JPS62102814A - Gas permeable membrane cell - Google Patents

Gas permeable membrane cell

Info

Publication number
JPS62102814A
JPS62102814A JP24323585A JP24323585A JPS62102814A JP S62102814 A JPS62102814 A JP S62102814A JP 24323585 A JP24323585 A JP 24323585A JP 24323585 A JP24323585 A JP 24323585A JP S62102814 A JPS62102814 A JP S62102814A
Authority
JP
Japan
Prior art keywords
cell
gas
permeable membrane
membrane
supporting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24323585A
Other languages
Japanese (ja)
Inventor
Takaki Kobayashi
貴樹 小林
Takanori Sugimoto
高則 杉本
Shigeki Hatanaka
茂樹 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24323585A priority Critical patent/JPS62102814A/en
Publication of JPS62102814A publication Critical patent/JPS62102814A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a gas-permeable membrane cell less in pressure drop and excellent in separation efficiency wherein a flow path of a separated gas is formed on a rugged face by making the surface of a membrane face side of supporting material for a permselective membrane a smooth face and making the other surface the rugged face having plural projected parts. CONSTITUTION:The inside of a gas-permeable membrane cell is decompressed through a takeout port 5 by using a decompression means such as a vacuum pump. Thereby pressure difference is caused in the inner and outer sides of the cell via a permeable membrane 1 and a separated gas is permeated in the inside of the cell. The separated gas is passed through a permeable sheet 2 and a supporting material 3 and passed through a flow path which is formed between a reinforcing plate 4 and the supporting material 3 by means of the projected parts of the supporting material 3 and taken out to the outside of the cell through a takeout port 5. An obstacle present in the flow path of the separated gas is only the projected parts 3b provided on the supporting material and when using a material having sufficient strength in the projected parts 3b, the supporting material can be made small in such degree that the efficiency of the cell is not marred and the gas permeable membrane cell having more excellent efficiency is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、透過膜により混合気体中より特定の気体を分
1a、濃縮する気体透過膜セルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas permeable membrane cell for concentrating a specific gas in a mixed gas by a portion 1a using a permeable membrane.

従来の技術 近年、高分子の膜を利用し、酸素富化気体、窒素富化気
体、あるいは水素その池の気体を混合気体中から分離、
濃縮する方法が、種々試みられている。特に酸素富化気
体は、燃焼用の省エネルギ一手段として、また医療用に
、呼吸気疾患の治療用として利用されている。
Conventional technology In recent years, polymer membranes have been used to separate oxygen-enriched gas, nitrogen-enriched gas, or hydrogen gas from mixed gases.
Various methods of concentration have been attempted. In particular, oxygen-enriched gases are used as a means of energy saving for combustion, and for medical purposes, for the treatment of respiratory diseases.

従来、気体透過膜セルを用いて、混合気体中より特定の
気体を分離する方法がいくつか試みられている。例えば
、米国特許第3332216号明細書に記載されたもの
がある。以下図面を8照しながら上述の従来の気体透過
膜セルについて説明する。第5図は従来の気体透過膜セ
ルの断面図である。第6図1はその気体透過膜セルを部
分的に破断した斜視図である。第6図において1は混合
気体を選択的に分離する気体透過膜、2は前記膜1を保
護し、分店気体を通過させる通気性シート、5は分店気
体をセル中より取り出す取り出し口、6は前記透過膜1
を支持し、分離気体を通過させる金網である。以上のよ
うな栴成要素からなる気体透過膜セルについて、以下そ
の動作を説明する。
Conventionally, several methods have been attempted to separate a specific gas from a mixed gas using a gas permeable membrane cell. For example, there is one described in US Pat. No. 3,332,216. The above-mentioned conventional gas permeable membrane cell will be explained below with reference to the drawings. FIG. 5 is a sectional view of a conventional gas permeable membrane cell. FIG. 6 1 is a partially cutaway perspective view of the gas permeable membrane cell. In FIG. 6, 1 is a gas permeable membrane that selectively separates the mixed gas, 2 is a breathable sheet that protects the membrane 1 and allows the branch gas to pass through, 5 is an outlet for taking out the branch gas from the cell, and 6 is a gas permeable membrane that selectively separates the mixed gas. The permeable membrane 1
This is a wire mesh that supports the gas and allows the separated gas to pass through. The operation of the gas permeable membrane cell composed of the above-mentioned formation elements will be explained below.

まず収り出し口5より真空ポンプ等の減圧手段を用いて
、前記セル内部を減圧するかまたはセル全体を圧力容器
内に納め、加圧する。これにより透過膜1を介してセル
内外に圧力差が生じ、セル内に分離気体が得られ、この
分離気体は取り出し口5よりセル外にとシ出される。
First, the inside of the cell is depressurized from the inlet/outlet 5 using a depressurizing means such as a vacuum pump, or the entire cell is placed in a pressure vessel and pressurized. As a result, a pressure difference is created between the inside and outside of the cell through the permeable membrane 1, and a separated gas is obtained within the cell, and this separated gas is discharged from the outlet 5 to the outside of the cell.

発明が解決しようとする問題慨 しかしながら、上記のような構成では透過膜の透過係数
が大きく、または、1つのセルの膜面積が大きく、分離
気体の流量が大きい場合には、金網6が透過膜1を支持
し形成するセル内の空間を分離気体が通過する際に、前
記金網が抵抗となって大きな圧力損失を生じ、セルの効
率を著しく損なうという問題点を有していた。
Problems to be Solved by the Invention However, in the configuration as described above, if the permeation coefficient of the permeation membrane is large, or the membrane area of one cell is large, and the flow rate of separated gas is large, the wire mesh 6 cannot be used as the permeation membrane. When the separated gas passes through the space within the cell that supports and forms the cell, the wire mesh acts as a resistance, causing a large pressure loss, which significantly impairs the efficiency of the cell.

本発明は上記問題点に鑑み、透過量の多い膜に使用して
も分離効率が高い気体透過膜セルを提供するものである
In view of the above-mentioned problems, the present invention provides a gas permeable membrane cell that has high separation efficiency even when used as a membrane with a large amount of permeation.

問題へを解決するだめの手段 この目的を達成するため、本発明の気体透過膜セルは混
合気体を選択的に分離する透過膜と、この膜を支持する
多孔性の支持材と、前記透過膜によって分離された気体
を取り出す取り出し口とを備え、前記支持材の透過膜側
の面を平滑な面とするとともに、反対側の面を複数の突
部を有する凹凸面としたものである。
Means for Solving the Problem In order to achieve this object, the gas permeable membrane cell of the present invention comprises a permeable membrane for selectively separating a mixed gas, a porous support material for supporting this membrane, and a permeable membrane for selectively separating a mixed gas. The supporting material has a smooth surface on the permeable membrane side and an uneven surface having a plurality of protrusions on the opposite surface.

1乍用 上記のような構成によって前記支持材の凹凸面の突部が
相対する支持材または補強板との間に分4気体の流路を
形成するため、分層気体の流量が大きな場合にも圧力損
失が少なく分離効率のよい気体透過膜セルが得られる。
1. Due to the above-described configuration, a flow path for the divided gas is formed between the protrusions on the uneven surface of the supporting material and the opposing supporting material or reinforcing plate, so when the flow rate of the separated gas is large, Also, a gas permeable membrane cell with low pressure loss and high separation efficiency can be obtained.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。第1図は本発明の一実施例における気体透過膜セ
ルの断面図である。第2図は本実施例の気体透過膜セル
を部分的に破断した斜視図であり、第6図、第6図と同
一部分については同一番号を付している。第3図、第4
図は本実施例の支持材3の形状例を示す斜視図である。
EXAMPLE An example of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a gas permeable membrane cell in one embodiment of the present invention. FIG. 2 is a partially cutaway perspective view of the gas permeable membrane cell of this embodiment, and the same parts as in FIGS. 6 and 6 are given the same numbers. Figures 3 and 4
The figure is a perspective view showing an example of the shape of the support member 3 of this embodiment.

図において、1は混合気体を選択的に分層する気体透過
膜、2は前記模を保護し、分層気体を通過させる通気性
シート、3は膜を支持し、分離気体の流路を形成する支
持材で、透過膜側の面は平滑面、他面は等間隔に設けら
れた複数個の突部3bを有しており、平滑面側は膜を支
持し、他面の突部3bはその頂侭て補強板4に接してお
り、支持材3と補強板4との間に分離気体の流路を形成
している。
In the figure, 1 is a gas permeable membrane that selectively separates the mixed gas into layers, 2 is a breathable sheet that protects the pattern and allows the separated gas to pass through, and 3 supports the membrane and forms a flow path for the separated gas. The supporting material has a smooth surface on the permeable membrane side and a plurality of protrusions 3b provided at equal intervals on the other side. is in contact with the reinforcing plate 4 at its top, and forms a flow path for separated gas between the supporting member 3 and the reinforcing plate 4.

また、この支持材3には複数の通気孔32Lが設けられ
ている。本実施例では、第3図に示すような形状を有し
、突部を含めて厚さ1.27ri!、1Qメツシユのポ
リエチレン成形ネットを用いたが、セラミック、焼結金
属、樹脂発泡体等、圧力に耐えうる材料であれは、材質
に何ら制限はない。また突部の高さは分店気体の流量に
応じて損失の少ない最適な寸法を任意に決定することが
可能である。
Further, this support member 3 is provided with a plurality of ventilation holes 32L. This example has a shape as shown in FIG. 3, and has a thickness of 1.27ri including the protrusion! , 1Q mesh polyethylene molded net was used, but there are no restrictions on the material as long as it can withstand pressure, such as ceramic, sintered metal, resin foam, etc. Further, the height of the protrusion can be arbitrarily determined to be an optimal dimension with little loss depending on the flow rate of the branch gas.

4はセルの変形を防ぐ補強板、6は分離気体をセル外に
取り出す取り出し口である。
4 is a reinforcing plate for preventing deformation of the cell, and 6 is an outlet for taking the separated gas out of the cell.

以上のように構成された気体透過膜セルについてその動
子を説明する。まず、取り出し口5より真空ポンプ等の
減圧手段を用いて気体透過膜セル内部を減圧する。これ
により透過膜1を介してセル内外に圧力差が生じ、セル
内に分離気体が透過する。この分離気体は、通気性シー
ト2及び支持材3を通過し、支持材3の突部によって補
強板4と支持材3との間に形成される流路を通って取り
出し口5よりセル外に取り出される。本実施例が従来の
気体透過膜セルに比べ、効率よく、かつ透過膜1を傷め
ることなく混合気体を分暑しうろことについてさらに詳
しく説明する。第1図で透過膜1により分離された分離
気体:は通気性シート2を通ったのち支持材3に設けら
れた通気孔3aを通り、突部3bによって補強板4と膜
支持部3cの間に形成される流路3dを通って取り出し
口6よりセル外にとり出される。従来の気体透過膜セル
では、第5図に示すように流路中には金網が厚さ方向全
域にわたって存在するため、分離気体が通過する際に抵
抗が大きく、セルの効率を著しく損うことになる。
The operation of the gas permeable membrane cell configured as described above will be explained. First, the pressure inside the gas permeable membrane cell is reduced from the outlet 5 using a pressure reducing means such as a vacuum pump. This creates a pressure difference between the inside and outside of the cell via the permeable membrane 1, and the separated gas permeates into the cell. This separated gas passes through the breathable sheet 2 and the support material 3, passes through the flow path formed between the reinforcing plate 4 and the support material 3 by the protrusion of the support material 3, and exits the cell from the outlet 5. taken out. It will be explained in more detail how the present embodiment heats the mixed gas more efficiently and without damaging the permeable membrane 1 compared to the conventional gas permeable membrane cell. In FIG. 1, the separated gas separated by the permeable membrane 1 passes through the air-permeable sheet 2, then through the ventilation hole 3a provided in the support member 3, and then passes between the reinforcing plate 4 and the membrane support part 3c by the protrusion 3b. The liquid is taken out of the cell from the outlet 6 through a flow path 3d formed in the . In conventional gas permeable membrane cells, as shown in Figure 5, a wire mesh is present throughout the entire thickness of the flow path, creating a large resistance when the separated gas passes through, significantly reducing the efficiency of the cell. become.

ところが、本実施例によれば流路中の障害物は支持材に
設けられた突部3bのみとなる。この突部3bは充分な
強度をもつ材質を用いれば、セルの効率を損なわない程
度に細くすることが可能であり、より効率のより気体透
過膜セルが得られる。
However, according to this embodiment, the only obstacle in the flow path is the protrusion 3b provided on the support member. If this protrusion 3b is made of a material with sufficient strength, it can be made thin enough to not impair the efficiency of the cell, and a more efficient gas permeable membrane cell can be obtained.

また透過膜1の透過流量が多い、あるいは膜面積が大き
いなどの理由で分離気体の流量が大きい場合、従来の気
体透過膜セルでは流路を大きくとるために金網の線径を
太くする。あるいは金網を2重、3重に重ねるなどの方
法により流路の断面端を大きくする方法がとられていた
が、この方法では流路内は厚さ方向全域に金網が存在す
るため、分離気体が通過する際に抵抗が大きく、セルの
効率を損なっていた。ところが、本実施例によれば支持
材3の突部3bの高さを高くすることで容易にセルの効
率を損なうことなく流路を大きくすることが可能である
。また従来の気体透過膜セルでは、透過膜1は金網の@
くのみで支持されるため、セル内外の圧力差により前記
膜が金網の形状に沿って大きく変形し、損傷する可能性
が大きかった。
Further, when the flow rate of the separated gas is large due to the large permeation flow rate of the permeable membrane 1 or the large membrane area, in the conventional gas permeable membrane cell, the wire diameter of the wire gauze is increased in order to make the flow path larger. Alternatively, a method was used to enlarge the cross-sectional end of the flow channel by layering wire mesh in two or three layers, but with this method, the wire mesh is present throughout the entire thickness of the flow channel, so the separated gas There was a large resistance when the cell passed through the cell, impairing the efficiency of the cell. However, according to this embodiment, by increasing the height of the protrusion 3b of the support member 3, it is possible to easily enlarge the flow path without impairing the efficiency of the cell. In addition, in the conventional gas permeable membrane cell, the permeable membrane 1 is made of wire mesh @
Since the membrane is supported by a wire mesh, the pressure difference between the inside and outside of the cell causes the membrane to be greatly deformed along the shape of the wire mesh, and there is a high possibility that it will be damaged.

ところが、本実施例では膜支持部3Cば、透過膜1を平
面で支持するため、模の損傷はなりclまたさらに損傷
し易い薄膜の場合には、通気孔3aの径を小さくする、
あるいは通気孔を無くし、膜支持部3Cに通気性をもち
、かつ充分な強度をもつ連続気泡の樹脂発泡体等の通気
性材料を用いることで、膜の変形をなくし、その損傷を
防ぐことが可能である。なお、本実施例では支持材3に
ポリエチレン成形ネットを使用したため補強板4を必要
としたが、支持材3が充分な強度を持ち、セルが変形し
ない場合には補強板4を必要とせず、相対する支持材3
の突部の@代を合わせるような形状をとることにより、
流路が形成され、本発明の目的を充分に達成しうるもの
である。
However, in this embodiment, since the membrane support part 3C supports the permeable membrane 1 on a flat surface, no damage to the pattern occurs.In addition, in the case of a thin film that is more easily damaged, the diameter of the vent hole 3a is made smaller.
Alternatively, it is possible to eliminate the deformation of the membrane and prevent its damage by eliminating the ventilation holes and using a breathable material such as open-cell resin foam that is breathable and has sufficient strength for the membrane support part 3C. It is possible. In this example, a polyethylene molded net was used as the support material 3, so the reinforcing plate 4 was required, but if the support material 3 has sufficient strength and the cells do not deform, the reinforcing plate 4 is not required. Opposing support material 3
By taking a shape that matches the @ margin of the protrusion,
A flow path is formed, and the object of the present invention can be fully achieved.

以上のように本実施例によれば、気体透過膜を支持する
支持材3の片面を平滑面とし、他面を突部によって凹凸
面とすることにより、分離気体の流量に応じて損失の少
ない流路を確保することが可能になり、平滑面側で膜を
支持するため、膜の損傷をより小さくすることが可能と
なる。なお突部3bの形状は本実施例に用いた第3図の
様なものの他、第4図に示したもの等、種々の形状が考
えられる。また本実施例では、減圧により分離する方法
について説明したが、本セル全体を圧力容器内に入れ、
加圧により分離する方法にも使用できることはいうまで
もない。
As described above, according to this embodiment, one side of the support material 3 that supports the gas permeable membrane is made smooth and the other side is made uneven with protrusions, thereby reducing loss according to the flow rate of separated gas. It becomes possible to secure a flow path, and since the membrane is supported on the smooth surface side, it becomes possible to further reduce damage to the membrane. In addition to the shape of the protrusion 3b shown in FIG. 3 used in this embodiment, various shapes such as the shape shown in FIG. 4 can be considered. In addition, in this example, a method of separation using reduced pressure was explained, but the entire cell was placed in a pressure vessel,
Needless to say, it can also be used in a method of separating by pressurization.

発明の効果 以Eのように、本発明は混合気体を選択的に分4する透
過1摸と、この膜を支持する支持材と、前記透過膜によ
り分離された気本を取り出す取り出し口を備え、前記支
持材の透A模側の面を平滑な面とすると共に、反対側の
面を護数の突部を有する凹凸面とすることで、分、1気
体の流量が大きな場合にも、S員失が少ない気・、:を
透過、摸セルを提供するものであり、その実用的効果は
大なるものがある。
Effects of the Invention As described in E, the present invention includes a permeation device for selectively dividing a mixed gas, a supporting material for supporting this membrane, and an outlet for taking out the gas separated by the permeation membrane. By making the surface of the support material on the transparent A pattern side a smooth surface, and making the opposite surface an uneven surface with protrusions of a diagonal, even when the flow rate of gas is large, It provides a transparent model cell with less loss of personnel, and its practical effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1は本発明の一実施例における気体透過膜セルの
g面図、第2図は本実施例の前記セルを部分的に破断し
た斜視図、第3図、第4図は本実施例の支持材の形状例
を示す斜視図、第5図は従来の気体透過膜セルの断面図
、第6図は本従来例の前記セルを部分的に破断した斜視
図である。 1・・・・気体透過膜、2 ・・通気性シ・−ト、3・
・・・支持材、3& ・・通気孔、3b・・・・突部、
3C・ 、膜支持部、3d・・・流路、6 ・・取り出
し口。 l〜〜−1ラ−イ4@積 第3図 箒4図 第5図 第 6 図
1 is a g-plane view of a gas permeable membrane cell according to an embodiment of the present invention, FIG. 2 is a partially cutaway perspective view of the cell of this embodiment, and FIGS. FIG. 5 is a sectional view of a conventional gas permeable membrane cell, and FIG. 6 is a partially cutaway perspective view of the cell of this conventional example. 1... Gas permeable membrane, 2... Breathable sheet, 3...
...Supporting material, 3&...Vent hole, 3b...Protrusion,
3C・, membrane support part, 3d... channel, 6... outlet. l~~-1 Lai 4 @ Product Figure 3 Broom 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 混合気体を選択的に分離する透過膜と、この膜を支持す
る多孔性の支持材と、前記透過膜により分離された気体
を取り出す取り出し口とを備え、前記支持材の透過膜側
の面を平滑な面とすると共に、反対側の面を複数の突部
を有する凹凸面としたことを特徴とする気体透過膜セル
A permeable membrane that selectively separates a mixed gas, a porous support material that supports this membrane, and an outlet that takes out the gas separated by the permeable membrane, the surface of the support material facing the permeable membrane being A gas permeable membrane cell characterized by having a smooth surface and an uneven surface having a plurality of protrusions on the opposite side.
JP24323585A 1985-10-30 1985-10-30 Gas permeable membrane cell Pending JPS62102814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24323585A JPS62102814A (en) 1985-10-30 1985-10-30 Gas permeable membrane cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24323585A JPS62102814A (en) 1985-10-30 1985-10-30 Gas permeable membrane cell

Publications (1)

Publication Number Publication Date
JPS62102814A true JPS62102814A (en) 1987-05-13

Family

ID=17100845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24323585A Pending JPS62102814A (en) 1985-10-30 1985-10-30 Gas permeable membrane cell

Country Status (1)

Country Link
JP (1) JPS62102814A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148325A (en) * 1987-12-01 1989-06-09 Sanyo Chem Ind Ltd Gas separating membrane cell
US6183542B1 (en) * 1998-11-09 2001-02-06 Peter R. Bossard Method and apparatus for purifying hydrogen
EP1167284A2 (en) * 2000-06-27 2002-01-02 Nisshin Steel Co., Ltd. Device for recovery of hydrogen
JP2010519016A (en) * 2007-02-16 2010-06-03 インテグリス・インコーポレーテッド Fluid filter having polymerized membrane and metal support
JP2013136009A (en) * 2011-12-28 2013-07-11 Hitachi Ltd Filter and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148325A (en) * 1987-12-01 1989-06-09 Sanyo Chem Ind Ltd Gas separating membrane cell
US6183542B1 (en) * 1998-11-09 2001-02-06 Peter R. Bossard Method and apparatus for purifying hydrogen
EP1167284A2 (en) * 2000-06-27 2002-01-02 Nisshin Steel Co., Ltd. Device for recovery of hydrogen
US6527832B2 (en) * 2000-06-27 2003-03-04 Nisshin Steel Co., Ltd. Device for recovery of hydrogen
EP1167284A3 (en) * 2000-06-27 2004-06-16 Nisshin Steel Co., Ltd. Device for recovery of hydrogen
JP2010519016A (en) * 2007-02-16 2010-06-03 インテグリス・インコーポレーテッド Fluid filter having polymerized membrane and metal support
JP2012210631A (en) * 2007-02-16 2012-11-01 Entegris Inc Fluid filter with polymeric membrane and metal support
JP2013136009A (en) * 2011-12-28 2013-07-11 Hitachi Ltd Filter and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US3839204A (en) Integral blood heat and component exchange device and two flow path membrane blood gas exchanger
US3684097A (en) Blood component exchange device
EP0003495B1 (en) A device for the diffusion of substances between two fluids separated by a semipermeable membrane
US5486475A (en) Membrane module to remove gaseous substances from a gas stream
KR100775798B1 (en) Method for separating/collecting oxygen-rich air from air, its apparatus and gas separating membrane module
JPH09255306A (en) Hydrogen separating membrane
JPS6244961B2 (en)
KR860001798B1 (en) Device for membrane oxygenator
JP3951245B2 (en) Membrane module for separating hydrogen and method for producing the same
JPH07194933A (en) Device and method for removing gaseous substance from gas or liquid stream
JPS62102814A (en) Gas permeable membrane cell
JPH0683778B2 (en) Fluid component diffusion controller
KR101517268B1 (en) Membrane element, gas separation device and internal combustion engine
JPH01176421A (en) Gas separation membrane module
JPS63258619A (en) Gas permselective membrane module
JPH06262026A (en) Air separation membrane module
JPS61216713A (en) Gas permeable membrane module
JPS6242737Y2 (en)
JPS63240916A (en) Gas separating membrane module of hollow yarn
JPS61278328A (en) Gas permeable membrane module
JPS62282617A (en) Membrane module for separation gas
JPS6142305A (en) Support for separation membrane
SE461632B (en) MEMBRANE TYPE BLOOD OXYGENATOR
JPH0124510B2 (en)
JPH0133143Y2 (en)