JPH06262026A - Air separation membrane module - Google Patents

Air separation membrane module

Info

Publication number
JPH06262026A
JPH06262026A JP5032793A JP5032793A JPH06262026A JP H06262026 A JPH06262026 A JP H06262026A JP 5032793 A JP5032793 A JP 5032793A JP 5032793 A JP5032793 A JP 5032793A JP H06262026 A JPH06262026 A JP H06262026A
Authority
JP
Japan
Prior art keywords
gas
separation membrane
gas separation
exhaust pipe
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5032793A
Other languages
Japanese (ja)
Inventor
Masanori Kimura
雅典 木村
Tasuke Sawada
太助 沢田
Shigeki Hatanaka
茂樹 畠中
Takaki Kobayashi
貴樹 小林
Masaya Sugafuji
雅哉 菅藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5032793A priority Critical patent/JPH06262026A/en
Publication of JPH06262026A publication Critical patent/JPH06262026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an air separation membrane module generating no lowering of capacity due to the pressure loss in a transmitted air passage and having high volumetric efficiency. CONSTITUTION:A transmitted air passage material 3 is held between flat air separation membranes 2 partially constituted of an air impermeable membrane 4 and the air separation membranes 2 are spirally wound around an air supply and discharge pipe 5 having an air supply pipe 6 and an exhaust pipe 7 integrally provided thereto along with a raw material air passage material 1 and one winding start parts of the membranes 2 communicate with the raw material passage material 1 and the air supply pipe 6. The air separation membranes 2 are bonded to the air supply and discharge pipe 5 so that the transmitted air passage material and exhaust pipe 7 communicate each other and the winding end parts thereof form the air separation membranes 2 into a bag shape so as to airtightly close the transmitted air passage material 3 and both side end parts in the winding direction are sealed so as to airtightly separate a raw material air passage and a transmitted air passage and, in the process from winding end to winding start, the transmitted air passage material 3 is made successively thick.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平膜の気体分離複合膜を
巻回してなるスパイラル型気体分離膜モジュールに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spiral type gas separation membrane module formed by winding a flat gas separation composite membrane.

【0002】[0002]

【従来の技術】一般に平膜を巻回してなるスパイラル型
の気体分離膜モジュールは、透過気体流路を形成する透
過気体流路材を平膜状の気体分離膜で挟んで、穴を有す
る中空管の穴に透過気体流路が連通するように中空管に
気体分離膜を接着し、原料気体流路を形成する原料気体
流路材と共に中空管の周りに巻回して構成される。ま
た、発明者等は特願平4−249711号において、独
立した複数の穴を有する中空管の穴に、透過気体流路材
及び原料気体流路材がそれぞれ連通するように中空管に
気体分離膜を接着し、中空管の周りに巻回して構成され
る気体分離膜モジュールを提案した。
2. Description of the Related Art Generally, a spiral type gas separation membrane module formed by winding a flat membrane has a hole in which a permeable gas flow path member forming a permeable gas flow path is sandwiched between flat gas separation membranes. A gas separation membrane is adhered to the hollow pipe so that the permeation gas flow passage communicates with the hole of the hollow pipe, and the raw gas flow passage material forming the raw gas flow passage is wound around the hollow pipe. . In addition, in the Japanese Patent Application No. 4-249711, the inventors of the present invention have proposed a hollow tube in which a permeating gas flow channel material and a raw gas flow channel material communicate with the hole of a hollow tube having a plurality of independent holes. We have proposed a gas separation membrane module that is constructed by bonding a gas separation membrane and winding it around a hollow tube.

【0003】上記従来の気体分離膜モジュールの気体の
分離、濃縮について原料気体を空気とし窒素を分離、濃
縮する場合について図を用いて説明する。
Separation and concentration of gas in the above conventional gas separation membrane module will be described with reference to the drawings in the case of separating and concentrating nitrogen by using a raw material gas as air.

【0004】図5、図6は従来のスパイラル型の気体分
離膜モジュールの例で、図5(a),(b)はそれぞれ
従来例1の気体分離膜モジュールの断面図、気体分離膜
モジュールを展開した断面斜視図、図6(a),
(b),(c)はそれぞれ従来例2の気体分離膜モジュ
ールの断面図、気体分離膜モジュールを展開した断面斜
視図、気体の流れを示す気体分離膜モジュールを展開し
た断面図である。
FIGS. 5 and 6 show an example of a conventional spiral type gas separation membrane module, and FIGS. 5 (a) and 5 (b) respectively show a cross-sectional view and a gas separation membrane module of the conventional gas separation membrane module. Expanded sectional perspective view, FIG.
(B) and (c) are respectively the sectional view of the gas separation membrane module of conventional example 2, the sectional perspective view which developed the gas separation membrane module, and the sectional view which developed the gas separation membrane module which shows the flow of gas.

【0005】図5において、22は気体分離膜を多孔質
支持体上に形成した平膜状の気体分離複合膜であり、透
過気体流路材23を挟むように折り返してあり、折り返
し部分が巻き終わりになっている。また気体分離複合膜
22の巻回方向(中空管に対して垂直方向)の両側端部
は封止材25で封止してあり、巻始めの一端は透過気体
流路材23と中空管26が連通するように気体分離複合
膜22が中空管26に接着されている。原料気体流路は
解放されている。
In FIG. 5, reference numeral 22 is a flat membrane-like gas separation composite membrane in which a gas separation membrane is formed on a porous support, and is folded back so as to sandwich the permeation gas flow path member 23, and the folded back portion is wound. It's over. Further, both ends of the gas separation composite membrane 22 in the winding direction (direction perpendicular to the hollow tube) are sealed with a sealing material 25, and one end at the beginning of winding is hollow with the permeable gas flow path material 23. The gas separation composite membrane 22 is bonded to the hollow tube 26 so that the tube 26 communicates. The raw material gas flow path is open.

【0006】上記構成において、原料気体流路材21で
構成された原料気体流路に原料空気を矢印(実線)の方
向に供給すると、原料空気は酸素を優先的に透過する気
体分離複合膜22の表面上を流れていく。その時酸素は
優先的に気体分離複合膜22を透過し透過気体流路材2
3で構成された透過気体流路を矢印(破線)の方向に流
れて行き、中空管26より排出される。そのため気体分
離複合膜上を通過し、気体分離膜モジュールから出て来
た空気は窒素が濃縮されることとなる。
In the above structure, when the raw material air is supplied to the raw material gas flow path constituted by the raw material gas flow path member 21 in the direction of the arrow (solid line), the raw material air preferentially permeates oxygen. Flowing over the surface of. At that time, oxygen preferentially permeates the gas separation composite membrane 22 and permeates the gas passage material 2
The permeable gas flow path constituted by 3 flows in the direction of the arrow (broken line) and is discharged from the hollow tube 26. Therefore, the air that has passed through the gas separation composite membrane and has come out of the gas separation membrane module is concentrated in nitrogen.

【0007】また、図6は、透過気体流路材23を平膜
状の気体分離複合膜22と気体非透過膜24で挟み、原
料気体流路材21と共に、独立した給気管28と排気管
29を有する給排気管27の周りに巻回したスパイラル
型の気体分離膜モジュールで、給気管28と原料気体流
路材21及び排気管29と透過気体流路材23がそれぞ
れ連通するように気体分離複合膜22及び気体非透過膜
24を給排気管27に接着させ、更に巻回方向の両側端
部を原料気体流路と透過気体流路を気密に隔てるように
封止してある。
In FIG. 6, the permeable gas flow path member 23 is sandwiched between a flat membrane-like gas separation composite membrane 22 and a gas impermeable membrane 24, and together with the raw material gas flow path member 21, an independent air supply pipe 28 and exhaust pipe. In the spiral type gas separation membrane module wound around an air supply / exhaust pipe 27 having 29, a gas is provided so that the air supply pipe 28 and the raw material gas flow path member 21 and the exhaust pipe 29 and the permeation gas flow path member 23 communicate with each other. The separation composite membrane 22 and the gas impermeable membrane 24 are adhered to the air supply / exhaust pipe 27, and both ends in the winding direction are sealed so that the raw material gas passage and the permeation gas passage are hermetically separated.

【0008】このスパイラル型気体分離膜モジュールの
給気管28から原料空気を供給すると、原料気体供給流
路を矢印(実線)の方向に気体分離複合膜22の表面上
を流れ、従来例1の気体分離膜モジュールと同様に酸素
の優先的な透過により、窒素を濃縮できる。この気体分
離膜モジュールでは原料空気が巻回方向に流れることに
よって、原料空気が気体分離複合膜表面上を流れる距離
を長くすることができ、濃縮効率の高い気体分離膜モジ
ュールが得られる。
When the raw material air is supplied from the air supply pipe 28 of this spiral type gas separation membrane module, it flows on the surface of the gas separation composite membrane 22 in the direction of the arrow (solid line) in the raw material gas supply passage, and the gas of the conventional example 1 is obtained. As with the separation membrane module, nitrogen can be concentrated by preferentially permeating oxygen. In this gas separation membrane module, since the raw material air flows in the winding direction, the distance that the raw material air flows on the surface of the gas separation composite membrane can be lengthened, and a gas separation membrane module with high concentration efficiency can be obtained.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、いずれ
にしても上記従来の気体分離膜モジュールの透過気体流
路材23の厚さは、巻終わりから巻始めに至る過程にお
いて一定であるため、気体の流れる流路の断面積が一定
となる。これに対し、透過気体流路材23中を流れてい
く透過気体の流量は、図6(c)に示すように気体分離
複合膜の巻き終わりから巻き始めに至る過程で、順次積
算され増大していき、排気管27と連通する部分では、
気体分離膜22全面で透過した量の透過気体が通過する
ことになる。即ち、一定の厚さ(流路の断面積が一定)
の透過気体流路材中では、流量の増大に比例し流動抵抗
も増大し、透過気体流路材の厚さが充分でない場合に
は、流動抵抗が大きくなり圧力損失を生じて、気体分離
膜を介して所定の圧力差が得られなくなり、充分な性能
を確保できなくなる。
However, in any case, since the thickness of the permeable gas flow path member 23 of the conventional gas separation membrane module is constant in the process from the winding end to the winding start, the gas The cross-sectional area of the flow channel becomes constant. On the other hand, the flow rate of the permeating gas flowing in the permeating gas channel member 23 is sequentially integrated and increased in the process from the winding end to the winding start of the gas separation composite membrane as shown in FIG. 6C. In the part that communicates with the exhaust pipe 27,
The amount of permeated gas that has permeated the entire surface of the gas separation membrane 22 will pass. That is, constant thickness (the cross-sectional area of the flow path is constant)
In the permeable gas flow channel material, the flow resistance also increases in proportion to the increase in the flow rate, and if the permeable gas flow channel material is not thick enough, the flow resistance increases and a pressure loss occurs, causing a gas separation membrane. It becomes impossible to obtain a predetermined pressure difference via the, and it becomes impossible to secure sufficient performance.

【0010】また、透過気体流路中、透過気体流量が最
も多くなる排気管と連通する部分において、圧力損失が
充分に小さくなるように透過気体流路材の厚さを決定し
た場合、透過気体流路材の厚さが一定であるために排気
管から巻終わり部分に至るにつれて必要以上に透過気体
流路材が厚くなることになり、巻回した気体分離膜モジ
ュールの外形が大きくなり、気体分離膜モジュールの性
能に対する体積効率が低下することになる。
Further, when the thickness of the permeable gas flow channel material is determined so that the pressure loss is sufficiently small in the portion communicating with the exhaust pipe where the permeable gas flow rate is maximum in the permeable gas flow channel, Since the thickness of the flow path material is constant, the permeated gas flow path material becomes thicker than necessary from the exhaust pipe to the end of winding, and the outer shape of the wound gas separation membrane module becomes large. The volume efficiency with respect to the performance of the separation membrane module will be reduced.

【0011】一般的にスパイラル型の気体分離膜モジュ
ールにおいては、原料気体を加圧供給する方式がとられ
ているため、供給気体の体積は大気圧下の数分の1にな
る。これに対して透過気体は大気圧となるため、透過気
体の流量は供給気体の数倍になり、透過気体流路材の厚
さは原料気体流路材の数倍必要となる。従って気体分離
膜モジュールにおける透過気体流路材の占める体積比率
は高くなり、透過気体流路材を如何に薄くできるかが、
体積効率の向上、即ち性能向上及び小型化の重要な課題
となる。
Generally, in a spiral type gas separation membrane module, a method of supplying a raw material gas under pressure is adopted, so that the volume of the supplied gas becomes a fraction of the atmospheric pressure. On the other hand, since the permeable gas is at atmospheric pressure, the flow rate of the permeable gas is several times that of the supply gas, and the thickness of the permeable gas channel material is several times that of the source gas channel material. Therefore, the volume ratio of the permeable gas channel material in the gas separation membrane module is high, and how thin the permeable gas channel material can be
It is an important issue to improve the volumetric efficiency, that is, to improve the performance and reduce the size.

【0012】本発明は上記従来の課題を解決するもの
で、濃縮効率及び体積効率の優れた気体分離膜モジュー
ルを提供することを目的とする。
The present invention is intended to solve the above conventional problems, and an object thereof is to provide a gas separation membrane module having excellent concentration efficiency and volume efficiency.

【0013】[0013]

【課題を解決するための手段】この目的を達成するため
に本発明の気体分離膜モジュールは、透過気体流路材を
平膜状の気体分離膜、あるいは一部が気体非透過膜で構
成された平膜状の気体分離膜で挟み、上記透過気体流路
材を挟んだ気体分離膜と原料気体流路材とを重ねて一組
とし、この少なくとも一組を、原料空気を供給する給気
管と透過気体を排気する排気管とが一体となった給排気
管の周りにスパイラル状に巻回し、巻始めの一端は原料
気体流路材と給排気管の給気管が連通し、かつ透過気体
流路材と給排気管の排気管が連通するように給排気管に
上記気体分離膜を接着し、巻終わりの一端は透過気体流
路を気密に閉じるように上記気体分離膜を袋状とし、巻
回方向の両側端部は原料気体流路と透過気体流路を気密
に隔てるように封止した気体分離膜モジュールであっ
て、巻終わりから巻始めに至る過程で、上記透過気体流
路材を順次厚くした構成を有している。
In order to achieve this object, the gas separation membrane module of the present invention is configured such that the permeating gas flow path member is a flat membrane-like gas separation membrane, or a part of which is a gas impermeable membrane. The gas separation membrane sandwiching the permeating gas flow channel material and the raw material gas flow channel material are overlapped to form a set, and at least one set is an air supply pipe for supplying the raw material air. Spirally wound around the air supply / exhaust pipe in which the exhaust gas and the exhaust pipe for exhausting the permeated gas are integrated, and at one end of the winding, the raw gas flow path material and the air supply pipe of the air supply / exhaust pipe communicate The gas separation membrane is adhered to the supply / exhaust pipe so that the flow path member and the exhaust pipe of the supply / exhaust pipe communicate with each other, and the one end of the winding end is formed into a bag shape so as to hermetically close the permeated gas flow passage. , Both ends in the winding direction are sealed so that the source gas passage and the permeation gas passage are airtightly separated. It was a gas separation membrane module, in the process leading to the winding start from the end winding, and has a structure obtained by sequentially increasing the permeate passage material.

【0014】また透過気体流路材を平膜状の気体分離
膜、あるいは一部が気体非透過膜で構成された平膜状の
気体分離膜で挟み、この気体分離膜の両側端部を封止
し、上記透過気体流路材を挟んだ気体分離膜と原料気体
流路材とを重ねて一組とし、この少なくとも一組を排気
管の周りにスパイラル状に巻回し、巻始めの一端は透過
気体を排気する排気管と透過気体流路材が連通するよう
に排気管に上記気体分離膜を接着し、巻終わりの一端は
透過気体流路を気密に閉じるように上記気体分離膜を袋
状とした気体分離膜モジュールであって、巻終わりから
巻始めに至る過程で、上記透過気体流路材を順次厚くし
た構成を有している。
Further, the permeating gas channel material is sandwiched between flat gas separation membranes or flat gas separation membranes partially formed of gas impermeable membranes, and both end portions of the gas separation membrane are sealed. Then, the gas separation membrane sandwiching the permeating gas channel material and the raw material gas channel material are overlapped to form one set, and at least one set is spirally wound around the exhaust pipe, and one end of the winding start is The gas separation membrane is adhered to the exhaust pipe so that the exhaust pipe for exhausting the permeated gas and the permeated gas flow channel material communicate with each other, and the one end of the winding end is covered with the gas separation membrane so as to hermetically close the permeated gas flow channel. A gas separation membrane module having the above-mentioned shape, having a configuration in which the permeating gas flow channel material is sequentially thickened in the process from the winding end to the winding start.

【0015】[0015]

【作用】この構成により、気体分離膜モジュールにおい
て体積比率の高い透過気体流路材を削減でき、しかも巻
終わりから巻き始めに至る過程において透過気体の流量
が順次増大しても、それに伴い透過気体流路材が順次厚
くなり流路が大きくなるため、圧力損失による性能低下
の無い、体積効率の高い気体分離膜モジュールを実現で
きる。
With this configuration, the permeated gas flow channel material having a high volume ratio can be reduced in the gas separation membrane module, and even if the permeated gas flow rate is gradually increased during the process from the end of winding to the beginning of winding, the permeated gas is accordingly increased. Since the flow path material becomes thicker and the flow path becomes larger, it is possible to realize a gas separation membrane module with high volume efficiency without performance deterioration due to pressure loss.

【0016】[0016]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。図1(a)は本実施例の気体分離
膜モジュールの断面図、図1(b)、図2は気体分離膜
モジュールを展開した断面図、図3は本実施例の使用例
である。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 (a) is a sectional view of the gas separation membrane module of the present embodiment, FIG. 1 (b) and FIG. 2 are sectional views of the developed gas separation membrane module, and FIG. 3 is a usage example of the present embodiment.

【0017】図1において、1は原料気体流路材で、厚
さ0.4mmの15メッシュのポリエチレン成形ネットを
1枚用いてある。2は気体分離複合膜で、多孔質支持体
上にポリ4メチルペンテン1の気体分離膜を積層し、更
にその上にポリジメチルシロキサンを積層した非対称構
造で、分離膜側が原料気体流路材1と相対するように配
されている。
In FIG. 1, reference numeral 1 is a raw material gas flow path member, and one sheet of polyethylene mesh of 15 mesh having a thickness of 0.4 mm is used. Reference numeral 2 denotes a gas separation composite membrane, which has an asymmetric structure in which a gas separation membrane of poly (4-methylpentene 1) is laminated on a porous support, and polydimethylsiloxane is further laminated thereon, and the separation membrane side is the raw material gas flow path member 1 It is arranged to face.

【0018】3は透過気体流路材で、厚さ0.4mmの1
5メッシュのポリエチレン成形ネットを巻終わりから1
00cm迄は1枚で、それ以降50cmごとに1枚ずつ増や
して積層し構成されている。4は気体非透過膜で厚さ1
00μmのポリエステルフィルムである。5は給排気管
で給気管6と排気管7が、長さ方向に独立して平行に配
されており、給気管6、排気管7にはそれぞれ外部と連
通する穴があいている。
Reference numeral 3 denotes a permeating gas flow path material, which has a thickness of 0.4 mm and is 1
5 mesh polyethylene molding net 1 from the end of winding
It is composed of 1 sheet up to 00 cm, and 1 sheet every 50 cm thereafter. 4 is a gas impermeable membrane and has a thickness of 1
It is a polyester film of 00 μm. Reference numeral 5 denotes an air supply / exhaust pipe, in which an air supply pipe 6 and an exhaust pipe 7 are independently arranged in parallel in the longitudinal direction, and the air supply pipe 6 and the exhaust pipe 7 each have a hole communicating with the outside.

【0019】上記の原料気体流路材1が給気管6に、透
過気体流路材3が排気管7に連通するように、気体分離
複合膜2及び気体非透過膜4を給排気管5に気密に接着
し、原料気体流路材1から気体非透過膜4の材料を給排
気管5の回りにスパイラル状に巻回した後、気体分離複
合膜2の巻終わりの一端で気体分離複合膜2と気体非透
過膜4を気密に接着し、他の二辺を図3のように封止材
8によって原料気体流路と、透過気体流路を気密に隔て
るように接着封止する。
The gas separation composite membrane 2 and the gas impermeable membrane 4 are connected to the air supply / exhaust pipe 5 so that the above-mentioned raw material gas flow passage material 1 communicates with the air supply pipe 6 and the permeated gas flow passage material 3 communicates with the exhaust pipe 7. After air-tightly adhering and spirally winding the material of the gas impermeable membrane 4 from the raw material gas flow path material 1 around the supply / exhaust pipe 5, the gas separation composite membrane 2 is formed at one end of the end of the winding of the gas separation composite membrane 2. 2 and the gas impermeable film 4 are airtightly adhered, and the other two sides are adhesively sealed by the sealing material 8 so as to airtightly separate the raw material gas passage and the permeable gas passage as shown in FIG.

【0020】以上のように構成された気体分離膜モジュ
ールは、透過気体流路材のみ一定の厚さにして同様に作
成した気体分離膜モジュールに比較して、透過気体流路
材の使用量はほぼ半分となり、気体分離膜モジュールの
外径は30mm小さくなった。
In the gas separation membrane module configured as described above, the amount of the permeated gas flow channel material used is smaller than that of the gas separation membrane module similarly prepared by making only the permeated gas flow channel material to have a constant thickness. It was almost halved, and the outer diameter of the gas separation membrane module was reduced by 30 mm.

【0021】また、図3に示すように、上記気体分離膜
モジュールを圧力容器9内に収納し、給気管6から59
2Pa(5kgf/cm2G)に加圧された空気4.2×1
-43/s(25l/min)を供給し、流量調節弁
10から得られる窒素濃縮空気流量を8.3×10-5
3/s(5l/min)に調節したところ窒素濃度は9
7.5%であった。
Further, as shown in FIG. 3, the gas separation membrane module is housed in the pressure vessel 9 and the air supply pipes 6 to 59 are provided.
Air pressurized to 2 Pa (5 kgf / cm 2 G) 4.2 × 1
0 −4 m 3 / s (25 l / min) is supplied, and the flow rate of nitrogen-enriched air obtained from the flow rate control valve 10 is 8.3 × 10 −5 m 2.
When adjusted to 3 / s (5 l / min), the nitrogen concentration was 9
It was 7.5%.

【0022】以上のように本実施例によれば、透過気体
流路材を気体非透過膜と平膜状の気体分離膜で挟み、透
過気体流路材を挟んだ気体分離膜と原料気体流路材とを
重ねて一組とし、この一組あるいは複数組を、原料空気
を供給する給気管と透過気体を排気する排気管とが一体
となった給排気管の周りにスパイラル状に巻回し、巻始
めの一端は原料気体流路材と給排気管の給気管が連通
し、かつ、透過気体流路材と給排気管の排気管が連通す
るように給排気管に気体非透過膜及び気体分離膜を接着
し、巻終わりの一端は透過気体流路を気密に閉じるよう
に非透過気体透過材と気体分離膜を袋状に接着し、巻回
方向の両側端部は原料気体流路と透過気体流路を気密に
隔てるように封止し、巻終わりから巻始めに至る過程
で、透過気体流路材を順次厚くすることにより、体積効
率の高い気体分離膜モジュールが得られる。
As described above, according to the present embodiment, the permeable gas flow channel material is sandwiched between the gas impermeable membrane and the flat membrane-like gas separation membrane, and the permeable gas flow channel material is sandwiched and the raw material gas flow. The road material is overlapped to form one set, and one set or a plurality of sets is spirally wound around an air supply / exhaust pipe in which an air supply pipe for supplying raw material air and an exhaust pipe for exhausting permeated gas are integrated. , At one end of the winding start, the feed gas pipe and the air supply pipe of the air supply / exhaust pipe communicate with each other, and the gas permeation pipe and the gas non-permeable membrane and the gas supply / exhaust pipe communicate with the exhaust pipe of the air supply / exhaust pipe. The gas separation membrane is bonded, and the non-permeable gas permeable material and the gas separation membrane are bonded in a bag shape so that the permeate gas flow path is hermetically closed at one end, and both ends in the winding direction are the raw material gas flow path. And the permeable gas flow passage are hermetically sealed so that the permeable gas flow passage material is removed during the process from the end of winding to the beginning of winding. By following thick, high gas separation membrane module of volumetric efficiency.

【0023】尚、本実施例の気体分離膜モジュールの透
過気体流路材3を構成しているネットの積層数、及び積
層しているそれぞれのネットの長さは、ネットの単位体
積当たりの空間の割合、気体分離膜の気体透過性能、気
体分離性能、気体分離膜モジュールの回収率(給気空気
量に対する窒素濃縮空気量の比率)等によって最適な値
が決定されるため、本実施例の値に限定されるものでは
ない。
The number of stacked nets constituting the permeation gas flow path member 3 of the gas separation membrane module of this embodiment and the length of each of the stacked nets are the space per unit volume of the net. , The gas permeation performance of the gas separation membrane, the gas separation performance, the recovery rate of the gas separation membrane module (the ratio of the nitrogen-enriched air amount to the supply air amount), etc., the optimum value is determined. The value is not limited.

【0024】また本実施例の気体分離膜モジュールの透
過気体流路材3は、ポリエチレンネットを積層して用い
たが、これは例えばポリプロピレン、ポリ塩化ビニル等
の樹脂を用いたネット、あるいはウレタン、ポリスチレ
ン等を用いた発泡フォーム、あるいはポリエステル等を
用いた不織布等、気体の流路を形成する成形樹脂品なら
特に限定されるものではない。
The permeating gas flow path member 3 of the gas separation membrane module of this embodiment was formed by laminating polyethylene nets, which are nets made of resin such as polypropylene or polyvinyl chloride, or urethane, There is no particular limitation as long as it is a molded resin product that forms a gas flow path, such as foamed foam using polystyrene or the like, or nonwoven fabric using polyester or the like.

【0025】更に本実施例では一定の厚みのネットを積
層した構成としたが、図2の3−1に示すように、ネッ
トや上記の流路材をなめらかに厚みが変わるように一体
的に成形した構成としても良く、この場合には体積効率
が良くなり、ネットの段差による気体分離膜の変形も回
避でき、巻取り工数も削減できる。
Further, in the present embodiment, the net having a constant thickness is laminated, but as shown in 3-1 of FIG. 2, the net and the above-mentioned flow path member are integrally formed so that the thickness can be smoothly changed. A molded structure may be used, in which case the volume efficiency is improved, deformation of the gas separation membrane due to the step of the net can be avoided, and the number of winding steps can be reduced.

【0026】(実施例2)以下本発明の第2の実施例に
ついて、図4を参照しながら説明する。
(Embodiment 2) A second embodiment of the present invention will be described below with reference to FIG.

【0027】1は原料気体流路材で実施例1と同様な構
成であるが、巻回方向の長さは2分の1になっている。
2は気体分離複合膜で実施例1と同様な構成であるが、
透過気体流路材3を挟むように折り返し、折り返し部分
が巻終わりとなるようにし、両側端部を封止してある。
また気体分離複合膜2の折り返し部分には気体非透過膜
4が接着されており、気体非透過膜4は気体分離複合膜
2の外周を覆っている。3は透過気体流路材でこれも実
施例1と同様な構成であるが、巻終わりから50cm迄が
1枚で、それ以降25cmごとに1枚ずつ増やして積層し
た構成としている。
Reference numeral 1 is a raw material gas flow path material, which has the same structure as that of the first embodiment, but the length in the winding direction is halved.
Reference numeral 2 denotes a gas separation composite membrane, which has the same configuration as that of the first embodiment,
The permeable gas flow channel member 3 is folded back so as to sandwich it, the folded back portion is the end of winding, and both end portions are sealed.
Further, a gas non-permeable membrane 4 is adhered to the folded portion of the gas separation composite membrane 2, and the gas non-permeable membrane 4 covers the outer periphery of the gas separation composite membrane 2. Reference numeral 3 denotes a permeated gas flow channel material, which also has the same configuration as that of the first embodiment, but has one sheet from the end of winding to 50 cm, and thereafter has a configuration in which one sheet is added every 25 cm.

【0028】上記の原料気体流路材1が給気管6に、透
過気体流路材3が排気管7に連通するように、気体分離
複合膜2を給排気管5に気密に接着し、原料気体流路材
1から気体非透過膜4の材料を給排気管5の回りにスパ
イラル状に巻回する。この気体分離膜モジュールの外径
は実施例1の気体分離膜モジュールに比べ、10mm小さ
くなった。
The gas separation composite membrane 2 is airtightly adhered to the air supply / exhaust pipe 5 so that the above-mentioned raw material gas flow channel material 1 communicates with the air supply pipe 6 and the permeated gas flow channel material 3 communicates with the exhaust pipe 7. The material of the gas impermeable membrane 4 is spirally wound around the air supply / exhaust pipe 5 from the gas flow path material 1. The outer diameter of this gas separation membrane module was 10 mm smaller than that of the gas separation membrane module of Example 1.

【0029】以上のように構成された気体分離膜モジュ
ールを図3に示すように圧力容器9内に収納し、給気管
6から592Pa(5kgf/cm2G)に加圧された空気
4.2×10-433/s(25l/min)を供給し、
流量調節弁10から得られる窒素濃縮空気流量を8.3
×10-53/s(5l/min)に調節したところ窒
素濃度は97.4%であった。
The gas separation membrane module configured as described above is housed in the pressure vessel 9 as shown in FIG. 3, and the air 4.2 pressurized from the air supply pipe 6 to 592 Pa (5 kgf / cm 2 G). × 10 -4 m 3 3 / s (25 l / min) is supplied,
The flow rate of nitrogen enriched air obtained from the flow rate control valve 10 is set to 8.3.
When adjusted to × 10 -5 m 3 / s (5 l / min), the nitrogen concentration was 97.4%.

【0030】以上のように本実施例によれば、一部が気
体非透過膜で構成された平膜状の気体分離膜で透過気体
流路材を挟み、この透過気体流路材を挟んだ気体分離膜
と原料気体流路材とを重ねて一組とし、この一組あるい
は複数組を、原料空気を供給する給気管と透過気体を排
気する排気管とが一体となった給排気管の周りにスパイ
ラル状に巻回し、巻始めの一端は原料気体流路材と給排
気管の給気管が連通し、かつ、透過気体流路材と給排気
管の排気管が連通するように給排気管に気体分離膜を接
着し、気体分離膜の巻終わりの一端が気体分離膜の折り
返し部分となるようにし、巻回方向の両側端部は原料気
体流路と透過気体流路を気密に隔てるように封止し、巻
終わりから巻始めに至る過程で、透過気体流路材を順次
厚くすることにより、透過気体流路材を更に削減でき、
体積効率をより向上できる。
As described above, according to this embodiment, the permeable gas flow channel member is sandwiched between the flat membrane-like gas separation membranes, a part of which is a gas impermeable film, and the permeable gas flow channel member is sandwiched. The gas separation membrane and the raw material gas flow path member are overlapped to form one set, and one set or a plurality of sets is used as a supply / exhaust pipe in which the supply pipe for supplying the raw material air and the exhaust pipe for exhausting the permeated gas are integrated. It is spirally wound around, and at one end of the winding start, the raw gas flow path material and the supply / exhaust pipe supply pipe are connected, and the permeated gas flow path material and the supply / exhaust pipe exhaust pipe are connected. Adhere a gas separation membrane to the tube so that one end of the winding end of the gas separation membrane becomes the folded portion of the gas separation membrane, and both ends in the winding direction air-tightly separate the raw gas passage and the permeation gas passage. Sealing, and by gradually increasing the thickness of the permeation gas channel material in the process from the end of winding to the beginning of winding. Further reduces the permeate channel material,
Volume efficiency can be further improved.

【0031】[0031]

【発明の効果】以上のように本発明によれば、透過気体
流路材を平膜状の気体分離膜、あるいは一部が気体非透
過膜で構成された平膜状の気体分離膜で挟み、この透過
気体流路材を挟んだ気体分離膜と原料気体流路材とを重
ねて一組とし、この一組あるいは複数組を、原料空気を
供給する給気管と透過気体を排気する排気管とが一体と
なった給排気管の周りにスパイラル状に巻回し、巻始め
の一端は原料気体流路材と給排気管の給気管が連通し、
かつ、透過気体流路材と給排気管の排気管が連通するよ
うに給排気管に気体分離膜を接着し、巻終わりの一端は
透過気体流路を気密に閉じるように気体分離膜を袋状と
し、巻回方向の両側端部は原料気体流路と透過気体流路
を気密に隔てるように封止し、巻終わりから巻始めに至
る過程で、前記透過気体流路材を順次厚くした構成、ま
たは平膜状の気体分離膜、あるいは一部が気体非透過膜
で構成された平膜状の気体分離膜で透過気体流路材を挟
み、気体分離膜の両側端部を封止し、透過気体流路材を
挟んだ気体分離膜と原料気体流路材とを重ねて一組と
し、この一組あるいは複数組を、排気管の周りにスパイ
ラル状に巻回し、巻始めの一端は透過気体を排気する排
気管と透過気体流路材が連通するように排気管に気体分
離膜を接着し、巻終わりの一端は透過気体流路を気密に
閉じるように気体分離膜を袋状とし、巻終わりから巻始
めに至る過程で、透過気体流路材を順次厚くした構成と
することにより、巻終わりから巻き始めに至る過程にお
いて透過気体の流量が順次増大しても、それに伴い流路
材が順次厚くなり流路が大きくなるため、圧力損失によ
る性能低下の無い、しかも体積効率の高い気体分離膜モ
ジュールを実現できる。
As described above, according to the present invention, the permeable gas flow path member is sandwiched between flat gas separation membranes or flat gas separation membranes partially formed of gas impermeable membranes. , A gas separation membrane sandwiching the permeated gas channel material and a raw material gas channel material are overlapped to form one set, and one set or a plurality of sets is an air supply pipe for supplying the raw material air and an exhaust pipe for exhausting the permeated gas. Spirally wound around the air supply / exhaust pipe in which the and are integrated, and at one end of the winding start, the raw material gas flow path member and the air supply pipe of the air supply / exhaust pipe communicate with each other,
In addition, a gas separation membrane is bonded to the air supply / exhaust pipe so that the permeated gas flow path member and the exhaust pipe of the air supply / exhaust pipe communicate with each other, and a gas separation membrane is formed in a bag so as to hermetically close the permeated gas flow path at one end of the winding end. The both ends of the winding direction are sealed so that the raw material gas passage and the permeating gas passage are airtightly separated, and the permeating gas passage material is sequentially thickened in the process from the end of winding to the beginning of winding. The gas permeation channel material is sandwiched between flat gas separation membranes or flat gas separation membranes partially composed of gas impermeable membranes, and both ends of the gas separation membranes are sealed. The gas separation membrane sandwiching the permeation gas flow channel material and the raw material gas flow channel material are overlapped to form one set, and one set or a plurality of sets is spirally wound around the exhaust pipe, and one end of the winding start is Attach a gas separation membrane to the exhaust pipe so that the exhaust pipe that exhausts the permeated gas and the permeated gas channel material are in communication, and At one end, the gas separation membrane is formed in a bag shape so as to hermetically close the permeation gas flow path, and the permeation gas flow path material is gradually thickened in the process from the end of winding to the start of winding Even if the flow rate of the permeated gas gradually increases in the process of winding, the flow path material becomes thicker and the flow path becomes larger accordingly, so there is no performance loss due to pressure loss and the gas separation membrane module has high volume efficiency. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の気体分離膜モジュールの(a)断面
図および(b)展開断面図
FIG. 1A is a sectional view and FIG. 1B is a developed sectional view of a gas separation membrane module of Example 1.

【図2】実施例1の他の気体分離膜モジュールを展開し
た断面図
FIG. 2 is a sectional view showing another gas separation membrane module of Example 1 which is developed.

【図3】実施例1および2の気体分離膜モジュールの使
用例を示す断面図
FIG. 3 is a cross-sectional view showing an example of use of the gas separation membrane module of Examples 1 and 2.

【図4】実施例2の気体分離膜モジュールの断面図FIG. 4 is a cross-sectional view of the gas separation membrane module of Example 2.

【図5】従来例1の気体分離膜モジュールの(a)断面
図および(b)一部展開斜視図
5A is a sectional view and FIG. 5B is a partially exploded perspective view of a gas separation membrane module of Conventional Example 1. FIG.

【図6】従来例2の気体分離膜モジュールの(a)断面
図、(b)一部展開斜視図および(c)展開断面図
6A is a sectional view of a gas separation membrane module of Conventional Example 2, FIG. 6B is a partially exploded perspective view, and FIG. 6C is an exploded sectional view.

【符号の説明】[Explanation of symbols]

1 原料気体流路材 2 気体分離複合膜 3 透過気体流路材 4 気体非透過膜 5 給排気管 6 給気管 7 排気管 8 封止材 1 Raw Material Gas Channel Material 2 Gas Separation Composite Membrane 3 Permeable Gas Channel Material 4 Gas Non-Permeable Membrane 5 Air Supply / Exhaust Pipe 6 Air Supply Pipe 7 Exhaust Pipe 8 Sealing Material

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月7日[Submission date] February 7, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図4】 [Figure 4]

【図3】 [Figure 3]

【図5】 [Figure 5]

【図6】 [Figure 6]

フロントページの続き (72)発明者 小林 貴樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 菅藤 雅哉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Takaki Kobayashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Masaya Sugato 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 透過気体流路材を平膜状の気体分離膜、
あるいは一部が気体非透過膜で構成された平膜状の気体
分離膜で挟み、前記透過気体流路材を挟んだ気体分離膜
と原料気体流路材とを重ねて一組とし、この少なくとも
一組を、原料空気を供給する給気管と透過気体を排気す
る排気管とが一体となった給排気管の周りにスパイラル
状に巻回し、巻始めの一端は原料気体流路材と給排気管
の給気管が連通し、かつ、透過気体流路材と給排気管の
排気管が連通するように給排気管に前記気体分離膜を接
着し、巻終わりの一端は透過気体流路を気密に閉じるよ
うに前記気体分離膜を袋状とし、巻回方向の両側端部は
原料気体流路と透過気体流路を気密に隔てるように封止
した気体分離膜モジュールであって、巻終わりから巻始
めに至る過程で、前記透過気体流路材を順次厚くした気
体分離膜モジュール。
1. A permeation gas flow path member is a gas separation membrane in the form of a flat membrane,
Alternatively, it is sandwiched by flat membrane-shaped gas separation membranes partially composed of gas impermeable membranes, and the gas separation membrane sandwiching the permeation gas flow channel member and the raw material gas flow channel member are combined to form a set, and at least this A set is spirally wound around an air supply / exhaust pipe in which an air supply pipe that supplies the raw air and an exhaust pipe that exhausts the permeated gas are integrated, and one end of the winding starts with the raw material gas passage material and the exhaust gas. The gas separation membrane is adhered to the air supply / exhaust pipe so that the air supply pipe of the pipe communicates with the exhaust gas pipe of the air supply / exhaust pipe, and the permeate gas flow passage is airtight at one end of the winding end. The gas separation membrane is formed in a bag shape so as to be closed, and both ends in the winding direction are gas separation membrane modules in which the raw material gas passage and the permeation gas passage are hermetically separated from each other. A gas separation membrane module in which the permeating gas channel material is sequentially thickened in the process of starting the winding. .
【請求項2】 透過気体流路材を平膜状の気体分離膜、
あるいは一部が気体非透過膜で構成された平膜状の気体
分離膜で挟み、前記気体分離膜の両側端部を封止し、前
記透過気体流路材を挟んだ気体分離膜と原料気体流路材
とを重ねて一組とし、この少なくとも一組を、排気管の
周りにスパイラル状に巻回し、巻始めの一端は透過気体
を排気する排気管と透過気体流路材が連通するように排
気管に前記気体分離膜を接着し、巻終わりの一端は透過
気体流路を気密に閉じるように前記気体分離膜を袋状と
した気体分離膜モジュールであって、巻終わりから巻始
めに至る過程で、前記透過気体流路材を順次厚くした気
体分離膜モジュール。
2. A permeation gas flow path member is a flat membrane gas separation membrane,
Alternatively, it is sandwiched between flat gas separation membranes, which are partially composed of gas impermeable membranes, and both side ends of the gas separation membrane are sealed, and the gas separation membrane and the raw material gas sandwiching the permeation gas flow channel material. The flow path material is overlapped to form one set, and at least one set is spirally wound around the exhaust pipe, and one end of the winding start is such that the exhaust pipe that exhausts the permeated gas and the permeated gas flow path material are in communication with each other. The gas separation membrane is adhered to the exhaust pipe, and the gas separation membrane module is a bag-shaped gas separation membrane so that one end of the winding end hermetically closes the permeation gas flow path. A gas separation membrane module in which the permeating gas channel material is sequentially thickened in the process of reaching.
JP5032793A 1993-03-11 1993-03-11 Air separation membrane module Pending JPH06262026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5032793A JPH06262026A (en) 1993-03-11 1993-03-11 Air separation membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5032793A JPH06262026A (en) 1993-03-11 1993-03-11 Air separation membrane module

Publications (1)

Publication Number Publication Date
JPH06262026A true JPH06262026A (en) 1994-09-20

Family

ID=12855819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5032793A Pending JPH06262026A (en) 1993-03-11 1993-03-11 Air separation membrane module

Country Status (1)

Country Link
JP (1) JPH06262026A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220070A (en) * 2008-03-18 2009-10-01 Nitto Denko Corp Spiral membrane element and spiral membrane module
US7682422B2 (en) 2004-02-19 2010-03-23 Ube Industries, Ltd. Method for separating/recovering oxygen-rich air from air, its apparatus and gas separation membrane module
CN110461445A (en) * 2017-04-12 2019-11-15 阿夸曼布拉尼斯公司 Classification distance part for takeup type filter element
US11633700B2 (en) 2020-04-07 2023-04-25 Aqua Membranes Inc. Independent spacers and methods
US11896933B2 (en) 2017-04-20 2024-02-13 Aqua Membranes Inc. Non-nesting, non-deforming patterns for spiral-wound elements
WO2024038722A1 (en) * 2022-08-18 2024-02-22 日東電工株式会社 Spiral membrane element and membrane separation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682422B2 (en) 2004-02-19 2010-03-23 Ube Industries, Ltd. Method for separating/recovering oxygen-rich air from air, its apparatus and gas separation membrane module
JP2009220070A (en) * 2008-03-18 2009-10-01 Nitto Denko Corp Spiral membrane element and spiral membrane module
CN110461445A (en) * 2017-04-12 2019-11-15 阿夸曼布拉尼斯公司 Classification distance part for takeup type filter element
JP2020516444A (en) * 2017-04-12 2020-06-11 アクア メンブレインズ,インコーポレイテッド Stepped spacers for filter wound elements
EP3609607A4 (en) * 2017-04-12 2021-01-27 Aqua Membranes, Inc. Graded spacers for filtration wound elements
CN110461445B (en) * 2017-04-12 2022-10-21 阿夸曼布拉尼斯公司 Stepped spacer for coiled filter elements
US11612862B2 (en) 2017-04-12 2023-03-28 Aqua Membranes Inc. Graded spacers in spiral wound elements
US11896933B2 (en) 2017-04-20 2024-02-13 Aqua Membranes Inc. Non-nesting, non-deforming patterns for spiral-wound elements
US11633700B2 (en) 2020-04-07 2023-04-25 Aqua Membranes Inc. Independent spacers and methods
WO2024038722A1 (en) * 2022-08-18 2024-02-22 日東電工株式会社 Spiral membrane element and membrane separation method

Similar Documents

Publication Publication Date Title
JP5501897B2 (en) Oxygen-enriched air separation and recovery device
US4789480A (en) Membrane module and the use thereof for the separation of liquids according to the pervaporation process
EP0796647A1 (en) Hydrogen separation member
GB1571427A (en) Device for osmotic interchange
JPH06500498A (en) membrane module
JPH06262026A (en) Air separation membrane module
JP2005262211A (en) Method for separating/collecting oxygen-rich air from air and gas separation membrane module
JPH06246125A (en) Gas separation membrane module
JPH08332306A (en) Degassing membrane and module
JPH02135117A (en) Gas separation module and multistage gas separator
EP0108426B1 (en) Module for concentrating a specified gas in a gaseous mixture
JPH0699016A (en) Gas separation membrane module
JP2573670B2 (en) Spiral type membrane separation device
JPH06227803A (en) Nitrogen generator
JP2003275544A (en) Spiral type membrane element and manufacturing method therefor
JPS6242737Y2 (en)
JPS62102814A (en) Gas permeable membrane cell
JPS61216713A (en) Gas permeable membrane module
JPH0328104A (en) Inline oxygen enriching film device
JPH0924255A (en) Spiral membrane module
JPS6354914A (en) Gas separation device
JPH02131112A (en) Gas concentration apparatus
JPH06246124A (en) Gas separation membrane module
JPH11169685A (en) Spiral membrane module
JP2606558Y2 (en) Wound membrane module