JPH0626244B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0626244B2
JPH0626244B2 JP60042196A JP4219685A JPH0626244B2 JP H0626244 B2 JPH0626244 B2 JP H0626244B2 JP 60042196 A JP60042196 A JP 60042196A JP 4219685 A JP4219685 A JP 4219685A JP H0626244 B2 JPH0626244 B2 JP H0626244B2
Authority
JP
Japan
Prior art keywords
type
semiconductor device
mis
film
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60042196A
Other languages
Japanese (ja)
Other versions
JPS61201460A (en
Inventor
一郎 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60042196A priority Critical patent/JPH0626244B2/en
Publication of JPS61201460A publication Critical patent/JPS61201460A/en
Publication of JPH0626244B2 publication Critical patent/JPH0626244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置、特にMIS型半導体装置の構造
に関する。
The present invention relates to a semiconductor device, and more particularly to the structure of a MIS type semiconductor device.

(従来技術とその問題点) 絶縁体上に設けられた半導体膜に形成したMIS型半導体
装置いわゆるSOI(Semiconductor on Insalator)構
造のMIS型半導体装置は従来のMIS型半導体装置に
比較して接合容量及び配線容量が小さく素子分離が完全
かつ簡便であることから高速の大規模集積回路(LSI)
に適した半導体装置であるといわれる。例えば電子材
料,1982年1月の54ページから104ページ掲載
の中野元雄,佐々木伸夫による文献“SOS/CMOS
デバイス”においては、第3図(a)に示したSOS(Sil
icon on Sapphire)構造のCMOS型半導体装置のよう
な構造が示されている。SOS構造はSOI構造の一例
であり、これに対応するCMOSインバータ回路素子の平面
図を第3図(b)に示す。
(Prior Art and its Problems) A MIS type semiconductor device formed on a semiconductor film provided on an insulator, a MIS type semiconductor device having a so-called SOI (Semiconductor on Insalator) structure, has a junction capacitance higher than that of a conventional MIS type semiconductor device. In addition, since the wiring capacitance is small and element isolation is complete and simple, high-speed large-scale integrated circuits (LSI)
It is said that the semiconductor device is suitable for. For example, Electronic Materials, pages 54-104, January 1982, published by Motoo Nakano and Nobuo Sasaki, "SOS / CMOS".
In the "device", the SOS (Sil
A structure such as a CMOS type semiconductor device having an icon on Sapphire structure is shown. The SOS structure is an example of the SOI structure, and a plan view of a CMOS inverter circuit element corresponding to this is shown in FIG. 3 (b).

ここで1はサファイヤ基板、2は酸化膜、3はN形領
域、4はP形領域、5はP+形ソース・ドレイン領域、
6はN+ソース・ドレイン領域であり、7はP+形多結晶
シリコン、8はN+形多結晶シリコン、9はAl配線であ
る。
Here, 1 is a sapphire substrate, 2 is an oxide film, 3 is an N type region, 4 is a P type region, 5 is a P + type source / drain region,
Reference numeral 6 is an N + source / drain region, 7 is P + type polycrystalline silicon, 8 is N + type polycrystalline silicon, and 9 is an Al wiring.

しかしながら、近年、従来の半導体基板上に形成したM
IS型半導体装置においても微細な素子分離技術が発達
し、SOI構造のMIS型半導体装置と同程度の集積化
が可能となってきた。これに対し最近SOI構造のMI
S型半導体装置においてさらに集積度を向上させる構造
が提案されている。第4図(a)(b)はその改善されたSO
S構造のCMOSインバータ回路素子の模式的断面図と対応
する平面図である。ここで1〜9は第3図の1〜9と同
じである。この構造はNMOSトランジスタとPMOSトランジ
スタのドレイン同士を接合せしめその上部に少なくとも
接合境界が含まれるように開口部を形成した後Al配線
を行うことによって、N+形,P+形いずれのドレイン領
域に対してもオーミックな接続が得られるところに特徴
がある。この構造によれば従来のSOI構造のMIS型
半導体装置によるインバータ回路素子に比べてさらに集
積化することが可能となる。
However, in recent years, M formed on a conventional semiconductor substrate
Even in the IS type semiconductor device, a fine element isolation technique has been developed, and it has become possible to achieve the same degree of integration as the MIS type semiconductor device having the SOI structure. On the other hand, recently MI with SOI structure
A structure has been proposed for further improving the degree of integration in an S-type semiconductor device. Figures 4 (a) and (b) show the improved SO.
It is a top view corresponding to a schematic sectional view of a CMOS inverter circuit element of S structure. Here, 1 to 9 are the same as 1 to 9 in FIG. In this structure, the drains of the NMOS transistor and the PMOS transistor are joined to each other, and an Al wiring is performed after forming an opening so that at least the junction boundary is included in the drain region of either the N + type or the P + type. The feature is that an ohmic connection can be obtained. According to this structure, it is possible to further integrate the inverter circuit element using the MIS type semiconductor device having the SOI structure in the related art.

ところが、より高速のLSIを目指しトランジスタの縮
少化を進めていくと、前記改良型のSOI構造の半導体装
置の場合も集積度に限界が生じてくる。すなわちトラン
ジスタの縮小化にともないコンタクト孔の面積を縮小す
るとコンタクト孔の抵抗は増大しLSIの高速化を妨げ
る要因となる。従ってコンタクト穴の面積の縮小比を制
限さぜるを得なくなり、そのため前記改良型のSOI構
造の半導体装置の場合もその集積度はコンタクト孔の面
積に制限されてそれ以上の集積化が不可能となる。
However, as the size of the transistor is reduced in order to achieve a higher-speed LSI, the degree of integration will be limited even in the case of the semiconductor device having the improved SOI structure. That is, if the area of the contact hole is reduced as the transistor size is reduced, the resistance of the contact hole is increased, which becomes a factor that hinders the speedup of the LSI. Therefore, there is no choice but to limit the reduction ratio of the area of the contact hole. Therefore, in the case of the semiconductor device having the improved SOI structure, the degree of integration is limited by the area of the contact hole and further integration is impossible. Becomes

以上のように、従来の半導体装置は高速・高集積のLS
Iを形成するうえで限界が明らかであり将来的に重大な
問題を有している。
As described above, the conventional semiconductor device has a high-speed and highly integrated LS.
There is a clear limit to the formation of I and there will be serious problems in the future.

(発明の目的) 本発明は上記問題点を除去したSOI構造のMIS型半
導体装置の構造を提供することを目的とする。
(Object of the Invention) An object of the present invention is to provide a structure of an MIS type semiconductor device having an SOI structure in which the above problems are eliminated.

(発明の構成) 本発明によれば絶縁体上に設けられた半導体膜に形成し
た相補型のMIS型半導体装置において、相対する導電
型のMIS型トランジスタのドレイン領域を含むように
金属または金属と半導体の化合物の層が形成され、次い
でその上部に次段の半導体ゲートが接続されることによ
って前記相対する導電型のMIS型トランジスタのドレ
イン領域と前記ゲートがオーミックに接続されているこ
とを特徴とする半導体装置が得られる。
(Structure of the Invention) According to the present invention, in a complementary MIS type semiconductor device formed on a semiconductor film provided on an insulator, metal or metal is added so as to include the drain regions of the opposite conductive type MIS type transistors. A semiconductor compound layer is formed, and a semiconductor gate of the next stage is connected to the upper portion of the layer, so that the drain region of the opposite conductivity type MIS transistor and the gate are ohmic-connected. A semiconductor device that can be obtained is obtained.

(実施例) まず、本発明によるSOI構造のMIS型半導体装置の
実施例を説明する。
(Example) First, an example of an MIS type semiconductor device having an SOI structure according to the present invention will be described.

第1図(a)(b)はそれぞれ本発明によるMIS型半導体装
置の一実施例として本構造により形成したインバータ回
路素子の模式的断面図と平面図である。図中、3〜6は
第3図の3〜6と同じであり、10は絶縁基板、11は
絶縁膜、12はP+形半導体膜、13はN+形半導体膜、
14は金属または金属と半導体の化合物による膜、15
は配線である。本構造によればインバータ回路素子の出
力に対応する相対する導電型のMIS型トランジスタの
ソース及びドレイン拡散層は金属または金属と半導体の
化合物による膜を介して次段のインバータ回路素子のゲ
ートになるP+形またはN+形半導体膜とオーミックな接
続がとれている。従って本発明の構造は従来構造のイン
バータ回路素子に比べてゲートにコンタクト孔を開ける
必要がないので集積度が向上し、またコンタクト孔が減
少したことからそのコンタクトの抵抗分だけ低抵抗化す
ることができ、さらにゲートによる配線層とソース及び
ドレイン層に接続した配線層は別の層に形成されるため
に配線の自由度が増すなどすぐれた特性をもち、高速,
高集積のLSIに適した構造である。
1 (a) and 1 (b) are a schematic cross-sectional view and a plan view of an inverter circuit element formed by this structure as one example of the MIS type semiconductor device according to the present invention. In the figure, 3 to 6 are the same as 3 to 6 in FIG. 3, 10 is an insulating substrate, 11 is an insulating film, 12 is a P + type semiconductor film, 13 is an N + type semiconductor film,
14 is a film made of metal or a compound of metal and semiconductor, 15
Is wiring. According to this structure, the source and drain diffusion layers of the opposite conductivity type MIS transistor corresponding to the output of the inverter circuit element become the gate of the inverter circuit element of the next stage through the film made of metal or a compound of metal and semiconductor. An ohmic connection is established with the P + type or N + type semiconductor film. Therefore, in the structure of the present invention, it is not necessary to form a contact hole in the gate as compared with the inverter circuit element of the conventional structure, so that the degree of integration is improved, and since the contact hole is reduced, the resistance of the contact can be reduced. In addition, since the wiring layer formed by the gate and the wiring layer connected to the source and drain layers are formed in different layers, they have excellent characteristics such as increased freedom of wiring, and high speed,
This structure is suitable for highly integrated LSI.

次に本発明による構造を実現するための製造工程につい
て実施例に基づき説明する。
Next, a manufacturing process for realizing the structure according to the present invention will be described based on Examples.

第2図(a)〜(d)は特に本構造によるSOS構造のN+
びP+多結晶シリコンゲートのCMOSインバータ回路素子
の製造主要工程を示した模式的断面図である。図中1,
3〜9は第1図の1,3〜9と同じであり、16はゲー
ト酸化膜、17はチタンシリサイド膜、18は層間酸化
膜である。まずサファイヤ基板1の上に厚さ0.5μm
のシリコン島を形成し、次に熱酸化してゲート酸化膜1
6厚さ400Åに形成し、さらに不純物のイオン注入に
よってN形領域3、P形領域4を形成する。〔第2図
(a)〕 次にシリコン島のN形領域3とP形領域4の境界部分の
ゲート酸化膜4をパターニングして下地のシリコン膜が
露出するように開口部を設け、露出したシリコン膜の上
部をチタンシリサイド化する。(第2図(b))ここでチ
タンシリサイドは次のような工程で形成される。まずゲ
ート酸化膜4に開口部を設けた試料全面にチタン膜をス
パッタリング法により厚さ400Å形成した後水素雰囲
気中で600℃、20分アニールする。このとき開口部
のシリコンが露出した部分のみがチタンシリサイド化す
る。次にこの試料をHCl:H2O2:H2O=1:1:4混合
溶液により煮沸洗浄10分、及び純粋洗浄10分処理し
た後窒素雰囲気中800℃30分アニールする。ここで
酸洗浄を行うことによりチタン膜がはくりされ、第2図
の(b)のように開口部のみチタンシリサイドが残る。
2 (a) to 2 (d) are schematic cross-sectional views showing the main steps of manufacturing a CMOS inverter circuit element having N + and P + polycrystalline silicon gates having an SOS structure according to this structure. 1,
3 to 9 are the same as 1 and 3 to 9 in FIG. 1, 16 is a gate oxide film, 17 is a titanium silicide film, and 18 is an interlayer oxide film. First, 0.5 μm thick on the sapphire substrate 1.
Forming a silicon island and then thermally oxidizing it to form a gate oxide film 1
6 thickness 400 Å, and further, N type region 3 and P type region 4 are formed by ion implantation of impurities. [Fig. 2
(a)] Next, the gate oxide film 4 at the boundary between the N-type region 3 and the P-type region 4 of the silicon island is patterned to form an opening so that the underlying silicon film is exposed, and the exposed upper portion of the silicon film is exposed. Is converted to titanium silicide. (FIG. 2 (b)) Here, titanium silicide is formed by the following steps. First, a titanium film having a thickness of 400 Å is formed on the entire surface of the sample having an opening formed in the gate oxide film 4 by a sputtering method and then annealed at 600 ° C. for 20 minutes in a hydrogen atmosphere. At this time, only the portion of the opening where the silicon is exposed becomes titanium silicide. Next, this sample is treated by boiling and washing with a mixed solution of HCl: H 2 O 2 : H 2 O = 1: 1: 4 for 10 minutes, and pure washing for 10 minutes, and then annealed in a nitrogen atmosphere at 800 ° C. for 30 minutes. By performing acid cleaning here, the titanium film is peeled off, and titanium silicide remains only in the openings as shown in FIG.

次に(b)の状態の試料に多結晶シリコンを0.5μmC
VD法により形成しゲート及び配線領域をパターンニン
グした後、不純物のイオン注入により自己整合的にP+
形ソース・ドレイン領域5、N+形ソース・ドレイン領
域6、P+形多結晶シリコン7、N+形多結晶シリコン8
を形成する(第2図(c))。ここで開口部の上部のN
+形,P形多結晶シリコンは開口部のサイズより小さく
形成しなければならない。こうすることにより開口部の
チタンシリサイド14とP+形ソース・ドレイン領域5
+形ソース・ドレイン領域6との間の接続がとれる。
この結果、P+形及びN+形ソース・ドレイン領域5,6
とN+形及びP+形多結晶シリコン7,8とのオーミック
な接続がチタンシリサイド14を介してとることができ
る。
Next, 0.5 μmC of polycrystalline silicon is added to the sample in the state of (b).
After forming by VD method and patterning the gate and wiring regions, P + is self-aligned by ion implantation of impurities.
Type source / drain region 5, N + type source / drain region 6, P + type polycrystalline silicon 7, N + type polycrystalline silicon 8
Are formed (FIG. 2 (c)). Where N at the top of the opening
The + type and P type polycrystalline silicon must be formed smaller than the size of the opening. By doing so, the titanium silicide 14 in the opening and the P + type source / drain region 5 are formed.
A connection can be established between the N + type source / drain region 6.
As a result, P + type and N + type source / drain regions 5, 6 are formed.
And the N + type and P + type polycrystalline silicon layers 7 and 8 can be ohmic-connected via the titanium silicide 14.

次に(c)の状態の試料に層間絶縁膜を0.5μmCVD
法により形成しコンタクト孔をパターンニングした後、
Al配線9を形成する。(第2図(d))以上が本発明の構
造を実現するための製造工程の一実施例である。尚本実
施例では相対する導電型の半導体の間のオーミックな接
続をとる方法としてチタンシリサイドの膜を用いたが、
これは他の金属シリサイドまた金属でも可能である。
Next, an interlayer insulating film is formed on the sample in the state of (c) by 0.5 μm CVD.
After patterning the contact holes by
The Al wiring 9 is formed. (FIG. 2 (d)) The above is an embodiment of the manufacturing process for realizing the structure of the present invention. In this embodiment, a titanium silicide film is used as a method for establishing ohmic connection between semiconductors of opposite conductivity types.
This is also possible with other metal silicides or metals.

以上、SOS構造のCMOSインバータ回路素子を例に製造
工程を説明したが、一般的なMIS構造のインバータ回
路素子に適用できることが明らかである。また本発明の
構造は単一導電型の半導体ゲートの相補型MIS型半導
体装置にも適用でき、さらにインバータ回路素子に限ら
ず他の回路素子への適用も可能である。
Although the manufacturing process has been described above by taking the CMOS inverter circuit element having the SOS structure as an example, it is apparent that the present invention can be applied to the inverter circuit element having the general MIS structure. Further, the structure of the present invention can be applied to a complementary MIS type semiconductor device having a single conductive type semiconductor gate, and can be applied not only to the inverter circuit element but also to other circuit elements.

(発明の効果) 本発明によれば、従来のMIS型半導体装置の構造に比
較して、コンタクト孔が少ないために集積度が高く、低
抵抗化が可能であり、また配線の自由度が増すなどすぐ
れた特性をもつ半導体装置が得られる。
(Effect of the Invention) According to the present invention, as compared with the structure of the conventional MIS type semiconductor device, the number of contact holes is small, so that the degree of integration is high, the resistance can be reduced, and the degree of freedom of wiring is increased. A semiconductor device having excellent characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)(b)はそれぞれ本発明による半導体装置の基本
的な一実施例として本構造により形成したインバータ回
路素子の模式的断面図と平面図、第2図(a)〜(d)は本発
明の半導体装置を実現するための製造工程の実施例を示
した模式的断面図、 第3図(a),(b)はそれぞれ従来のSOI構造のMIS型
半導体装置の模式的断面図と平面図、 第4図(a),(b)はそれぞれ改良型の従来のSOI構造の
MIS型半導体装置の模式的断面図と平面図である。 1……サファイヤ基板、2……酸化膜、3……N形領
域、4……P形領域、5……P+形ソース・ドレイン領
域、6……N+形ソース・ドレイン領域、7+……P+
多晶シリコン、8……N+形多結晶シリコン、9……Al
配線、10……絶縁基板、11……絶縁膜、12……P
+形半導体膜、13……N+形半導体膜、14……金属ま
たは金属と半導体の化合物の膜、15……配線、16…
…ゲート酸化膜、17……チタンシリサイド膜、18…
…層間酸化膜。
1 (a) and 1 (b) are schematic sectional views and plan views of an inverter circuit element formed by this structure as a basic embodiment of a semiconductor device according to the present invention, and FIGS. 2 (a) to 2 (d). ) Is a schematic cross-sectional view showing an example of a manufacturing process for realizing the semiconductor device of the present invention, and FIGS. 3A and 3B are schematic cross-sectional views of a conventional MIS type semiconductor device having an SOI structure. FIGS. 4A and 4B are a schematic cross-sectional view and a plan view of an improved conventional MIS semiconductor device having an SOI structure, respectively. 1 ... Sapphire substrate, 2 ... Oxide film, 3 ... N-type region, 4 ... P-type region, 5 ... P + type source / drain region, 6 ... N + type source / drain region, 7+ ...... P + type polycrystalline silicon, 8 …… N + type polycrystalline silicon, 9 …… Al
Wiring, 10 ... Insulating substrate, 11 ... Insulating film, 12 ... P
+ Type semiconductor film, 13 ... N + type semiconductor film, 14 ... Film of metal or compound of metal and semiconductor, 15 ... Wiring, 16 ...
... Gate oxide film, 17 ... Titanium silicide film, 18 ...
… Interlayer oxide film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁体上に設けられた半導体膜に形成した
相補型のMIS型半導体装置において、相対する導電型
のMIS型トランジスタのドレイン領域を含むように金
属または金属と半導体の化合物の層が形成され、次いで
その上部に次段の半導体ゲートが接続されることによっ
て前記相対する導電型のMIS型トランジスタのドレイ
ン領域と前記ゲートがオーミックに接続されていること
を特徴とする半導体装置。
1. In a complementary MIS type semiconductor device formed on a semiconductor film provided on an insulator, a layer of a metal or a compound of a metal and a semiconductor so as to include a drain region of a MIS type transistor of an opposite conductivity type. Is formed, and the semiconductor region of the next stage is connected to the upper part of the region to form the ohmic contact between the drain region and the gate of the MIS transistor of the opposite conductivity type.
JP60042196A 1985-03-04 1985-03-04 Semiconductor device Expired - Lifetime JPH0626244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60042196A JPH0626244B2 (en) 1985-03-04 1985-03-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60042196A JPH0626244B2 (en) 1985-03-04 1985-03-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61201460A JPS61201460A (en) 1986-09-06
JPH0626244B2 true JPH0626244B2 (en) 1994-04-06

Family

ID=12629251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60042196A Expired - Lifetime JPH0626244B2 (en) 1985-03-04 1985-03-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0626244B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821631B2 (en) * 1986-11-29 1996-03-04 ソニー株式会社 Semiconductor integrated circuit device
JPS6453576A (en) * 1987-08-25 1989-03-01 Ricoh Kk Semiconductor device
JPH04206971A (en) * 1990-11-30 1992-07-28 Sharp Corp Film semiconductor device
EP0504059B1 (en) * 1991-03-13 1996-02-07 Canon Kabushiki Kaisha Electrophotographic photosensitive member, electrophotographic apparatus, device unit, and facsimile machine employing the same
US5985741A (en) 1993-02-15 1999-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
KR100255134B1 (en) * 1997-12-31 2000-05-01 윤종용 Semiconductor device and method for manufacturing the same
KR100599595B1 (en) 2004-05-24 2006-07-13 삼성에스디아이 주식회사 A semiconductor device for an organic electro-luminescence light emitting cell, and a manufacturing method therof

Also Published As

Publication number Publication date
JPS61201460A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
US4916508A (en) CMOS type integrated circuit and a method of producing same
JP3626773B2 (en) Conductive layer of semiconductor device, MOSFET, and manufacturing method thereof
KR100350753B1 (en) Semiconductor device having barrier metal layer between a silicon electrode and metal electrode and manufacturing method for same
JPS63102264A (en) Thin film semiconductor device
JPH0626244B2 (en) Semiconductor device
JPS59155951A (en) Semiconductor device
JPS63114172A (en) Integrated circuit
KR940009356B1 (en) Semiconductor ic device
JPS643065B2 (en)
JPH05218439A (en) Semiconductor device and manufacture thereof
JPS59112641A (en) Semiconductor device and manufacture thereof
JPH0247849A (en) Semiconductor device
JPH07221300A (en) Manufacture of semiconductor device
JPS61194764A (en) Manufacture of semiconductor device
KR100223725B1 (en) Semiconductor device
JPS61214557A (en) Manufacture of semiconductor integrated circuit device
JPH0466108B2 (en)
JP2596405B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS62244163A (en) Semiconductor device
JPH06104259A (en) Semiconductor device
JPS616855A (en) Complementary type mos semiconductor device
JPH05235290A (en) Semiconductor device and its manufacture
JPH03276763A (en) Semiconductor device
JPS63215076A (en) Semiconductor integrated circuit device
JPS6046546B2 (en) Manufacturing method of semiconductor device