。また、多層膜間に1/2
波長の整数倍の厚みのTiO2層(10)またはSiO2の膜を挿
入すると、λにおいて透過率が最大となる光帯域通過
フィルターが得られる。
Dielectric thin film with high refractive index and dielectric thin film with high refractive index
Multilayer thin films alternately and repeatedly laminated with an optical thickness of 1/4 wavelength are widely used as optical filters utilizing interference. For example, as shown in FIG. 2, a TiO 2 layer (8) (refractive index 2.3) as a high refractive index thin film and an SiO 2 layer (9) (refractive index 1.5) as a low refractive index thin film have an optical thickness. Is 1/4
When the layers are alternately and repeatedly laminated with the wavelength thickness, the center wavelength λ
At 0 (a quarter wavelength is a wavelength at which a thin film is formed), a high reflection mirror having a maximum reflectance is obtained. In addition, 1/2
By inserting a TiO 2 layer (10) or a SiO 2 film having a thickness of an integral multiple of the wavelength, an optical bandpass filter having a maximum transmittance at λ 0 is obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記のような誘電体多層膜フィルターでは、通過中心
波長は屈折率と膜厚によって決まり、通過中心波長を可
変にすることができないという問題点がある。ただし、
1/2波長の整数倍の厚みを有する膜を電気光学的効果を
有する膜、例えばLiNbO3によって構成し、電界を印加す
ることによってその屈折率を変えれば、通過中心波長を
変えることができるが、その屈折率変化は非常に小さく
実用的ではない。
The above-mentioned dielectric multilayer filter has a problem that the center wavelength of transmission is determined by the refractive index and the film thickness, and the center wavelength of transmission cannot be varied. However,
If a film having a thickness of an integral multiple of a half wavelength is formed of a film having an electro-optical effect, for example, LiNbO 3 and its refractive index is changed by applying an electric field, the center wavelength of transmission can be changed. The change in the refractive index is very small and not practical.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は以上のような点にかんがみてなされたもの
で、その目的とするところは、通過中心波長が電気的に
可変な光帯域通過フィルターを提供することにあり、そ
の要旨は、互いに屈折率が異なり且つ光学的厚さが通過
波長の1/4波長である両半導体薄膜が交互に10〜100層繰
り返し積層された半導体積層体中に、光学的厚さが通過
波長の1/2波長の整数倍である1/2波長半導体を介在させ
て構成した光学フィルターにおいて、前記1/2波長半導
体は量子井戸構造によって構成され、且つ電界の印加が
なされることを特徴とする光学フィルターである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide an optical band-pass filter whose transmission center wavelength is electrically variable. The semiconductor thickness is different and the optical thickness is 1/4 wavelength of the pass wavelength.In a semiconductor laminate in which 10 to 100 layers are repeatedly laminated alternately, the optical thickness is 1/2 wavelength of the pass wavelength. An optical filter having an integer multiple of a half-wave semiconductor interposed therebetween, wherein the half-wave semiconductor is formed of a quantum well structure and an electric field is applied thereto.

〔作用〕[Action]

量子井戸構造の層厚方向に104〜105V/cm程度の電界を
印加すると、屈折率が大きく変化することが知られてい
る。本発明はこの現象を利用したもので、上記構造の干
渉フィルターにおいて、挾入された量子井戸構造からな
る薄膜に電界を印加すると、この薄膜の屈折率が変化し
て光学的厚さが変化し、したがって、透過光の中心波長
が変化する。このようにして、本発明によれば、透過光
の中心波長を電気的に制御することができる多層膜干渉
フィルターを得ることができる。
It is known that when an electric field of about 10 4 to 10 5 V / cm is applied in the thickness direction of the quantum well structure, the refractive index changes significantly. The present invention utilizes this phenomenon. In an interference filter having the above structure, when an electric field is applied to a thin film having a sandwiched quantum well structure, the refractive index of the thin film changes and the optical thickness changes. Therefore, the center wavelength of the transmitted light changes. Thus, according to the present invention, a multilayer interference filter capable of electrically controlling the center wavelength of transmitted light can be obtained.

〔実施例〕 以下図面に示した実施例に基づいて本発明を説明す
る。
[Examples] The present invention will be described below based on examples shown in the drawings.

第1図は本発明にかかわる光フィルターの一実施例の
要部断面図であり、InP基板(1)上に光学的厚さが1/4
波長厚さであるGaInAsP層(2)とInP層(3)を交互に
繰り返し30層積層して多層構造とし、そのほぼ中央付近
に量子井戸構造からなる光学的厚さが1/2波長の整数倍
である多重量子井戸層(4)が挾入されている。この多
重量子井戸層(4)は100ÅのGaInAsP層と100ÅのInPバ
ッファ層を14回繰り返して積層したものである。多層膜
上には、GaInAsPコンタクト層(5)を介して電極
(7)が設けられ、InP基板(1)側にはもう一方の電
極(6)が設けられている。
FIG. 1 is a cross-sectional view of a main part of an embodiment of an optical filter according to the present invention. The optical filter has an optical thickness of 1/4 on an InP substrate (1).
A GaInAsP layer (2) and an InP layer (3) having a wavelength thickness of 30 layers are alternately and repeatedly laminated to form a multilayer structure, and the optical thickness of a quantum well structure near its center is an integer of 1/2 wavelength. The double quantum well layer (4) is sandwiched. This multiple quantum well layer (4) is formed by repeatedly stacking a 100 ° GaInAsP layer and a 100 ° InP buffer layer 14 times. An electrode (7) is provided on the multilayer film via a GaInAsP contact layer (5), and another electrode (6) is provided on the InP substrate (1) side.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、多層膜干渉フィ
ルターにおいて、光学的厚さが1/4波長の薄膜が半導体
よりなり、光学的厚さが1/2波長の整数倍である薄膜が
量子井戸構造からなるため、電界を印加することによ
り、通過中心波長を制御できるという優れた効果があ
る。
As described above, according to the present invention, in a multilayer interference filter, a thin film having an optical thickness of / 4 wavelength is made of a semiconductor, and a thin film whose optical thickness is an integral multiple of 波長 wavelength is a quantum film. Since it has a well structure, there is an excellent effect that the center wavelength of transmission can be controlled by applying an electric field.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる一実施例の要部断面図であり、
第2図は一従来例の要部断面図である。 1……InP基板、2……GaInAsP層、3……InP層、4…
…多重量子井戸層、5……GaInAsPコンタクト層、6,7…
…電極、8,10……TiO2層、9……SiO2層。
FIG. 1 is a sectional view of a main part of an embodiment according to the present invention,
FIG. 2 is a sectional view of a main part of one conventional example. 1 ... InP substrate, 2 ... GaInAsP layer, 3 ... InP layer, 4 ...
… Multiple quantum well layer, 5… GaInAsP contact layer, 6,7…
... electrode, 8,10 ...... TiO 2 layer, 9 ...... SiO 2 layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに屈折率が異なり且つ光学的厚さが通
過波長の1/4波長である両半導体薄膜が交互に繰り返し
積層された半導体積層体中に、光学的厚さが通過波長の
1/2波長の整数倍である1/2波長半導体を介在させて構成
した光学フィルターにおいて、前記1/2波長半導体は量
子井戸構造によって構成され、且つ電界の印加がなされ
ることを特徴とする光学フィルター。
1. A semiconductor laminate in which both semiconductor thin films having different refractive indices and an optical thickness of / 4 wavelength of a passing wavelength are alternately and repeatedly laminated, an optical thickness of the semiconductor thin film having a passing wavelength is included.
In an optical filter configured with a half-wavelength semiconductor that is an integral multiple of a half-wavelength, the half-wavelength semiconductor is formed of a quantum well structure, and an electric field is applied. Optical filter.
JP834589A 1989-01-17 1989-01-17 Optical filter Expired - Fee Related JP2697882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP834589A JP2697882B2 (en) 1989-01-17 1989-01-17 Optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP834589A JP2697882B2 (en) 1989-01-17 1989-01-17 Optical filter

Publications (2)

Publication Number Publication Date
JPH02187732A JPH02187732A (en) 1990-07-23
JP2697882B2 true JP2697882B2 (en) 1998-01-14

Family

ID=11690630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP834589A Expired - Fee Related JP2697882B2 (en) 1989-01-17 1989-01-17 Optical filter

Country Status (1)

Country Link
JP (1) JP2697882B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758631A1 (en) * 1997-01-23 1998-07-24 Alsthom Cge Alcatel Tuning Fabry-Perot filter by refractive index variation
US6262830B1 (en) 1997-09-16 2001-07-17 Michael Scalora Transparent metallo-dielectric photonic band gap structure
US5907427A (en) 1997-10-24 1999-05-25 Time Domain Corporation Photonic band gap device and method using a periodicity defect region to increase photonic signal delay
US6304366B1 (en) 1998-04-02 2001-10-16 Michael Scalora Photonic signal frequency conversion using a photonic band gap structure
US6396617B1 (en) 1999-05-17 2002-05-28 Michael Scalora Photonic band gap device and method using a periodicity defect region doped with a gain medium to increase photonic signal delay
US6538794B1 (en) 1999-09-30 2003-03-25 D'aguanno Giuseppe Efficient non-linear phase shifting using a photonic band gap structure
US6339493B1 (en) 1999-12-23 2002-01-15 Michael Scalora Apparatus and method for controlling optics propagation based on a transparent metal stack
US6414780B1 (en) 1999-12-23 2002-07-02 D'aguanno Giuseppe Photonic signal reflectivity and transmissivity control using a photonic band gap structure

Also Published As

Publication number Publication date
JPH02187732A (en) 1990-07-23

Similar Documents

Publication Publication Date Title
US4367921A (en) Low polarization beam splitter
KR102466673B1 (en) Electro-optic tunable filters
US5410431A (en) Multi-line narrowband-pass filters
JP2697882B2 (en) Optical filter
JPH08166565A (en) Optical control device
JPH11202127A (en) Dichroic mirror
JP3584257B2 (en) Polarizing beam splitter
JPS61141402A (en) Polarized light separating film
JPH04145414A (en) Optical waveguide type wavelength filter
JP2001100024A (en) Multilayered optical filter
US11226503B2 (en) Tunable spectral filters
JPH0528361B2 (en)
JPH0827447B2 (en) Optical waveguide device
JP2563991B2 (en) Optical filter
JPS6177018A (en) Filter
JPH10153705A (en) Dichroic mirror
JPS6340289B2 (en)
JPH05281480A (en) Optical wavelength variable filter and its production
JPH09258116A (en) Variable wavelength filter
JPH04256904A (en) Polarizing element
JPH07104123A (en) Optical band-pass filter
JPS63220103A (en) Infrared reflection radio wave transmission mirror
JP3002059B2 (en) Optical filter
JPH08160220A (en) Optical multilayer film filter
JP2783491B2 (en) Laminated light polarization control device for near infrared to visible light region

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees