JPH06262253A - Production of square tube with excellent shape characteristic - Google Patents

Production of square tube with excellent shape characteristic

Info

Publication number
JPH06262253A
JPH06262253A JP5063793A JP5063793A JPH06262253A JP H06262253 A JPH06262253 A JP H06262253A JP 5063793 A JP5063793 A JP 5063793A JP 5063793 A JP5063793 A JP 5063793A JP H06262253 A JPH06262253 A JP H06262253A
Authority
JP
Japan
Prior art keywords
tube
square tube
forming
stage
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5063793A
Other languages
Japanese (ja)
Other versions
JP3197661B2 (en
Inventor
Shigeru Morikawa
茂 森川
Tsutomu Azuma
努 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP05063793A priority Critical patent/JP3197661B2/en
Publication of JPH06262253A publication Critical patent/JPH06262253A/en
Application granted granted Critical
Publication of JP3197661B2 publication Critical patent/JP3197661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a square tube having a shape characteristic being respectively suitable for a structural square tube and a decorative square tube by changing a 1st stage set push-in ratio corresponding to the structural square tube and the decorative square tube to the produced. CONSTITUTION:When a square tube is produced from a cylindrical stock tube with a roll forming machine with forming rolls arranged in two or four stages, supposing the outer diameter of the stock tube is D, a wall thickness of the raw tube is t, and max. caliber height is H, a set push-in ratio Q of a 1st stage forming process which is defined as Q=(D-H)/(D-t)X100 is maintained in a range 12-23% at the time of producing a structural square tube and maintained in a range 20-24% at the time of producing a decorative square tube. Then, the square tube is formed in a target shape in a forming following a 2nd stage. Therefore, by regulating the set push-in amount, the structural square tube with the excellent flatness on a plane part and the decorative square tube having a sharp corner part can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ロール成形機,特に少
数段の成形ロールが組み込まれたロール成形機によっ
て、需要に応じた形状特性をもつ角管を製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rectangular tube having a shape characteristic according to demand by a roll forming machine, particularly a roll forming machine incorporating a small number of forming rolls.

【0002】[0002]

【従来の技術】角管は、プレス成形やロール成形等で製
造されている。たとえば、プレス成形法では、2枚の切
り板を凹型形状に成形し、上下2か所を溶接した後、サ
イジング及び矯正を行っている。また、鋼板から製造さ
れた丸管を、大型プレスで異形管に成形する方法もあ
る。何れのプレス成形も、バッチ式で角管を製造するこ
とから、生産性が低い。この点、ロール成形法は、連続
化に適し、高生産性で角管を製造することができる方法
である。ロール成形法には、走行している帯材を異形断
面形状に折り曲げながら、突き合わせられた幅方向両端
部を溶接する方法と、電縫溶接等により製造された丸管
を素管とし、この素管をサイジングミル等によって角管
に成形する方法に大別される。鋼管製造時に成形を併せ
て行う方法は、製造工程が少ない点では有利であるが、
専用の角管製造設備が必要となる。他方、丸管を角管に
成形する方法は、比較的小型の生産設備でよく、需要に
応じた操業柔軟性の高い方法である。
2. Description of the Related Art Square tubes are manufactured by press molding or roll molding. For example, in the press molding method, two cutting plates are formed in a concave shape, and the upper and lower portions are welded, and then sizing and straightening are performed. There is also a method of forming a round pipe manufactured from a steel plate into a deformed pipe by a large press. Both press moldings have low productivity because square tubes are manufactured in a batch system. In this respect, the roll forming method is a method suitable for continuous production and capable of producing a square tube with high productivity. The roll forming method includes a method in which a running strip is bent into an irregular cross-sectional shape while welding both ends in the width direction that are butted to each other, and a round tube manufactured by electric resistance welding or the like is used as a raw tube. It is roughly classified into a method of forming a tube into a square tube by a sizing mill or the like. The method of performing molding together at the time of manufacturing a steel pipe is advantageous in that the number of manufacturing steps is small,
Dedicated square tube manufacturing equipment is required. On the other hand, the method of forming a round tube into a square tube requires a relatively small production facility and is a method with high operation flexibility according to demand.

【0003】円筒状の素管を角管に成形するロール成形
法では、成形ロールの間に素管を引っ張り込みながら成
形が行われる。そのため、正確な位置関係で素管を引っ
張り出すことが難しく、曲り等の欠陥が発生し、得られ
た角管の形状精度が低くなり易い。成形ロールの間に素
管を押し込む方式も知られている。押込み方式では、素
管の後端から押圧力を加えるため、油圧シリンダー等の
押込み機構のストロークが大きくなり、設備の大型化,
複雑化が避けられない。押込み方式の改良として、素管
の後端を適宜の位置に係止する係止機構を油圧シリンダ
ーと素管との間に配置し、この係止機構を素管と共に移
動させながら素管を成形することが特公昭62−545
64号公報で紹介されている。係止機構を組み込むこと
によって油圧シリンダーのストロークはある程度小さく
なるものの、設備構成が複雑化する。また、後端側から
押込み力を素管に加えることから、素管に撓み,座屈等
の変形が生じ易い欠点がある。
In the roll forming method for forming a cylindrical raw tube into a rectangular tube, the forming is performed while pulling the raw tube between the forming rolls. For this reason, it is difficult to pull out the blank tube in an accurate positional relationship, defects such as bending occur, and the accuracy of the obtained rectangular tube is likely to be low. A method is also known in which a blank tube is pushed between molding rolls. In the push-in method, since the pushing force is applied from the rear end of the raw pipe, the stroke of the push-in mechanism such as the hydraulic cylinder becomes large, making the equipment larger and
Increasing complexity is unavoidable. As an improvement of the pushing method, a locking mechanism that locks the rear end of the raw pipe at an appropriate position is placed between the hydraulic cylinder and the raw pipe, and the raw pipe is molded while moving the locking mechanism together with the raw pipe. What to do is Sho 62-545
No. 64 is introduced. Although the stroke of the hydraulic cylinder is reduced to some extent by incorporating the locking mechanism, the equipment configuration becomes complicated. Further, since the pushing force is applied to the base pipe from the rear end side, there is a drawback that the base pipe is apt to be deformed such as bending and buckling.

【0004】そこで、本発明者等は、成形ロールに送り
込まれる素管を両側からクランプした状態で推進力を付
与するため、素管の走行方向両側に進退可能な複数の押
込み具を配置し、これら押込み具を無限軌道に沿って走
行させる装置を開発し、別途特許出願した。両側から素
管を挟持する押圧具によって押込み力を付与するとき、
撓み,座屈等の変形が抑制される。また、成形可能な素
管長さに制限がなくなり、しかも複数の素管を連続して
ロール成形することが可能になる。
Therefore, the present inventors have arranged a plurality of push-in tools capable of advancing and retracting on both sides in the running direction of the raw pipe in order to apply a propulsive force while clamping the raw pipe fed to the forming roll from both sides. We developed a device for running these pushers along an endless track, and filed a patent application separately. When pressing force is applied by pressing tools that clamp the tube from both sides,
Deformation such as bending and buckling is suppressed. Further, there is no limitation on the length of the raw pipe that can be formed, and it is possible to continuously roll-form a plurality of raw pipes.

【0005】[0005]

【発明が解決しようとする課題】先願で提案した異形管
製造装置は、成形ロールを3段に配列し、第1スタンド
で素管を予備成形し、第2スタンドで所定形状の成形を
施し、第3スタンドで仕上げ成形している。このように
スタンド数が少ないロール成形機で素管を成形すると
き、個々のスタンドにおける加工条件が最終形状に与え
る影響が大きくなる。加工条件が良好に設定されていな
いと、得られた角管の平面部に反りや凹みが生じたり、
角部のアールが大きくなる等の欠陥が発生する。そこ
で、特開平4−224022号公報では、素管の外径に
対する肉厚の比が大きくなるに応じて、最終段の圧下量
を少なくすることにより、得られた角管の平坦部の反り
を抑制している。また、特開平4−224023号公報
では、最終段のロールカリバーを小さくすることによ
り、平面部の反りを抑制している。
In the profiled pipe manufacturing apparatus proposed in the prior application, the forming rolls are arranged in three stages, the first stand is used for preforming the raw pipe, and the second stand is used for forming a predetermined shape. , 3rd stand is used for finish molding. As described above, when forming a raw pipe with a roll forming machine having a small number of stands, the influence of the processing conditions in each stand on the final shape becomes large. If the processing conditions are not set properly, the flat surface of the obtained square tube may be warped or dented,
Defects such as large corners are generated. Therefore, in Japanese Unexamined Patent Publication No. 4-224022, the warp of the flat portion of the obtained rectangular tube is reduced by reducing the final stage reduction amount as the ratio of the wall thickness to the outer diameter of the raw tube increases. It's suppressed. Further, in Japanese Patent Laid-Open No. 4-224023, the roll caliber at the final stage is made small to suppress the warp of the flat surface portion.

【0006】しかし、最終形状は、最終段のロール成形
ばかりでなく、上段側のロール成形の加工条件によって
も影響される。たとえば、2スタンドで角管を製造する
とき、第1スタンドの加工条件によって最終形状の形状
精度が変わる。そのため、需要に応じた形状をもつ角管
を安定して製造することが困難であった。本発明は、こ
のような問題を解消すべく案出されたものであり、第1
段の設定押込み率を調整することにより、構造材用,装
飾用等の用途に応じた形状をもつ角管を安定して製造す
ることを目的とする。
However, the final shape is affected not only by the roll forming of the final stage but also by the processing conditions of the roll forming on the upper stage side. For example, when manufacturing a square tube with two stands, the shape accuracy of the final shape changes depending on the processing conditions of the first stand. Therefore, it has been difficult to stably manufacture a square tube having a shape that meets the demand. The present invention has been devised to solve such a problem.
By adjusting the set indentation rate of the step, it is possible to stably manufacture a square tube having a shape according to the application such as structural material and decoration.

【0007】[0007]

【課題を解決するための手段】本発明においては、その
目的を達成するため、第1段の成形ロールで円筒状の素
管を成形する際、素管の外径及び肉厚をD及びt,最大
カリバー高さをHとするとき、Q=(D−H)/(D−
t)×100で定義される設定押込み率Qを、得られる
角管の要求形状に応じて使い分ける。平面部の平坦性が
要求される構造用角管では、設定押込み率Qを12〜2
3%の範囲に維持する。シャープな角部が要求される装
飾用角管では、設定押込み率Qを20〜24%の範囲に
維持する。成形された素管は、後続する第2段,更には
第3段以降の成形ロールによって所定の断面形状に仕上
げられる。トータルのスタンド数は、特に本発明を拘束
するものではないが、最低2スタンドが要求され、必要
に応じて第3スタンド,第4スタンドを配列する。
In the present invention, in order to achieve the object, when forming a cylindrical raw pipe by a first stage forming roll, the outer diameter and the wall thickness of the raw pipe are D and t. , When the maximum caliber height is H, Q = (D−H) / (D−
t) The set indentation rate Q defined by 100 is used properly according to the required shape of the obtained rectangular tube. In the case of a structural rectangular tube that requires flatness of the flat surface, the set indentation rate Q is 12 to 2
Keep in the range of 3%. For a decorative rectangular tube that requires a sharp corner, the set indentation rate Q is maintained within the range of 20 to 24%. The formed pipe is finished into a predetermined cross-sectional shape by the subsequent forming rolls of the second stage and further the third stage and thereafter. The total number of stands is not particularly limited to the present invention, but at least two stands are required, and the third stand and the fourth stand are arranged as necessary.

【0008】以下、図面を参照しながら、本発明を具体
的に説明する。たとえば、2スタンドのロール成形機に
よって角管を製造するとき、図1に示すように円筒状の
素管P0 は、アイドラーロール10によって第1スタン
ド20に送り込まれる。第1スタンド20は、図2に示
すように右側ロール21,左側ロール22,上ロール2
3及び下ロール24を配置している。各ロール21〜2
4は、凹クラウンの周面形状をもっており、ロール21
〜24で囲まれた内部が素管P0 に対する成形空間とな
る。第1スタンド20を通過した素管P0 は、ロール2
1〜24の周面で区画された成形空間に対応して、図3
に示す中間形状の管体P1 となる。中間形状の管体P1
の孔径の高さが最大カリバー高さHである。管体P1
は、次いで第2スタンド30に送り込まれる。第2スタ
ンド30の成形ロールは、小さなクラウンをもつロール
或いはフラットロールを、図2と同様に4方から組み立
てている。第2スタンド30を通過した角管P2 は、図
3に示すように面出しされた状態になる。
The present invention will be described in detail below with reference to the drawings. For example, when a square tube is manufactured by a two-stand roll forming machine, a cylindrical raw pipe P 0 is fed to the first stand 20 by the idler roll 10 as shown in FIG. As shown in FIG. 2, the first stand 20 includes a right roll 21, a left roll 22, and an upper roll 2.
3 and the lower roll 24 are arranged. Each roll 21-2
4 has a concave crown peripheral surface shape, and roll 21
The inside surrounded by -24 is a molding space for the raw pipe P 0 . The tube P 0 that has passed through the first stand 20 is rolled by the roll 2
Corresponding to the molding space divided by the peripheral surface of 1 to 24, FIG.
The pipe body P 1 has an intermediate shape shown in FIG. Intermediate-shaped tube P 1
The height of the hole diameter is the maximum caliber height H. Tube P 1
Are then fed to the second stand 30. As the forming roll of the second stand 30, a roll having a small crown or a flat roll is assembled from four sides as in FIG. The rectangular tube P 2 that has passed through the second stand 30 is in a state of being chamfered as shown in FIG.

【0009】このようにして得られた角管P2 は、加工
条件にもよるが平坦度の良好な製品或いはシャープな角
部をもつ製品となる。それぞれの形状特性に応じて、構
造用角管,装飾用角管等として使用される。構造用角管
では、図4(a)に示すように、平坦な平面部をもつこ
とが研削コストを低減する上から最も要求される。他
方、角部については、用途からそれほど小さなアールが
要求されないが、製品の差別化を図る上からアールを小
さくすることが好ましい。これに対し、装飾用角管で
は、周囲の機器や建材との調和を図るため、図4(b)
に示すようにアールを小さくした角部をもつことが要求
される。この場合、鏡面研磨して使用される用途では平
面部が平坦であることが要求されるが、その他の装飾用
途においては表面肌がHL研磨製品である場合が多く、
構造用角管ほど平面部の平坦度が必要とされない。
The square tube P 2 thus obtained becomes a product having a good flatness or a product having sharp corners, depending on the processing conditions. It is used as a structural square tube, a decorative square tube, etc., depending on the respective shape characteristics. As shown in FIG. 4 (a), the structural rectangular tube is most required to have a flat plane portion in order to reduce the grinding cost. On the other hand, the corners are not required to have a very small radius depending on the application, but it is preferable to make the radius small for the purpose of product differentiation. On the other hand, in the decorative square tube, in order to harmonize with surrounding equipment and building materials,
It is required to have a corner with a small radius as shown in. In this case, the flat surface is required to be flat for the purpose of being mirror-polished, but in other decorative applications, the surface skin is often an HL-polished product,
Flatness is not required as much as a structural rectangular tube.

【0010】平坦度及びコーナーアールは、第1スタン
ド20における押込み量に影響される。具体的には、図
5に示すように素管P0 のプロフィールから製品角管P
2 のプロフィールで、それぞれの押込み度〜で第1
スタンド20において素管P0 をロール成形し、押込み
度〜に応じた平坦度及びコーナーアールの変化を観
察した。なお、本明細書においては、平坦度及びコーナ
ーアール度を表す指標として次の値を採用した。平坦度
は、図6に示すように、得られた角管平面部の幅をWと
し、平面部の最深部から最高部までの高さをfとすると
き、f/Wで表した。コーナーアール度は、図7に示す
ように、ゲージアールRg が測定されるアール止りの長
さをRs とし、角管の肉厚をtとするとき、Rs /tで
表した。
The flatness and the corner radius are influenced by the pushing amount in the first stand 20. Specifically, as shown in FIG. 5, from the profile of the raw pipe P 0 to the product square pipe P
With 2 profiles, each degree of indentation is first
The base pipe P 0 was roll-formed on the stand 20, and changes in flatness and corner radius depending on the degree of indentation were observed. In addition, in the present specification, the following values are adopted as indexes indicating the flatness and the corner radius. As shown in FIG. 6, the flatness is represented by f / W, where W is the width of the flat surface of the obtained rectangular tube and f is the height from the deepest portion to the highest portion of the flat portion. As shown in FIG. 7, the corner radius is represented by R s / t where R s is the length of the radius stop at which the gauge radius R g is measured and t is the wall thickness of the rectangular tube.

【0011】平坦度は、同じ押込み度で第1段及び第
2段のロール成形を行ったとき、図8に示すように構造
用角管及び装飾用角管共に優れていた。そして、第1段
或いは第2段の押込み量を小さくし、他方の押込み量で
所定の断面形状を得ようとするほど、平坦度が劣化し
た。特に、第1段でほぼ製品形状に成形する押込み度
では、単スタンドの成形ロールで成形した場合と同様
に、中央部が凹んだ平面部が形成された。なお、構造用
角管としては焼鈍材を、装飾用角管としては圧延材をそ
れぞれ使用した。各押込み度〜を押込み量で表し、
押込み量と平坦度との関係をグラフ化したものが図9で
ある。図9から明らかなように、平坦度の優れた角管P
2 を得るためには、第1段のロール成形による押込み量
を所定範囲に維持することが必要である。
The flatness was excellent in both the structural square tube and the decorative square tube as shown in FIG. 8 when the first-stage and second-stage roll forming was performed with the same indentation degree. Then, the flatness deteriorated as the pushing amount of the first step or the second step was reduced and the predetermined cross-sectional shape was obtained with the other pushing amount. In particular, in the degree of indentation for forming the product into a substantially product shape in the first stage, a flat surface portion having a recessed central portion was formed as in the case of forming with a single stand forming roll. The structural square tube was an annealed material, and the decorative square tube was a rolled material. Degree of each push ~ is expressed by push amount,
FIG. 9 is a graph showing the relationship between the pushing amount and the flatness. As is clear from FIG. 9, the square tube P with excellent flatness
In order to obtain 2 , it is necessary to maintain the indentation amount by the first stage roll forming within a predetermined range.

【0012】逆に、コーナーアール度Rは、図10に示
すように、一度に最終形状近くまで成形する押込み度
又はで小さく、第1段及び第2段の押込み量を等しく
した押込み度では大きくなった。コーナーアール度R
と設計押込み量との関係をグラフ化して、図11に示
す。図9と図11との対比から明らかなように、平坦度
が要求される角管の製造条件とシャープな角部が要求さ
れる角管の製造条件とでは、第1段の押込み度を変える
必要がある。押込み度が角管形状に与える影響を広範な
観点から調査・実験した結果、次式で定義される設定押
込み率Q(%)によって定量化できることを解明した。 Q=(D−H)/(D−t)×100 (ただし、D:素管の外径, t:素管の肉厚, H:
最大カリバー高さ)
On the contrary, the corner radius R, as shown in FIG. 10, is small when the indentation is such that it is formed close to the final shape at once, or large when the indentation is equal when the indentation amounts of the first and second steps are equal. became. Corner radius R
11 is a graph showing the relationship between the design indentation amount. As is clear from the comparison between FIG. 9 and FIG. 11, the indentation degree of the first stage is changed between the manufacturing conditions of the rectangular tube requiring flatness and the manufacturing conditions of the rectangular tube requiring sharp corners. There is a need. As a result of investigating and experimenting the influence of the degree of indentation on the shape of the square tube, it was clarified that it can be quantified by the set indentation rate Q (%) defined by the following equation. Q = (D−H) / (D−t) × 100 (where D: outer diameter of the raw pipe, t: wall thickness of the raw pipe, H:
Maximum caliber height)

【0013】素管が圧延材である母管について設定押込
み率Qを20〜24%の範囲に維持して第1段のロール
成形を行うとき、コーナーアール度R=Rs /tが1.
0%以下になり、装飾用に適したシャープな角部をもつ
角管が得られる。他方、設定押込み率Qが20%未満の
場合はコーナーアールが大きくなり、逆に24%を超え
るようになると平坦度がSAS規格0.5%を超えてし
まう。その結果、何れの場合も、装飾用角管に要求され
る形状を満足しなくなる。また、素管が焼鈍材である母
管について設定押込み率Qを12〜23%の範囲に維持
して第1段のロール成形を行うとき、平坦度f/Wが
0.15%以下になり、成形後に平面部の研削を省略或
いは軽減できる角管が得られる。他方、12%未満の設
定押込み率Qで第1段のロール成形を行うと、成形後の
平面部が凹に湾曲した形状になり易い。逆に、23%を
超える設定押込み率Qでは、凸状に湾曲した平面部が形
成され易い。
When the set indentation rate Q is maintained in the range of 20 to 24% and the first-stage roll forming is performed on the mother tube whose raw tube is a rolled material, the corner radius R = R s / t is 1.
It becomes 0% or less, and a square tube having sharp corners suitable for decoration is obtained. On the other hand, when the set indentation rate Q is less than 20%, the corner radius becomes large, and conversely, when it exceeds 24%, the flatness exceeds the SAS standard of 0.5%. As a result, in any case, the shape required for the decorative rectangular tube cannot be satisfied. Further, when the set indentation rate Q is maintained in the range of 12 to 23% and the first-stage roll forming is performed on the mother tube in which the raw tube is an annealed material, the flatness f / W becomes 0.15% or less. A square tube can be obtained in which the grinding of the flat surface portion can be omitted or reduced after molding. On the other hand, when the first-stage roll forming is performed at a set indentation rate Q of less than 12%, the flat portion after forming tends to have a concavely curved shape. On the contrary, when the set indentation rate Q exceeds 23%, the convexly curved flat surface portion is likely to be formed.

【0014】このように設定押込み率Qを調整すること
によって、同じロール成形ラインで平面部の平坦性に優
れた構造用角管やシャープな角部をもつ装飾用角管を再
現性良く製造できる。第1段のロール成形における設定
押込み率Qは、図1に示した2段ロール成形機の他に、
成形ロールを3〜4段に組み込んだロール成形機におい
ても同様な作用を呈する。しかし、段数が多くなるほど
設定押込み率Qの影響が小さくなる。また、設備的な面
からしても、本発明が適用されるロール成形機は、実用
的には2段又は3段ロール成形機である。なお、設定押
込み率Qは、第1段の成形ロールとしてクラウンが異な
るロールを組み替えることにより調整できる。
By adjusting the set indentation rate Q in this manner, it is possible to reproducibly manufacture a structural square tube having excellent flatness of a flat surface portion and a decorative square tube having a sharp corner portion on the same roll forming line. . In addition to the two-stage roll forming machine shown in FIG. 1, the set indentation rate Q in the first stage roll forming is
A roll forming machine in which forming rolls are incorporated in three to four stages also exhibits the same operation. However, as the number of steps increases, the influence of the set push-in rate Q decreases. Also, from the viewpoint of equipment, the roll forming machine to which the present invention is applied is practically a two-stage or three-stage roll forming machine. The set indentation rate Q can be adjusted by changing the rolls having different crowns as the first-stage forming rolls.

【0015】[0015]

【実施例】【Example】

実施例1:(構造用角管の製造) 外径D=50.8mm及び肉厚t=1.4mmのSUS
304ステンレス鋼管(焼鈍材)を素管として、平面部
の幅W=39.6mmの角管を2スタンドのロール成形
機によって製造した。素管の最頂周面部から角管平面部
までの距離が5.6mmであるので、図5に示すように
第1スタンドにおける押込み量を設定し、残りの距離を
第2スタンドでの押込み量とした。表1は、このように
設定した押込み度〜に対応する押込み量及び設定押
込み率Qを示す。
Example 1: (Production of structural rectangular tube) SUS having an outer diameter D = 50.8 mm and a wall thickness t = 1.4 mm
Using a 304 stainless steel pipe (annealed material) as a raw pipe, a square pipe having a flat portion width W = 39.6 mm was manufactured by a two-stand roll forming machine. Since the distance from the topmost peripheral surface of the raw tube to the flat surface of the rectangular tube is 5.6 mm, the pushing amount in the first stand is set as shown in FIG. 5, and the remaining distance is the pushing amount in the second stand. And Table 1 shows the push amount and the set push rate Q corresponding to the push degrees set in this way.

【表1】 [Table 1]

【0016】第1及び第2スタンドにおけるロール成形
によって得られた角管の形状を調査した。そして、平坦
度f/W及びコーナーアール度Rs /tを設定押込み率
Qで整理したところ、それぞれ図9及び図11に実線で
示す関係が得られた。なお、図9及び図11は、n=3
の平均値を示す。図9から明らかなように、設定押込み
率Qを12〜23%の範囲に維持して第1段のロール成
形を行ったものでは、構造用角管として要求される平坦
度0.14以下を満足している。コーナーアール度Rs
/tも、図11に示されているように目標値1.8を大
きく下回っている。これに対し、設定押込み率Qが過小
な押込み度では、得られた角管の平面部が凹状に湾曲
しており、平坦性の悪いものであった。
The shape of the square tube obtained by roll forming in the first and second stands was investigated. Then, when the flatness f / W and the corner radius R s / t are arranged by the set indentation rate Q, the relationships shown by the solid lines in FIGS. 9 and 11 are obtained. 9 and 11, n = 3
The average value of is shown. As is clear from FIG. 9, in the case where the first-stage roll forming is performed while maintaining the set indentation rate Q in the range of 12 to 23%, the flatness required for the structural rectangular tube is 0.14 or less. Is pleased. Corner radius R s
/ T is also well below the target value of 1.8 as shown in FIG. On the other hand, when the set indentation rate Q is too small, the flat surface of the obtained rectangular tube is concavely curved, resulting in poor flatness.

【0017】実施例2:(装飾用角管の製造) 外径D=50.8mm及び肉厚t=1.4mmのSUS
304ステンレス鋼管(圧延材)を素管として、平面部
の幅W=39.6mmの角管を2スタンドのロール成形
機によって製造した。素管の最頂周面部から角管平面部
までの距離が5.6mmであるので、図5に示すように
第1スタンドにおける押込み量を設定し、残りの距離を
第2スタンドでの押込み量とした。表1は、このように
設定した押込み度〜に対応する押込み量及び設定押
込み率Qを示す。
Example 2 (Manufacture of Square Decorative Tube) SUS with outer diameter D = 50.8 mm and wall thickness t = 1.4 mm
Using a 304 stainless steel pipe (rolled material) as a raw pipe, a square pipe having a flat portion width W = 39.6 mm was manufactured by a two-stand roll forming machine. Since the distance from the topmost peripheral surface of the raw tube to the flat surface of the rectangular tube is 5.6 mm, the pushing amount in the first stand is set as shown in FIG. 5, and the remaining distance is the pushing amount in the second stand. And Table 1 shows the push amount and the set push rate Q corresponding to the push degrees set in this way.

【表2】 [Table 2]

【0018】第1及び第2スタンドにおけるロール成形
によって得られた角管の形状を調査した。そして、平坦
度f/W及びコーナーアール度Rs /tを設定押込み率
Qで整理したところ、それぞれ図9及び図11に点線で
示す関係が得られた。なお、図9及び図11は、実施例
1と同様にn=3の平均値を示す。図11から明らかな
ように、設定押込み量Qを20〜24%の範囲に維持し
て第1段のロール成形を行ったものでは、装飾用鋼管と
して要求される目標値1.0以下のコーナーアール度R
s /tになっている。また、平坦度f/Wも図9に示す
ように目標値0.5を大きく下回り、形状特性の良好な
装飾用鋼管が得られていることが判る。これに対し、設
定押込み率Qが20〜24%の範囲を外れるものでは、
角管平面部の平坦性は良好であるものの、アールの大き
な角部をもつ角管や辺の平坦度がSAS規格値を外れた
角管が製造され、装飾用に適さないものであった。
The shape of the square tube obtained by roll forming in the first and second stands was investigated. Then, when the flatness f / W and the corner radius R s / t were sorted by the set indentation rate Q, the relationships shown by the dotted lines in FIGS. 9 and 11 were obtained, respectively. 9 and 11 show the average value of n = 3 as in the first embodiment. As is clear from FIG. 11, in the case where the first-stage roll forming is performed while maintaining the set indentation amount Q within the range of 20 to 24%, the corner of the target value 1.0 or less required as the decorative steel pipe is obtained. R degree R
s / t. Further, as shown in FIG. 9, the flatness f / W is also well below the target value of 0.5, and it can be seen that a decorative steel pipe having good shape characteristics is obtained. On the other hand, if the set indentation rate Q is outside the range of 20 to 24%,
Although the flatness of the flat surface of the square tube was good, a square tube having a large radius corner and a square tube with flatness outside the SAS standard value were produced, and were not suitable for decoration.

【0019】以上の実施例においては、SUS304ス
テンレス鋼管を素管として使用し、2スタンドのロール
成形機により角管を製造した。しかし、本発明はこれに
拘束されるものではなく、他のステンレス鋼や普通鋼に
対しても同様な作用・効果を呈し、構造用鋼管及び装飾
用鋼管それぞれに要求される形状特性を満足した角管が
製造される。また、3段及び4段のロール成形機を使用
した場合でも、同様に設定押込み率Qを調整することに
より、用途に応じた形状をもつ角管が製造された。
In the above examples, a SUS304 stainless steel pipe was used as a raw pipe to manufacture a square pipe by a two-stand roll forming machine. However, the present invention is not restricted to this, and exhibits the same action and effect on other stainless steels and ordinary steels, and satisfies the shape characteristics required for structural steel pipes and decorative steel pipes. Square tubes are manufactured. Further, even when the three-stage and four-stage roll forming machines were used, the square tube having a shape according to the application was manufactured by adjusting the set indentation rate Q in the same manner.

【0020】[0020]

【発明の効果】以上に説明したように、本発明において
は、少数段の成形ロールを備えたロール成形機で円筒状
の素管から角管を製造する際、第1段のロール成形にお
ける設定押込み率を特定することにより、構造用鋼管及
び装飾用鋼管それぞれに適した平坦度及び角部をもつ角
管を製造している。たとえば、構造用角管にあっては、
平面部の平坦性が優れているため、研削加工の省略又は
軽減が可能な構造体として使用される、他方、装飾用鋼
管にあっては、シャープな角部が形成されているため、
配置される周囲の機器や調度品と調和し、差別性の高い
製品として使用される。
As described above, according to the present invention, when a square tube is manufactured from a cylindrical raw tube with a roll forming machine equipped with a small number of forming rolls, the setting in the first stage roll forming is performed. By specifying the indentation rate, square tubes with flatness and corners suitable for structural steel tubes and decorative steel tubes are manufactured. For example, in a structural square tube,
Since the flatness of the flat surface is excellent, it is used as a structure capable of omitting or reducing the grinding process. On the other hand, in the decorative steel pipe, since sharp corners are formed,
It is used as a highly discriminating product in harmony with the surrounding equipment and furnishings.

【図面の簡単な説明】[Brief description of drawings]

【図1】 成形ロールを2段配置したロール成形機FIG. 1 A roll forming machine in which forming rolls are arranged in two stages.

【図2】 第1段の成形ロールFIG. 2 First stage forming roll

【図3】 2段成形で素管が角管になる過程[Fig. 3] Process of forming a square pipe by a two-stage molding

【図4】 構造用角管(a)及び装飾用角管(b)FIG. 4 is a structural square tube (a) and a decorative square tube (b).

【図5】 角管に加工する際の第1段の押込み度〜
を説明する図
[Fig. 5] First-stage indentation degree when processing into a square tube ~
Figure explaining

【図6】 成形された角管の平坦度を説明する図FIG. 6 is a diagram for explaining the flatness of the formed rectangular tube.

【図7】 成形された角管のコーナーアール度を説明す
る図
FIG. 7 is a diagram for explaining the corner radius of a formed rectangular tube.

【図8】 押込み度〜に対応した平坦度の変化FIG. 8: Change in flatness corresponding to indentation degree

【図9】 設定押込み量Qと平坦度との関係[Fig. 9] Relationship between set indentation amount Q and flatness

【図10】 押込み度〜に対応したコーナーアール
度の変化
FIG. 10: Change in corner radius corresponding to indentation degree

【図11】 設定押込み量Qとコーナーアール度の関係[Fig. 11] Relationship between set push amount Q and corner radius

【符号の説明】[Explanation of symbols]

0:円筒状の素管 P1:中間形状の管体 P2:矩形
断面形状をもつ角管 D:素管の外径 t:素管の肉厚 W:角管平面部
の幅 Rg:ゲージアール Rs:アール止りの長さ 10:アイドラーロール 20:第1スタンド 3
0:第2スタンド
P 0 : Cylindrical element pipe P 1 : Intermediate tube P 2 : Rectangular tube with rectangular cross section D: Outer diameter of element tube t: Wall thickness of element tube W: Width of rectangular tube flat portion R g : Gauge radius R s : Earl stop length 10: Idler roll 20: First stand 3
0: Second stand

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の素管を角管にロール成形する
際、 前記素管の外径をD,前記素管の肉厚をt,最大カリバ
ー高さをHとするとき、Q=(D−H)/(D−t)×
100で定義される設定押込み率Qを12〜23%の範
囲に維持して前記素管を矩形断面形状に成形する第1段
の成形工程と、 矩形断面形状に成形された前記素管を目標形状に成形す
る第2段以降の成形工程を経ることを特徴とする平坦性
に優れた構造用角管の製造方法。
1. When roll-forming a cylindrical raw pipe into a rectangular pipe, when the outer diameter of the raw pipe is D, the wall thickness of the raw pipe is t, and the maximum caliber height is H, Q = ( D−H) / (D−t) ×
A first stage molding step of molding the raw pipe into a rectangular sectional shape while maintaining the set indentation rate Q defined by 100 within a range of 12 to 23%, and the raw pipe molded into a rectangular sectional shape is targeted. 1. A method for manufacturing a structural rectangular tube having excellent flatness, which comprises a second and subsequent forming steps of forming into a shape.
【請求項2】 円筒状の素管を角管にロール成形する
際、 前記素管の外径をD,前記素管の肉厚をt,最大カリバ
ー高さをHとするとき、Q=(D−H)/(D−t)×
100で定義される設定押込み率Qを20〜24%の範
囲に維持して前記素管を矩形断面形状に成形する第1段
の成形工程と、 矩形断面形状に成形された前記素管を目標形状に成形す
る第2段以降の成形工程を経ることを特徴とするシャー
プな角部をもつ装飾用角管の製造方法。
2. When roll-forming a cylindrical tube into a rectangular tube, when the outer diameter of the tube is D, the wall thickness of the tube is t, and the maximum caliber height is H, Q = ( D−H) / (D−t) ×
A first stage molding step of molding the raw pipe into a rectangular cross-sectional shape while maintaining the set indentation rate Q defined by 100 within the range of 20 to 24%, and the raw pipe shaped into the rectangular cross-sectional shape is targeted. A method for manufacturing a decorative rectangular tube having sharp corners, characterized by undergoing a second and subsequent molding steps for molding into a shape.
JP05063793A 1993-03-11 1993-03-11 Method for manufacturing square tube with excellent shape characteristics Expired - Fee Related JP3197661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05063793A JP3197661B2 (en) 1993-03-11 1993-03-11 Method for manufacturing square tube with excellent shape characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05063793A JP3197661B2 (en) 1993-03-11 1993-03-11 Method for manufacturing square tube with excellent shape characteristics

Publications (2)

Publication Number Publication Date
JPH06262253A true JPH06262253A (en) 1994-09-20
JP3197661B2 JP3197661B2 (en) 2001-08-13

Family

ID=12864481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05063793A Expired - Fee Related JP3197661B2 (en) 1993-03-11 1993-03-11 Method for manufacturing square tube with excellent shape characteristics

Country Status (1)

Country Link
JP (1) JP3197661B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7921688B2 (en) 2004-11-26 2011-04-12 Nakata Manufacturing Co., Ltd. Square tube forming roll, square tube forming method, and forming device
CN104625645A (en) * 2015-01-13 2015-05-20 邴绍翠 Machining method for thin-wall squared tube
CN109898721A (en) * 2017-12-08 2019-06-18 北京仁创科技集团有限公司 A kind of sand sculpture side is logical and its assembling structure and preparation method thereof
CN112496072A (en) * 2020-11-11 2021-03-16 西部金属材料股份有限公司 Titanium alloy U-shaped thin-wall section and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116323065A (en) 2020-10-05 2023-06-23 杰富意钢铁株式会社 Square steel pipe, method for manufacturing same, and building structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7921688B2 (en) 2004-11-26 2011-04-12 Nakata Manufacturing Co., Ltd. Square tube forming roll, square tube forming method, and forming device
CN104625645A (en) * 2015-01-13 2015-05-20 邴绍翠 Machining method for thin-wall squared tube
CN109898721A (en) * 2017-12-08 2019-06-18 北京仁创科技集团有限公司 A kind of sand sculpture side is logical and its assembling structure and preparation method thereof
CN112496072A (en) * 2020-11-11 2021-03-16 西部金属材料股份有限公司 Titanium alloy U-shaped thin-wall section and preparation method thereof

Also Published As

Publication number Publication date
JP3197661B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JPH06262253A (en) Production of square tube with excellent shape characteristic
RU2362642C1 (en) Method for production of bent channels
US3850019A (en) Method of producing a metal strip including a longitudinal channel by roll-form reduction of a multi-gage strip
RU2118213C1 (en) Method for making c-shaped bent section
RU2761840C1 (en) Method and device for drawing square cross section wire in a roller die from a round workpiece
RU2220802C2 (en) Method for making bent shapes having rigidity ribs in bottom part
RU2103088C1 (en) Method of making bent box shapes
SU1463367A1 (en) Method of producing multifacet tubes
JP3499282B2 (en) Molding method of oval tube without opening / closing deformation
JP2970504B2 (en) Rolling method of constant parallel flange channel steel with external method
RU2241557C1 (en) Tube cold rolling method and cold rolling mill for performing the same
SU1750777A1 (en) Method for manufacturing semi-closed profile
SU1003962A1 (en) Bent section production method
SU1278058A1 (en) Method of producing bent unequal channel with stepped wall
JP3197662B2 (en) Roll forming method of deformed pipe with improved end face shape
SU1625543A1 (en) Method of manufacturing bent z-sections with unequal flanges
SU1685569A1 (en) Method for making corrugated shapes
SU1197756A1 (en) Method of producing rectangular tubes
SU1754266A1 (en) Method of making thin-wall roll-formed sections
RU2107570C1 (en) Process for producing roll-formed sections in semicontinuous mill
RU2201829C2 (en) Method for making u-shaped section
JP2851512B2 (en) Rolling device row and rolling method for profiled material having flange
WO1995017269A1 (en) H-steel manufacturing method
SU707622A1 (en) Method of rolling flanged profiles
SU806174A1 (en) Method of producing thin-walled asymmetrical sections

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010529

LAPS Cancellation because of no payment of annual fees