JPH06264187A - Bearing steel excellent in delay characteristic of change in microstructure caused by repeated stress load - Google Patents

Bearing steel excellent in delay characteristic of change in microstructure caused by repeated stress load

Info

Publication number
JPH06264187A
JPH06264187A JP5055975A JP5597593A JPH06264187A JP H06264187 A JPH06264187 A JP H06264187A JP 5055975 A JP5055975 A JP 5055975A JP 5597593 A JP5597593 A JP 5597593A JP H06264187 A JPH06264187 A JP H06264187A
Authority
JP
Japan
Prior art keywords
steel
bearing
rolling
repeated stress
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5055975A
Other languages
Japanese (ja)
Other versions
JP3233718B2 (en
Inventor
Satoshi Yasumoto
聡 安本
Toshiyuki Hoshino
俊幸 星野
Akihiro Matsuzaki
明博 松崎
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP05597593A priority Critical patent/JP3233718B2/en
Publication of JPH06264187A publication Critical patent/JPH06264187A/en
Application granted granted Critical
Publication of JP3233718B2 publication Critical patent/JP3233718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To develop steel for a bearing excellent in a rolling fatigue service life by the delay of the change in the microstructure caused by repeated stress loads by using high carbon steel high in Cu content and low in oxygen content as steel for a rolling bearing. CONSTITUTION:As the stock for a rolling bearing, high carbon steel contg., by weight, 0.5 to l.5% C, >1.0 to 2.5% Cu and <0.0020% O and furthermore contg. one or >= two kinds among 0.05 to 0.5% Si, 0.05 to 2.0% Mn, 0.05 to 2.5% Cr, 0.05 to 0.5% Mo, 0.05 to 1.0% Ni, 0.0005 to 0.01% B, 0.005 to 0.07% Al and 0.0005 to 0.012% N is used. By increasing the content of Cu and reducing the content of O2 for forming oxide nonmetallic inclusions, the change in the microstructure caused by repeated stress loads in the case the rolling bearing using the same as the stock is subjected to high load rolling is delayed to improve its rolling fatigue service life, so that the rolling bearing having a long service life can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼に関し、とくに多量のCuを添加することによって、繰
り返し応力負荷によって転動接触面下に発生するミクロ
組織変化(劣化)に対する遅延特性を改善してなる軸受
鋼について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and particularly when a large amount of Cu is added, it is generated under a rolling contact surface by repeated stress loading. We propose a bearing steel with improved delay characteristics against changes in microstructure (deterioration).

【0002】[0002]

【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されている。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要な性質の1つ
であるが、この転動疲労寿命に与える要因としては、鋼
中の硬質な非金属介在物の影響が大きいと考えられてい
た。そのため、最近の研究の主流は、鋼中酸素量の低減
を通じて非金属介在物の量, 大きさを制御することによ
って軸受寿命を向上させる方策がとられてきた。
2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) is most often used. In general, bearing steel has one of the important properties that a long rolling contact fatigue life is important. As a factor that affects the rolling contact fatigue life, it is considered that the hard non-metallic inclusions in the steel have a large effect. Was being considered. Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel.

【0003】例えば、軸受の転動疲労寿命の一層の向上
を目指して開発されたものとしては、特開平1−306542
号公報や特開平3−126839号公報などの提案があり、こ
れらは、鋼中の酸化物系非金属介在物の組成, 形状ある
いは分布状態をコントロールする技術である。
For example, as one developed for the purpose of further improving the rolling contact fatigue life of a bearing, Japanese Patent Laid-Open No. 1-306542 has been proposed.
There are proposals such as Japanese Patent Laid-Open Publication No. 3-126839 and Japanese Patent Laid-Open Publication No. 3-126839, which are technologies for controlling the composition, shape, or distribution state of oxide nonmetallic inclusions in steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、非金属
介在物の少ない軸受鋼を製造するには、高価な溶製設備
の設置あるいは従来設備の大幅な改良が必要であり、経
済的な負担が大きいという問題があった。また、本発明
者らが行った最近の研究成果を整理したところによれ
ば、転動寿命を決めている要因としては、従来から一般
に論じられてきた現象;すなわち、熱処理時に生じる
“脱炭層”(低C濃度領域)や上述した“非金属介在
物”の存在以外の要因もあるということが判った。とい
うのは、従来技術の下で単に脱炭層や非金属介在物を減
少させても、軸受の転動疲労寿命、特に、高負荷あるい
は高温といった過酷な条件下での軸受寿命の向上には大
きな効果が得られないことを多く経験したからである。
このことから、特有の軸受寿命を律する他の要因の存在
を確信したのである。
However, in order to manufacture a bearing steel containing few non-metallic inclusions, it is necessary to install expensive melting equipment or to greatly improve conventional equipment, which causes a large economical burden. There was a problem. Further, according to a summary of recent research results conducted by the present inventors, as a factor that determines the rolling life, a phenomenon that has been generally discussed in the past; that is, a "decarburized layer" generated during heat treatment It was found that there are other factors besides the (low C concentration region) and the presence of the above-mentioned "non-metallic inclusions". This is because simply reducing the decarburized layer and non-metallic inclusions under the conventional technique is not enough to improve the rolling contact fatigue life of the bearing, especially the bearing life under severe conditions such as high load or high temperature. This is because I experienced many things that were not effective.
From this, we were convinced of the existence of other factors that control the bearing life.

【0005】そこで、本発明者らは、転がり軸受の剥離
の発生原因について調査を行った。その結果、軸受の内
・外輪と転動体と転動体との回転接触時に発生する繰り
返し剪断応力により、転動接触面の下層部分(表層部)
に、図1(a) に示すような、帯状の白色生成物と棒状の
析出物からなるミクロ組織変化層が発生し、これが転動
回数を増すにつれて次第に成長し、終いにはこのミクロ
組織変化部から、図1(b) に示すような疲労剥離が生じ
て軸受寿命につながることがわかった。さらに軸受使用
環境の苛酷化すなわち, 高面圧化(小型化), 使用温度
の上昇は、これらミクロ組織変化が発生するまでの転動
回数を短縮し、著しい軸受寿命の低下につながるという
ことをつきとめた。すなわち、軸受寿命というのは、従
来技術のような、脱炭層や非金属介在物の制御だけでは
不十分であり、例えば、単に非金属介在物を低減させた
だけでは、上述した転動接触面下で発生するミクロ組織
変化が発生するまでの時間を遅延させることはできな
い。その結果として、軸受寿命の今まで以上の向上は図
り得ないということを知見したのである。
Therefore, the present inventors investigated the cause of the separation of the rolling bearing. As a result, due to the repeated shear stress generated during the rolling contact between the inner and outer rings of the bearing and the rolling elements, the lower layer (surface layer) of the rolling contact surface
As shown in Fig. 1 (a), a microstructure-change layer consisting of strip-shaped white products and rod-shaped precipitates is generated, which gradually grows as the number of times of rolling increases, and finally this microstructure is formed. From the changed part, it was found that fatigue delamination occurred as shown in Fig. 1 (b), leading to the life of the bearing. Furthermore, the harsh bearing operating environment, that is, high surface pressure (miniaturization) and increase in operating temperature, shortens the number of rolling cycles before these microstructural changes occur, leading to a significant reduction in bearing life. I stopped. That is, the bearing life is not sufficient by controlling the decarburization layer and the non-metallic inclusions as in the prior art, and for example, simply reducing the non-metallic inclusions would result in the above-mentioned rolling contact surface. It is not possible to delay the time until the microstructural changes that occur below occur. As a result, they have found that the bearing life cannot be further improved.

【0006】そこで、本発明の目的は、過酷な使用条件
の下での転動疲労寿命特性を向上させるために、高負荷
での軸受使用中に生成が予想されるミクロ組織変化を遅
延させることができ、ひいては軸受寿命の著しい向上を
もたらす軸受鋼を提供することにある。
Therefore, an object of the present invention is to delay the microstructural change expected to occur during the use of a bearing under a high load in order to improve the rolling contact fatigue life characteristics under severe operating conditions. And to provide a bearing steel that can significantly improve the life of the bearing.

【0007】[0007]

【課題を解決するための手段】さて、本発明者らは、上
述した知見に基づき軸受寿命として新たに“ミクロ組織
変化遅延特性”というものに着目し、それの向上を図る
には、当然そのための新たな合金設計(成分組成)が必
要であり、このことの実現なくして軸受のより一層の寿
命向上は図れないという認識に立って、さらに種々の実
験と検討とを行った。その結果、意外にもMnを多量に添
加すれば、繰り返し応力負荷による転動接触面下に生成
する上述したミクロ組織変化を著しく遅延でき、ひいて
は軸受寿命を著しく向上させることができることを見い
出し、本発明軸受鋼を開発した。
The inventors of the present invention focused on a new "microstructure change delay characteristic" as the bearing life based on the above-mentioned knowledge, and of course, it is necessary to improve it. With the recognition that a new alloy design (composition composition) of (1) is necessary and the life of the bearing cannot be further improved without realizing this, various experiments and studies were further conducted. As a result, it was unexpectedly found that by adding a large amount of Mn, the above-mentioned microstructural change generated under the rolling contact surface due to repeated stress loading can be significantly delayed, and by extension, the bearing life can be significantly improved. Invented bearing steel developed.

【0008】すなわち、本発明軸受鋼は、以下の如き要
旨構成を有するものである。 (1) C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5 wt%,
O:0.0020wt%以下を含有し、残部がFeおよび不可避的
不純物からなる、繰り返し応力負荷によるミクロ組織変
化の遅延特性に優れた軸受鋼(第1発明)。 (2) C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5 wt%,
O:0.0020wt%以下を含有し、さらに、Si:0.05〜0.5
wt%, Mn:0.05〜2.0 wt%,Cr:0.05〜2.5 wt%, M
o:0.05〜0.5 wt%,Ni:0.05〜1.0 wt%, B:0.0005
〜0.01wt%Al:0.005 〜0.07wt%及びN:0.0005〜0.01
2 wt%のうちから選ばれるいずれか1種または2種以上
を含み、残部がFeおよび不可避的不純物からなる、繰り
返し応力負荷によるミクロ組織変化の遅延特性に優れた
軸受鋼(第2発明)。 (3) C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5 wt%,
O:0.0020wt%以下を含有し、さらにSi:0.5 超〜2.5
wt%, Mn:2.0 超〜5.0 wt%,Cr:2.5 超〜8.0 wt%,
N:0.012 超〜0.050 wt%,V:0.05〜1.0 wt%, N
b:0.05〜1.0 wt%,W:0.05〜1.0 wt%, Zr:0.02〜
0.5 wt%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%
及びCo:0.05〜1.5 wt%のうちから選ばれるいずれか1
種または2種以上を含み、残部がFeおよび不可避的不純
物からなる、繰り返し応力負荷によるミクロ組織変化の
遅延特性に優れた軸受鋼(第3発明)。 (4) C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5 wt%,
O:0.0020wt%以下を含有し、さらにSi:0.05〜0.5 wt
%, Mn:0.05〜2.0 wt%,Cr:0.05〜2.5 wt%, M
o:0.05〜0.5 wt%,Ni:0.05〜1.0 wt%, B:0.0005
〜0.01wt%Al:0.005 〜0.07wt%及びN:0.0005〜0.01
2 wt%のうちから選ばれるいずれか1種または2種以上
を含み、さらにまた、Si:0.5 超〜2.5 wt%, Mn:2.0
超〜5.0 wt%,Cr:2.5 超〜8.0 wt%, N:0.012 超〜
0.050 wt%,V:0.05〜1.0 wt%, Nb:0.05〜1.0 wt
%,W:0.05〜1.0 wt%, Zr:0.02〜0.5 wt%,Ta:0.
02〜0.5 wt%, Hf:0.02〜0.5 wt%及びCo:0.05〜1.
5 wt%のうちから選ばれるいずれか1種または2種以上
を含み、残部がFeおよび不可避的不純物からなる、繰り
返し応力負荷によるミクロ組織変化の遅延特性に優れた
軸受鋼(第4発明)。
That is, the bearing steel of the present invention has the following essential constitution. (1) C: 0.5 to 1.5 wt%, Cu: over 1.0 to 2.5 wt%,
O: 0.0020 wt% or less, the balance being Fe and unavoidable impurities, and a bearing steel excellent in delay characteristics of microstructure change due to repeated stress load (first invention). (2) C: 0.5 to 1.5 wt%, Cu: over 1.0 to 2.5 wt%,
O: 0.0020 wt% or less is contained, and Si: 0.05 to 0.5
wt%, Mn: 0.05 to 2.0 wt%, Cr: 0.05 to 2.5 wt%, M
o: 0.05 to 0.5 wt%, Ni: 0.05 to 1.0 wt%, B: 0.0005
~ 0.01wt% Al: 0.005-0.07wt% and N: 0.0005-0.01
A bearing steel containing at least one selected from 2 wt% or more, and the balance being Fe and unavoidable impurities, which is excellent in delay characteristics of microstructure change due to repeated stress load (second invention). (3) C: 0.5 to 1.5 wt%, Cu: over 1.0 to 2.5 wt%,
O: 0.0020 wt% or less is included, and Si: more than 0.5 to 2.5
wt%, Mn: over 2.0 ~ 5.0 wt%, Cr: over 2.5 ~ 8.0 wt%,
N: over 0.012 ~ 0.050 wt%, V: 0.05 ~ 1.0 wt%, N
b: 0.05-1.0 wt%, W: 0.05-1.0 wt%, Zr: 0.02-
0.5 wt%, Ta: 0.02-0.5 wt%, Hf: 0.02-0.5 wt%
And Co: any one selected from 0.05 to 1.5 wt% 1
A bearing steel containing three or more kinds, and the balance consisting of Fe and inevitable impurities, which is excellent in delay characteristics of microstructure change due to repeated stress load (third invention). (4) C: 0.5-1.5 wt%, Cu: over 1.0-2.5 wt%,
O: 0.0020 wt% or less, Si: 0.05-0.5 wt%
%, Mn: 0.05 to 2.0 wt%, Cr: 0.05 to 2.5 wt%, M
o: 0.05 to 0.5 wt%, Ni: 0.05 to 1.0 wt%, B: 0.0005
~ 0.01wt% Al: 0.005-0.07wt% and N: 0.0005-0.01
It contains one or more selected from 2 wt%, and further, Si: more than 0.5 to 2.5 wt%, Mn: 2.0.
Over ~ 5.0 wt%, Cr: over 2.5 ~ 8.0 wt%, N: over 0.012 ~
0.050 wt%, V: 0.05 to 1.0 wt%, Nb: 0.05 to 1.0 wt
%, W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, Ta: 0.
02-0.5 wt%, Hf: 0.02-0.5 wt% and Co: 0.05-1.
A bearing steel containing at least one selected from the group consisting of 5 wt% or more, and the balance consisting of Fe and inevitable impurities, which is excellent in delay characteristics of microstructure change due to repeated stress load (fourth invention).

【0009】[0009]

【作用】以下に、上記合金設計になる本発明軸受鋼に想
到した背景につき、本発明者らが行った実験結果に基づ
いて説明する。まず、実験に当たり、 SUJ 2 ( C:1.02wt%, Si:0.25wt%, Mn:0.45wt
%, Cr:1.35wt%, N:0.0040wt%, O:0.0012wt%)
と、Cuを添加した2種の材料 (C:0.98wt%, Si:0.25wt%, Mn:0.42wt%, C
r:1.32wt%, Cu:1.20wt%, O:8 ppm , N:38 ppm) (C:0.96wt%, Si:0.25wt%, Mn:0.44wt%, C
r:1.31wt%, Cu:1.83wt%, O:9 ppm , N:43 ppm) についての供試鋼材を作製した。ついで、これらの供試
材を焼ならし、球状化焼ならし、焼入れ焼もどしの各処
理を施したのち、それぞれの供試材から12mmφ×22mmの
円筒型の試験片を作製した。
The background to the idea of the bearing steel of the present invention having the above alloy design will be described below based on the results of experiments conducted by the present inventors. First, in the experiment, SUJ 2 (C: 1.02 wt%, Si: 0.25 wt%, Mn: 0.45 wt
%, Cr: 1.35 wt%, N: 0.0040 wt%, O: 0.0012 wt%)
And two materials with Cu added (C: 0.98wt%, Si: 0.25wt%, Mn: 0.42wt%, C
r: 1.32wt%, Cu: 1.20wt%, O: 8ppm, N: 38ppm) (C: 0.96wt%, Si: 0.25wt%, Mn: 0.44wt%, C
r: 1.31 wt%, Cu: 1.83 wt%, O: 9 ppm, N: 43 ppm) were prepared as test steel materials. Then, these test materials were subjected to normalizing treatment, spheroidizing normalizing treatment, quenching and tempering treatment, and 12 mmφ × 22 mm cylindrical test pieces were produced from the respective test materials.

【0010】次に、これらの試験片をラジアルタイプ型
の転動疲労寿命試験機を用い、ヘルツ最大接触応力:60
kgf/mm2 , 46500 cpm の負荷条件の下で転動疲労寿命の
試験を行った。試験結果は、ワイブル分布確立紙上にプ
ロットし, 材料強度の上昇による転動疲労寿命の向上を
示す数値と見られるB10(10%累積破損確率) と高負荷
転動時の繰り返し応力負荷によるミクロ組織変化発生を
遅延させることによる転動疲労寿命の向上を示す数値と
見られるB50(50%累積破損確率)とを求めた。
Next, these test pieces were subjected to a Hertz maximum contact stress: 60 using a radial type rolling fatigue life tester.
A rolling fatigue life test was conducted under load conditions of kgf / mm 2 and 46500 cpm. The test results are plotted on Weibull distribution establishment paper, and are considered to be the numerical values showing the improvement of rolling contact fatigue life due to the increase of material strength. B 10 (10% cumulative failure probability) B 50 (50% cumulative failure probability), which is considered to be a numerical value showing the improvement of rolling fatigue life by delaying the occurrence of microstructural change, was determined.

【0011】その結果、表1に示すように、高Cu添加材
については、前記B10値についての改善はそれほど大き
くないが、B50値については著しく高い数値を示し、軸
受平均寿命はSUJ 2 に比べてB10値で約 1.5倍、B50
で約20倍もの改善を示すことが認められた。とくに、Cu
の多量添加は高負荷転動中に生成するミクロ組織変化の
遅延に対して極めて有効であり、その分、破損(寿命)
を遅延させることが期待できる。
As a result, as shown in Table 1, with respect to the high Cu-added material, the B 10 value was not so much improved, but the B 50 value was remarkably high, and the average bearing life was SUJ 2 It was confirmed that the B 10 value showed an improvement of about 1.5 times, and the B 50 value showed an improvement of about 20 times. Especially Cu
Addition of a large amount of is extremely effective in delaying the microstructural change that occurs during rolling under high load, and by that much, damage (life)
Can be expected to be delayed.

【0012】[0012]

【表1】 [Table 1]

【0013】図2は、上記実験結果をまとめたものであ
って、非金属介在物に起因する軸受寿命とミクロ組織変
化に起因する寿命の変化との関係を示す模式図である。
この図に明らかなように、従来のように累積破損確率10
%のB10値で示される軸受寿命(以下、これを「B10
動疲労寿命」という)によれば、Cuを多量に添加しても
その効果は期待した程には顕れない。しかし、これをB
50値でみると、Cuの多量添加の効果は極めて顕著なもの
となり、苛酷な条件下, すなわちミクロ組織変化生成環
境の下での軸受寿命を意識する限り、かかるB50に優れ
ているという評価は不可欠のものであることが判った。
FIG. 2 summarizes the above experimental results and is a schematic diagram showing the relationship between the bearing life due to non-metallic inclusions and the life change due to microstructural changes.
As is clear from this figure, the cumulative damage probability 10
According to the bearing life indicated by the B 10 value of% (hereinafter, referred to as “B 10 rolling contact fatigue life”), even if a large amount of Cu is added, the effect does not appear as expected. But this is B
The 50 value shows that the effect of adding a large amount of Cu becomes extremely remarkable, and as long as the bearing life under severe conditions, that is, in the microstructure change generation environment, is considered, it is evaluated that B 50 is excellent. Proved to be essential.

【0014】そこで、本発明においては、繰り返し応力
負荷によるミクロ組織変化遅延特性の改善を図るという
観点から、以下に説明するような成分組成の範囲を決定
した。
Therefore, in the present invention, the range of the composition of components as described below is determined from the viewpoint of improving the microstructure change delaying property due to repeated stress loading.

【0015】C: 0.5〜1.5 wt% Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保と、そ
れによる転動疲労寿命を向上させるために含有させる。
その含有量が0.5 wt%未満ではこうした効果が得られな
い。一方、 1.5wt%超では非酸化性, 鍛造性が低下する
ので、 0.5〜1.5 wt%の範囲に限定した。
C: 0.5 to 1.5 wt% C is an element which forms a solid solution in the matrix and effectively acts on the strengthening of martensite, and secures the strength after quenching and tempering and improves the rolling contact fatigue life. Is included for
If the content is less than 0.5 wt%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 wt%, the non-oxidizing property and the forgeability deteriorate, so the range was limited to 0.5 to 1.5 wt%.

【0016】Si:0.05〜0.5 wt%, 0.5 超〜2.5 wt%以
下 Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ, 焼もど
し後の強度を高めて転動疲労寿命を向上させる元素とし
て有効である。こうした目的の下に添加されるSiの含有
量は、0.05〜0.5 wt%の範囲とする。さらに、このSi
は、0.5 %wt%超を添加すると、繰り返し応力負荷の下
でのミクロ組織変化の遅延をもたらして転動疲労寿命を
向上させる効果がある。しかし、その含有量が 2.5wt%
を超えると、その効果が飽和する一方で加工性や靱性を
低下させるので、ミクロ組織変化遅延特性のより一層の
向上のためには、 0.5超〜2.5 wt%を添加することが有
効である。
Si: 0.05 to 0.5 wt%, more than 0.5 to 2.5 wt% or less Si is used as a deoxidizing agent during the melting of steel, and is also solid-dissolved in the matrix to increase the resistance to tempering and quenching, It is effective as an element that increases the strength after tempering and improves the rolling fatigue life. The content of Si added for this purpose is in the range of 0.05 to 0.5 wt%. Furthermore, this Si
Has the effect of delaying the microstructural change under cyclic stress loading and improving the rolling fatigue life by adding more than 0.5% by weight. However, its content is 2.5 wt%
If it exceeds 0.1%, the effect is saturated while the workability and toughness are lowered. Therefore, in order to further improve the microstructure change retardation property, it is effective to add more than 0.5 to 2.5 wt%.

【0017】Mn:0.05〜2.0 wt%, 2.0 超〜5.0 wt% Mnは、鋼の溶製時に脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性, 硬度を向上さ
せ、転動疲労寿命の向上に有効に作用する。こうした目
的のためには、0.05〜2.0 wt%の添加があれば十分であ
る。しかし、このMnを、 2.0wt%を超えて添加すること
により、Alと同様に転動時の繰返し応力の負荷によるミ
クロ組織変化を著しく遅延させる効果を有し、転動疲労
寿命を改善する。しかし、5.0 wt%を超える添加では、
多量の残留γが発生して強度ならびに寸法安定性が低下
するため、この目的のためには、 2.0超〜5.0 wt%の範
囲で添加する。
Mn: 0.05 to 2.0 wt%, more than 2.0 to 5.0 wt% Mn acts as a deoxidizing agent during the melting of steel, and is an element effective for reducing oxygen in steel. Also, by improving the hardenability of steel, it improves the toughness and hardness of the base martensite, and effectively acts to improve the rolling fatigue life. For these purposes, the addition of 0.05 to 2.0 wt% is sufficient. However, adding more than 2.0 wt% of Mn has the effect of significantly delaying the microstructural change due to the load of cyclic stress during rolling, similar to Al, and improves the rolling fatigue life. However, with the addition of more than 5.0 wt%,
Since a large amount of residual γ is generated and strength and dimensional stability are reduced, for this purpose, it is added in the range of more than 2.0 to 5.0 wt%.

【0018】O:0.0020wt%以下 Oは、硬質な非金属介在物を形成するので、たとえ他の
成分の制御によって繰り返し応力負荷によるミクロ組織
変化の遅延が得られたとしても、転動疲労寿命の低下を
招くことがあるから、可能なかぎり低いことが望まし
い。しかし、0.0020wt%以下の含有量であれば許容でき
る。
O: 0.0020 wt% or less O forms a hard non-metallic inclusion, so even if a delay in microstructure change due to repeated stress loading is obtained by controlling other components, rolling fatigue life Therefore, it is desirable to be as low as possible. However, a content of 0.0020 wt% or less is acceptable.

【0019】Cr:0.05〜2.5 wt%, 2.5 超〜8.0 wt% Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては転動
疲労寿命を向上させる成分である。この効果を得るため
には、0.05〜2.5 wt%の添加で十分である。さらに、こ
のCrは、 2.5wt%を超えて多量に添加した場合には、繰
返し応力負荷によって発生するミクロ組織変化を遅延せ
しめて、この面での転動疲労寿命を向上させるのに有効
である。そして、この目的のためのCr添加の効果は、
8.0wt%を超えると飽和するのみならず、却って焼入れ
時の固溶C量の低下を招いて強度が低下する。従って、
この目的のために添加するときは、 2.5超〜8.0 wt%と
しなければならない。
Cr: 0.05 to 2.5 wt%, more than 2.5 to 8.0 wt% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and eventually improves rolling contact fatigue life. To obtain this effect, addition of 0.05 to 2.5 wt% is sufficient. Furthermore, when Cr is added in a large amount exceeding 2.5 wt%, it is effective in delaying the microstructural change caused by repeated stress loading and improving the rolling fatigue life in this aspect. . And the effect of Cr addition for this purpose is
If it exceeds 8.0 wt%, not only is it saturated, but rather, the amount of solid solution C during quenching is reduced and the strength is reduced. Therefore,
When it is added for this purpose, it should be more than 2.5 to 8.0 wt%.

【0020】Mo:0.05〜0.5 wt% Moは、残留炭化物の安定化により耐摩耗性を向上させる
元素である。とくに0.05〜0.5 wt%を添加すると、焼入
れ性を増大して焼入れ焼もどし後の強度向上に寄与する
と共に、安定炭化物の析出により、耐摩耗性と転動疲労
寿命とを向上させる。
Mo: 0.05 to 0.5 wt% Mo is an element that improves wear resistance by stabilizing residual carbides. In particular, the addition of 0.05 to 0.5 wt% increases the hardenability and contributes to the improvement of the strength after quenching and tempering, and the precipitation of stable carbide improves the wear resistance and rolling fatigue life.

【0021】Ni:0.05〜1.0 wt% Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、このことによって転動
疲労寿命を向上させる。この効果は、0.05wt%以上の添
加によって発現し、1.0 wt%になると飽和すると共に残
留γが多量に生成して硬さの低下を招き、ひいては転動
疲労寿命の劣化を招くので、0.05〜1.0wt%の範囲内で
添加する。
Ni: 0.05 to 1.0 wt% Ni enhances the hardenability and increases the strength after quenching and tempering to improve the toughness, and thereby improves the rolling fatigue life. This effect is exhibited by the addition of 0.05 wt% or more, becomes saturated at 1.0 wt% and produces a large amount of residual γ, which leads to a decrease in hardness and eventually a deterioration in rolling contact fatigue life. Add within the range of 1.0 wt%.

【0022】Cu:1.0 超〜2.5 wt% このMnは、本発明において最も重要な役割を担っている
元素であり、とくにこのCuを 1.0wt%を超えて多量に含
有させた場合には、高負荷転動時の繰り返し応力負荷に
よって発生する上述したミクロ組織変化を遅らすことに
よって、B50転動転動疲労寿命を著しく向上させること
になる。ただし、その量が 2.5wt%を超えるとこの添加
効果が飽和するとともに、却って鍛造性の低下を招くこ
とになる。従って、このCuは、 1.0超〜2.5 wt%の範囲
で含有させることが必要である。
Cu: more than 1.0 to 2.5 wt% This Mn is an element that plays the most important role in the present invention, and especially when this Cu is contained in a large amount exceeding 1.0 wt%, By delaying the above-mentioned microstructural changes caused by repeated stress loading during load rolling, the B 50 rolling contact rolling fatigue life is significantly improved. However, if the amount exceeds 2.5 wt%, the effect of this addition saturates, and rather the forgeability deteriorates. Therefore, this Cu must be contained in the range of more than 1.0 to 2.5 wt%.

【0023】B:0.0005〜0.01wt% Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、転動疲労寿命を向上させるので、0.0005wt%以上
を添加する。しかしながら、0.01wt%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01wt%の範囲に
限定する。
B: 0.0005 to 0.01 wt% B is added in an amount of 0.0005 wt% or more because it increases the hardenability and thereby enhances the strength after quenching and tempering and improves the rolling contact fatigue life. However, if added in excess of 0.01 wt%, the workability deteriorates, so the range is limited to 0.0005 to 0.01 wt%.

【0024】Al:0.05〜0.07wt% Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靱性向上に寄
与する。また、焼入れ焼もどし後の強度を高めることに
よる転動疲労寿命の向上にも有効に作用する。このよう
な作用のためにAlは、0.05〜0.07wt%添加することが有
効である。
Al: 0.05-0.07 wt% Al is used as a deoxidizer during the melting of steel, and at the same time,
Combines with N in the steel to refine the crystal grains and contribute to the improvement of the toughness of the steel. Further, it effectively acts to improve the rolling contact fatigue life by increasing the strength after quenching and tempering. For such an effect, it is effective to add 0.05 to 0.07 wt% of Al.

【0025】N:0.0005〜0.012 wt%, 0.012 超〜0.05
wt% Nは、窒化物形成元素と結合して結晶粒を微細化すると
共に、基地に固溶して焼入れ焼もどし後の強度を高め、
転動疲労寿命を向上させる。この目的のためには0.0005
〜0.012 wt%の範囲内で添加する。また、このNは、0.
012 wt%を超えて添加した場合には、繰り返し応力の負
荷によって発生するミクロ組織変化を遅らせることによ
り、この面での転動疲労寿命を向上させる。ただし、そ
の量が0.05wt%を超えると、加工性が低下するため、こ
の目的のためには0.012 超〜0.05wt%を添加する。
N: 0.0005 to 0.012 wt%, more than 0.012 to 0.05
wt% N combines with the nitride-forming element to refine the crystal grains and to form a solid solution in the matrix to enhance the strength after quenching and tempering.
Improves rolling fatigue life. 0.0005 for this purpose
Add within 0.012 wt%. Also, this N is 0.
When added in excess of 012 wt%, the rolling fatigue life in this aspect is improved by delaying the microstructural change that occurs due to repeated stress loading. However, if the amount exceeds 0.05 wt%, the workability decreases, so for this purpose, more than 0.012 to 0.05 wt% is added.

【0026】P≦0.025 wt% Pは、鋼の靱性ならびに転動疲労寿命を低下させること
から可能なかぎり低いことが望ましく、その許容上限は
0.025 wt%である。
P ≦ 0.025 wt% P is desired to be as low as possible because it lowers the toughness and rolling contact fatigue life of the steel, and the upper limit of its allowable limit is
It is 0.025 wt%.

【0027】S≦0.025 wt% Sは、Mnと結合してMnSを形成し、被削性を向上させ
る。しかし、多量に含有させると転動疲労寿命を低下さ
せることから、0.025 wt%を上限としなければならな
い。
S ≦ 0.025 wt% S combines with Mn to form MnS and improves the machinability. However, if it is contained in a large amount, the rolling contact fatigue life will be reduced, so 0.025 wt% must be the upper limit.

【0028】以上、繰り返し応力負荷によるミクロ組織
変化を遅延させることによる転動疲労寿命を改善すると
共に、強度の上昇を通じて転動疲労寿命を改善するため
の主要成分(CuおよびSi, Mn, Cr, Mo, Ni, B, Al,
N)およびC,P,Sの限定理由について説明したが、
本発明ではさらに、V, Nb, W, Zr, Ta, HfおよびCoの
うちから選ばれるいずれか1種または2種以上を添加す
ることにより、高負荷時の転動疲労寿命を改善させるよ
うにしてもよい。
As described above, the main components (Cu and Si, Mn, Cr, etc.) for improving the rolling fatigue life by delaying the microstructure change due to repeated stress loading and improving the rolling fatigue life by increasing the strength are described. Mo, Ni, B, Al,
N) and the reason for limiting C, P, S is explained,
The present invention further improves the rolling fatigue life under high load by adding one or more selected from V, Nb, W, Zr, Ta, Hf and Co. May be.

【0029】上記各元素の好適添加範囲と添加の目的、
上限値、下限値限定の理由につき、表2にまとめて示
す。
The preferred range of addition of each element and the purpose of addition,
The reasons for limiting the upper limit and the lower limit are summarized in Table 2.

【表2】 [Table 2]

【0030】なお、本発明においては、被削性を改善す
るために、さらにS,Se, Te, REM,Pb, Bi, Ca, Ti, M
g,P,Sn, As等を添加しても、上述した本発明の目的で
ある繰り返し応力負荷によるミクロ組織変化による遅延
特性を阻害することはなく、容易に被削性を改善するこ
とができるので、必要に応じて添加してもよい。
In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, M are further added.
Even if g, P, Sn, As, etc. are added, the machinability can be easily improved without impeding the retardation property due to the change in microstructure due to the repeated stress load, which is the object of the present invention. Therefore, you may add as needed.

【0031】[0031]

【実施例】表3, 4, 5に示す成分組成の鋼を常法にて
溶製し、得られた鋼材につき1240℃で30h の拡散焼鈍の
後に65mmφの棒鋼に圧延した。次いで、焼ならし−球状
化焼なまし−焼入れ−焼もどしの順で熱処理を行い、ラ
ッピング仕上げにより12mmφ×22mmの円筒型転動疲労寿
命試験片を作製した。そして、上記各試験片について、
軸受平均寿命であるB50転動疲労寿命の試験を行った。
このB50転動疲労寿命試験は、ラジアルタイプの転動疲
労寿命試験機を用いて、ヘルツ最大接触応力:600 kgf/
mm2 , 繰り返し応力数約46500 cpm の条件で行ったもの
である。試験結果は、ワイブル分布に従うものとして確
率紙上にまとめ、鋼材No. 1 (従来鋼である SUJ2) の
平均寿命 (累積破損確率:50%における、剥離発生まで
の総負荷回数) を1として、その他の鋼種のものを対比
して評価した。その評価結果も、表3, 4, 5にそれぞ
れ示した。
EXAMPLE Steels having the compositions shown in Tables 3, 4, and 5 were melted by a conventional method, and the obtained steel materials were diffusion-annealed at 1240 ° C. for 30 hours and then rolled into steel bars of 65 mmφ. Then, heat treatment was performed in the order of normalizing-spheroidizing annealing-quenching-tempering, and a 12 mmφ x 22 mm cylindrical rolling fatigue life test piece was prepared by lapping finish. And for each of the above test pieces,
A test of B 50 rolling contact fatigue life, which is the average bearing life, was conducted.
This B 50 rolling contact fatigue life test uses a radial type rolling contact fatigue life tester and the Hertz maximum contact stress: 600 kgf /
The test was performed under the condition of mm 2 , cyclic stress number of about 46500 cpm. The test results are summarized on the probability paper according to the Weibull distribution, and the average life of steel No. 1 (SUJ2, which is the conventional steel) (cumulative damage probability: 50%, the total number of loads before peeling) is set to 1, and others The steel grades were evaluated in comparison. The evaluation results are also shown in Tables 3, 4, and 5, respectively.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】表3, 4, 5に示す結果から明らかなよう
に、鋼中C量が本発明範囲外である鋼材No.2、鋼中Cu量
が本発明範囲外である鋼材No.3ならびに鋼中O量が本発
明範囲外である鋼材No.4の平均寿命は、いずれも従来鋼
(鋼材No. 1)に比べて低い。これに対し、本発明鋼で
ある鋼材No.5〜 47 の平均寿命は、従来鋼(鋼材No.4
4)に比較して 2.6〜58.9倍も優れている。すなわち、
軸受鋼へのCuの添加がミクロ組織変化を著しく遅延し、
その結果転動疲労寿命の向上に有効に作用したことが窺
える。
As is clear from the results shown in Tables 3, 4, and 5, steel material No. 2 having a C content in the steel outside the scope of the present invention, steel material No. 3 having a Cu content in the steel outside the scope of the present invention, and The average life of steel material No. 4 in which the amount of O in the steel is outside the range of the present invention is lower than that of the conventional steel (steel material No. 1). On the other hand, the average life of steel materials No. 5 to 47, which are steels of the present invention, is
It is 2.6-58.9 times better than 4). That is,
The addition of Cu to the bearing steel significantly delays the microstructural change,
As a result, it can be seen that it effectively acted to improve the rolling fatigue life.

【0036】なかでも、Cuに加えてさらに強度上昇によ
る寿命改善成分とミクロ組織変化遅延による寿命改善成
分とを併せて添加してなる鋼No.32 〜47の場合には、上
記平均寿命(B50転動疲労寿命)は、低くとも23倍もの
寿命比を示した。
Above all, in the case of Steel Nos. 32 to 47 in which, in addition to Cu, a life-improving component due to strength increase and a life-improving component due to delay of microstructural change were added together, the above average life (B 50 rolling fatigue life) showed a life ratio as high as 23 times at the lowest.

【0037】[0037]

【発明の効果】以上説明したとおり、本発明によれば、
基本的には1.0 wt%超の高Cu含有軸受鋼とすることによ
り、繰り返し応力負荷に伴うミクロ組織変化の遅延をも
たらすことによる転動疲労寿命の向上を達成して、高寿
命の軸受用の鋼を提供することができる。従って、従来
技術の下では不可欠とされていた、より一層の鋼中酸素
量の低減あるいは鋼中に存在する酸化物系非金属介在物
の組成, 形状, ならびにその分布状態をコントロールす
るために必要となる製鋼設備の改良あるいは建設が不必
要である。また、本発明にかかる軸受鋼の開発によっ
て、転がり軸受の小型化ならびに軸受使用温度のより以
上の上昇が可能となる。
As described above, according to the present invention,
Basically, by using a bearing steel with a high Cu content of more than 1.0 wt%, it is possible to achieve an improvement in rolling contact fatigue life by delaying the microstructural change due to repeated stress loading, and for bearings with long life. Steel can be provided. Therefore, it is necessary to further reduce the oxygen content in steel or control the composition, shape, and distribution state of oxide-based nonmetallic inclusions present in steel, which was indispensable under the conventional technology. It is not necessary to improve or construct steelmaking equipment. Further, the development of the bearing steel according to the present invention enables downsizing of the rolling bearing and further increase of the bearing operating temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】繰り返し応力負荷の下に、発生するミクロ組織
変化の様子を示す金属組織の顕微鏡写真。
FIG. 1 is a micrograph of a metal structure showing a state of microstructure change that occurs under repeated stress loading.

【図2】介在物に起因する軸受寿命とミクロ組織変化に
起因する軸受寿命とに及ぼすCuの影響を示す説明図。
FIG. 2 is an explanatory diagram showing the influence of Cu on the bearing life due to inclusions and the bearing life due to microstructural changes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 明博 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akihiro Matsuzaki, 1st Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba Address: Kawasaki Steel Corporation Technical Research Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5
wt%,O:0.0020wt%以下を含有し、残部がFe および
不可避的不純物からなる、繰り返し応力負荷によるミク
ロ組織変化の遅延特性に優れた軸受鋼。
1. C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5
wt%, O: 0.0020 wt% or less, the balance being Fe and unavoidable impurities, and a bearing steel excellent in delay characteristics of microstructure change due to repeated stress loading.
【請求項2】C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5
wt%,O:0.0020wt%以下を含有し、さらに、Si:0.05
〜0.5 wt%, Mn:0.05〜2.0 wt%,Cr:0.05〜2.5 wt
%, Mo:0.05〜0.5 wt%,Ni:0.05〜1.0 wt%,
B:0.0005〜0.01wt%Al:0.005 〜0.07wt%及びN:0.
0005〜0.012 wt%のうちから選ばれるいずれか1種また
は2種以上を含み、残部がFeおよび不可避的不純物から
なる、繰り返し応力負荷によるミクロ組織変化の遅延特
性に優れた軸受鋼。
2. C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5
wt%, O: 0.0020 wt% or less, Si: 0.05
~ 0.5 wt%, Mn: 0.05 ~ 2.0 wt%, Cr: 0.05 ~ 2.5 wt
%, Mo: 0.05 to 0.5 wt%, Ni: 0.05 to 1.0 wt%,
B: 0.0005 to 0.01 wt% Al: 0.005 to 0.07 wt% and N: 0.
[0005] A bearing steel containing one or more selected from the range of 0.01 to 0.012 wt% and the balance being Fe and unavoidable impurities and having excellent delay characteristics of microstructure change due to repeated stress loading.
【請求項3】C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5
wt%,O:0.0020wt%以下を含有し、さらにSi:0.5 超
〜2.5 wt%, Mn:2.0 超〜5.0 wt%,Cr:2.5 超〜8.0 w
t%, N:0.012 超〜0.050 wt%,V:0.05〜1.0 wt%,
Nb:0.05〜1.0 wt%,W:0.05〜1.0 wt%, Zr:0.0
2〜0.5 wt%,Ta:0.02〜0.5 wt%, Hf:0.02〜0.5 wt
%及びCo:0.05〜1.5 wt%のうちから選ばれるいずれか
1種または2種以上を含み、残部がFeおよび不可避的不
純物からなる、繰り返し応力負荷によるミクロ組織変化
の遅延特性に優れた軸受鋼。
3. C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5
wt%, O: 0.0020 wt% or less, Si: more than 0.5 to 2.5 wt%, Mn: more than 2.0 to 5.0 wt%, Cr: more than 2.5 to 8.0 w
t%, N: more than 0.012 ~ 0.050 wt%, V: 0.05 ~ 1.0 wt%,
Nb: 0.05 to 1.0 wt%, W: 0.05 to 1.0 wt%, Zr: 0.0
2 to 0.5 wt%, Ta: 0.02 to 0.5 wt%, Hf: 0.02 to 0.5 wt
% And Co: 0.05 to 1.5 wt% selected from the group consisting of one or more, and the balance being Fe and unavoidable impurities, the balance of which is excellent in delay characteristics of microstructural change due to repeated stress loading. .
【請求項4】C: 0.5〜1.5 wt%, Cu:1.0 超〜2.5
wt%,O:0.0020wt%以下を含有し、さらにSi:0.05〜
0.5 wt%, Mn:0.05〜2.0 wt%,Cr:0.05〜2.5 wt%,
Mo:0.05〜0.5 wt%,Ni:0.05〜1.0 wt%, B:0.
0005〜0.01wt%Al:0.005 〜0.07wt%及びN:0.0005〜
0.012 wt%のうちから選ばれるいずれか1種または2種
以上を含み、さらにまた、Si:0.5 超〜2.5 wt%, Mn:
2.0 超〜5.0 wt%,Cr:2.5 超〜8.0 wt%, N:0.012
超〜0.050 wt%,V:0.05〜1.0 wt%, Nb:0.05〜1.0
wt%,W:0.05〜1.0 wt%, Zr:0.02〜0.5 wt%,T
a:0.02〜0.5 wt%, Hf:0.02〜0.5 wt%及びCo:0.0
5〜1.5 wt%のうちから選ばれるいずれか1種または2
種以上を含み、残部がFeおよび不可避的不純物からな
る、繰り返し応力負荷によるミクロ組織変化の遅延特性
に優れた軸受鋼。
4. C: 0.5 to 1.5 wt%, Cu: more than 1.0 to 2.5
wt%, O: 0.0020 wt% or less, Si: 0.05-
0.5 wt%, Mn: 0.05 to 2.0 wt%, Cr: 0.05 to 2.5 wt%,
Mo: 0.05 to 0.5 wt%, Ni: 0.05 to 1.0 wt%, B: 0.
0005-0.01wt% Al: 0.005-0.07wt% and N: 0.0005-
It contains one or more selected from 0.012 wt%, and further, Si: more than 0.5 to 2.5 wt%, Mn:
Over 2.0 ~ 5.0 wt%, Cr: over 2.5 ~ 8.0 wt%, N: 0.012
Super ~ 0.050 wt%, V: 0.05 ~ 1.0 wt%, Nb: 0.05 ~ 1.0
wt%, W: 0.05 to 1.0 wt%, Zr: 0.02 to 0.5 wt%, T
a: 0.02-0.5 wt%, Hf: 0.02-0.5 wt% and Co: 0.0
Any one or two selected from 5 to 1.5 wt%
A bearing steel that contains more than one type of material, and the balance is Fe and unavoidable impurities, and that is excellent in delay characteristics of microstructural changes due to repeated stress loading.
JP05597593A 1993-03-16 1993-03-16 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading Expired - Fee Related JP3233718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05597593A JP3233718B2 (en) 1993-03-16 1993-03-16 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05597593A JP3233718B2 (en) 1993-03-16 1993-03-16 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Publications (2)

Publication Number Publication Date
JPH06264187A true JPH06264187A (en) 1994-09-20
JP3233718B2 JP3233718B2 (en) 2001-11-26

Family

ID=13014082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05597593A Expired - Fee Related JP3233718B2 (en) 1993-03-16 1993-03-16 Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading

Country Status (1)

Country Link
JP (1) JP3233718B2 (en)

Also Published As

Publication number Publication date
JP3233718B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
JP3379789B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379781B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383348B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379780B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379788B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379784B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383352B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383350B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233725B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243326B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379783B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233718B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06271982A (en) Bearing steel excellent in property of retarding change in microstructure due to repeated stress load
JP3383351B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3383353B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233719B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233726B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading
JP3383349B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3233727B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JPH06287710A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load
JP3379782B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3243322B2 (en) Bearing steel with excellent microstructure change delay characteristics due to repeated stress loading
JP3379787B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JPH06279932A (en) Bearing steel excellent in property of retarding change in microstructure due to repetitive stress load and heat treatment productivity
JPH06287704A (en) Bearing steel excellent in heat treatment productivity as well as in property of retarding microstructural change due to repeated stress load

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees