JPH06227803A - Nitrogen generator - Google Patents

Nitrogen generator

Info

Publication number
JPH06227803A
JPH06227803A JP1838793A JP1838793A JPH06227803A JP H06227803 A JPH06227803 A JP H06227803A JP 1838793 A JP1838793 A JP 1838793A JP 1838793 A JP1838793 A JP 1838793A JP H06227803 A JPH06227803 A JP H06227803A
Authority
JP
Japan
Prior art keywords
gas separation
gas
raw material
separation membrane
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1838793A
Other languages
Japanese (ja)
Inventor
Shigeki Hatanaka
茂樹 畠中
Tasuke Sawada
太助 沢田
Takaki Kobayashi
貴樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1838793A priority Critical patent/JPH06227803A/en
Publication of JPH06227803A publication Critical patent/JPH06227803A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen

Abstract

PURPOSE:To provide a nitrogen generator having high reliability by slowly increasing the pressure on the feed side of raw material compressed air so as not to peel sealing media and a partition material for each gas separation membrane module in relation to the nitrogen generator using the spiral gas separation membrane module utilizing a flat gas separation membrane. CONSTITUTION:The opening and closing degree of an actuator valve 32 or an electrically-operated valve (32a) is controlled so as not to peel sealing media 8 and a partition material 4 of each gas separation membrane module 35. Thereby, raw material compressed air fed to the gas separation membrane module 35 is made to require >=1min time for its pressure to attain 5kgf/cm<2>G.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平膜の気体分離複合膜を
巻回してなるスパイラル状気体分離膜モジュールの使用
した窒素発生機の原料空気供給方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying raw material air to a nitrogen generator using a spiral gas separation membrane module formed by winding a flat membrane gas separation composite membrane.

【0002】[0002]

【従来の技術】一般に平膜を巻回してなるスパイラル状
の分離膜モジュールは透過流体流路を形成する透過流体
流路材を平膜分離膜で挟んで、穴を有する中空管の穴に
透過流体流路が連通するように中空管に平膜分離膜を接
着し、原料流体流路を形成する原料流体流路材と共に中
空管の周りに巻回して構成される。また中空管に接着し
た平膜分離膜の辺に対して垂直方向の平膜分離膜(透過
流体流路材を挟んだ)の二辺の端面は封止してあり、原
料流体流路は解放されている。
2. Description of the Related Art Generally, a spiral separation membrane module formed by winding a flat membrane has a permeation fluid flow path material forming a permeation fluid flow path sandwiched between flat membrane separation membranes to form a hole in a hollow tube. A flat membrane separation membrane is adhered to the hollow tube so that the permeate fluid channels communicate with each other, and the flat tube separation membrane is wound around the hollow tube together with the raw material fluid channel material forming the raw material fluid channel. In addition, the end faces of the two sides of the flat membrane separation membrane (which sandwiches the permeating fluid flow channel material) perpendicular to the side of the flat membrane separation membrane bonded to the hollow tube are sealed, and the raw material fluid flow channel is Has been released.

【0003】従来例の分離膜モジュールの流体の分離、
濃縮について原料流体を空気とし窒素を分離、濃縮する
場合について以下に説明する。
Separation of fluid in a conventional separation membrane module,
Concentration A case where the raw material fluid is air and nitrogen is separated and concentrated will be described below.

【0004】図5は従来のスパイラル状気体分離膜モジ
ュールの例である。原料気体供給流路材22で構成され
た原料気体供給流路に原料空気を矢印(実線)の方向に
供給すると、原料空気は酸素を優先的に透過する気体分
離複合膜21の表面上を反対側の方向に流れていく。そ
の時酸素は優先的に気体分離複合膜21を透過し、透過
気体流路材23で構成された透過気体流路を中空管24
の方向(矢印:破線)に流れていく。そのため原料空気
を供給した側の反対側から出てきた空気は窒素が濃縮さ
れることとなる。
FIG. 5 shows an example of a conventional spiral gas separation membrane module. When the raw material air is supplied in the direction of the arrow (solid line) to the raw material gas supply passage constituted by the raw material gas supply passage material 22, the raw material air opposes the surface of the gas separation composite membrane 21 that preferentially permeates oxygen. It flows in the direction of the side. At that time, oxygen preferentially permeates the gas separation composite membrane 21, and the permeable gas flow path constituted by the permeable gas flow path member 23 is passed through the hollow tube 24.
It flows in the direction of (arrow: broken line). Therefore, nitrogen is concentrated in the air coming out from the side opposite to the side where the raw material air is supplied.

【0005】気体分離膜による気体の分離、濃縮は、原
料気体が気体分離複合膜表面に接しながら流れていく過
程で、気体分離複合膜を透過し易い気体が次々と透過し
て気体分離複合膜表面の気体が濃縮されることとなり、
気体分離複合膜が長くなれば長くなるほど気体分離膜表
面の気体は濃縮される。
Gas separation and concentration by a gas separation membrane is a process in which a raw material gas flows while being in contact with the surface of a gas separation composite membrane, and gases that easily permeate through the gas separation composite membrane successively pass through the gas separation composite membrane. The gas on the surface will be concentrated,
The longer the gas separation composite membrane, the more concentrated the gas on the surface of the gas separation membrane.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、原料空気が気体分離複合膜の表面を流れ
る距離が短いため、窒素濃度の高い空気を得ることが出
来ないという問題点を有していた。
However, the above-mentioned conventional structure has a problem that air having a high nitrogen concentration cannot be obtained because the raw material air flows over the surface of the gas separation composite membrane for a short distance. Was there.

【0007】本発明は上記問題点を解決するもので、窒
素濃度の高い空気が得られる信頼性の高い窒素発生機を
提供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a highly reliable nitrogen generator capable of obtaining air having a high nitrogen concentration.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の窒素発生機の気体分離膜モジュールは、原料
気体流路材と、平膜状の気体分離複合膜と、透過気体流
路材と、原料気体流路と透過気体流路を隔てる仕切材と
を、上記の順に重ねて一単位とし、原料空気を供給する
供給管と透過気体を排気する排気管とが一体となった給
排気管の回りにスパイラル状に巻回した気体分離膜モジ
ュールで、巻始めの一辺は原料気体流路と給排気管の供
給管が連通し、かつ、透過気体流路と給排気管の排気管
が連通するように給排気管に気体分離複合膜及び仕切材
を接着し、巻終わりの一辺は気体透過流路を閉じるよう
に気体分離複合膜と仕切材とを接着し、他の二辺は原料
気体流路と透過気体流路を気密に隔てるように封止した
構造をしている。
In order to achieve this object, a gas separation membrane module of a nitrogen generator according to the present invention comprises a raw material gas passage material, a flat membrane-like gas separation composite membrane, and a permeation gas passage. The material and the partitioning material that separates the raw material gas passage and the permeated gas passage are stacked in the above order to form one unit, and the supply pipe that supplies the raw material air and the exhaust pipe that exhausts the permeated gas are integrated. A gas separation membrane module that is spirally wound around an exhaust pipe. The raw gas passage and the supply pipe of the supply / exhaust pipe communicate with one side of the winding start, and the permeate gas passage and the exhaust pipe of the supply / exhaust pipe are connected. The gas separation composite membrane and the partition material are bonded to the air supply / exhaust pipe so that they communicate with each other, the gas separation composite membrane and the partition material are bonded to one end of the winding so as to close the gas permeation flow path, and the other two sides are bonded. It has a structure in which the raw material gas passage and the permeation gas passage are hermetically sealed.

【0009】そして、気体分離膜モジュールの原料気体
流路に急激に圧力がかかり、封止材と気体分離膜および
封止剤と仕切材とが剥離しない様に、アクチェータバル
ブまたは、電動バルブを使用して、原料圧縮空気供給側
の圧力を徐々に上昇させる手段を設ける。
Then, an actuator valve or an electric valve is used so that the raw material gas flow path of the gas separation membrane module is not suddenly pressed and the sealing material and the gas separation membrane and the sealing material and the partition material are separated from each other. Then, means for gradually increasing the pressure on the raw material compressed air supply side is provided.

【0010】[0010]

【作用】この構成によって、供給管から供給された原料
気体は原料気体流路を巻回された方向に流れていくた
め、気体分離複合膜の長さを長くすることにより、原料
気体流路を長くすることが出来る。原料気体は気体分離
複合膜表面に接しながら流れていくため、気体分離複合
膜を透過し易い気体は次々と透過していくこととなり、
気体分離複合膜が長くなれば長くなるほど気体分離膜表
面の気体は濃縮されることとなる。
With this configuration, since the raw material gas supplied from the supply pipe flows in the direction in which the raw material gas flow path is wound, the length of the gas separation composite membrane is lengthened so that the raw material gas flow path is It can be lengthened. Since the raw material gas flows while being in contact with the surface of the gas separation composite membrane, the gas that easily permeates the gas separation composite membrane will pass one after another,
The longer the gas separation composite membrane, the more concentrated the gas on the surface of the gas separation membrane.

【0011】また、気体分離膜モジュールの原料空気供
給側の圧力は徐々に上昇するため、原料気体流路は急激
に圧力が上昇せず封止剤と気体分離膜および封止剤と仕
切材とが剥離せず信頼性が高くなる。
Further, since the pressure on the side of the raw material air supply of the gas separation membrane module gradually rises, the pressure in the raw material gas passage does not rise sharply, and the sealant, the gas separation membrane, the sealant, and the partitioning member are separated. Does not peel off, resulting in higher reliability.

【0012】[0012]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は第1の実施例の窒素発生機、図2は
第2の実施例の窒素発生機、図3は本実施例の気体分離
膜モジュールを展開したA−A’断面図、図4は本実施
例の気体分離膜モジュールの断面図である。
FIG. 1 is a nitrogen generator according to the first embodiment, FIG. 2 is a nitrogen generator according to the second embodiment, and FIG. 3 is a sectional view taken along the line AA 'of the gas separation membrane module according to the present embodiment. FIG. 4 is a sectional view of the gas separation membrane module of this embodiment.

【0014】(実施例1)図1は、図3及び図4の気体
分離膜モジュールを、3本収納した窒素発生機である。
図1において、31は第1圧縮空気供給配管、32はア
クチェータバルブ、33は圧力調整バルブ、34は第2
圧縮空気供給配管、35は気体分離膜モジュール、10
は流量調節弁、36は窒素濃縮空気供給配管、37は酸
素濃縮空気供給配管である。
(Embodiment 1) FIG. 1 shows a nitrogen generator containing three gas separation membrane modules shown in FIGS. 3 and 4.
In FIG. 1, 31 is a first compressed air supply pipe, 32 is an actuator valve, 33 is a pressure adjusting valve, and 34 is a second.
Compressed air supply pipe, 35 is a gas separation membrane module, 10
Is a flow rate control valve, 36 is a nitrogen enriched air supply pipe, and 37 is an oxygen enriched air supply pipe.

【0015】図3及び図4において、1は原料気体流路
材で、15メッシュのポリエチレン成形ネットである。
2は気体分離複合膜で、多孔質支持体上にポリ4メチル
ペンテン1の気体分離膜を積層し、更にその上にポリジ
メチルシロキサンを積層した非対称構造で、分離膜側が
原料気体流路材1と相対するように配されており、巻始
めの一辺は給排気管5に気密に接着されている。
In FIGS. 3 and 4, reference numeral 1 is a raw material gas flow path member, which is a 15-mesh polyethylene molding net.
Reference numeral 2 denotes a gas separation composite membrane, which has an asymmetric structure in which a gas separation membrane of poly (4-methylpentene 1) is laminated on a porous support, and polydimethylsiloxane is further laminated thereon, and the separation membrane side is the raw material gas flow path member 1 And the one side of the winding start is air-tightly bonded to the air supply / exhaust pipe 5.

【0016】3は透過気体流路材で、15メッシュのポ
リエチレン成形ネットである。4は仕切材で、厚さ10
0μmのポリエステルフィルムであり、巻始めの一辺は
給排気管5に気密に接着されている。5は給排気管で給
気管6と排気管7が、長さ方向に平行に配されている。
Reference numeral 3 denotes a permeating gas flow channel material, which is a 15-mesh polyethylene molding net. 4 is a partition material, thickness 10
It is a polyester film of 0 μm, and one side of the winding start is airtightly bonded to the air supply / exhaust pipe 5. Reference numeral 5 denotes an air supply / exhaust pipe in which an air supply pipe 6 and an exhaust pipe 7 are arranged in parallel in the length direction.

【0017】以上の1から4の材料を給排気管5の回り
にスパイラル状に巻回した後、巻終わりの一辺で気体分
離複合膜2と仕切材4を気密に接着し、他の二辺を図4
のように封止剤8によって原料気体流路と、透過気体流
路を気密に隔てるように接着封止する。
The above materials 1 to 4 are spirally wound around the air supply / exhaust pipe 5, and then the gas separation composite membrane 2 and the partition member 4 are airtightly adhered to each other on one side of the winding end and the other two sides. Figure 4
As described above, the raw material gas flow path and the permeation gas flow path are adhesively sealed by the sealant 8 so as to be airtightly separated from each other.

【0018】以上のように構成された気体分離膜モジュ
ールを圧力容器9内に収納し、給気管6から592Pa
(5kgf/cm2G)に加圧された空気4.2×10
-43/s(25l/min)を供給し、流量調節弁1
0から得られる窒素濃縮空気流量を8.3×10-53
/s(5l/min)に調節したところ窒素濃度は9
7.5%であった。
The gas separation membrane module configured as described above is housed in the pressure vessel 9, and the air supply pipe 6 is connected to 592 Pa.
Air pressurized to (5 kgf / cm 2 G) 4.2 × 10
-4 m 3 / s (25 l / min) is supplied, and the flow control valve 1
The flow rate of nitrogen-enriched air obtained from 0 is 8.3 × 10 −5 m 3
/ S (5 l / min) was adjusted to a nitrogen concentration of 9
It was 7.5%.

【0019】図1の窒素発生機は、上記の様にして出来
た気体分離膜モジュール35を、3本収納し、気体分離
膜モジュール35内の圧力が急激に上昇しないように、
圧力調整バルブ33を設定し、アクチェータバルブ32
で第2圧縮空気供給配管34に供給する原料圧縮空気の
圧力が5kgf/cm2Gに到達するまでの時間を1m
in以上かけることにより、気体分離膜モジュール35
の気体分離複合膜2と封止剤8と仕切材4が剥離しな
い。また気体分離膜モジュール35の給排気管5と圧力
容器9の接着部分も剥離しない。
The nitrogen generator shown in FIG. 1 accommodates three gas separation membrane modules 35 made as described above so that the pressure in the gas separation membrane module 35 does not rise sharply.
The pressure adjustment valve 33 is set, and the actuator valve 32 is set.
The time until the pressure of the raw material compressed air supplied to the second compressed air supply pipe 34 reaches 5 kgf / cm 2 G is 1 m.
By applying more than in, the gas separation membrane module 35
The gas separation composite membrane 2, the sealant 8 and the partition member 4 do not separate. Further, the adhesive portion between the air supply / exhaust pipe 5 of the gas separation membrane module 35 and the pressure vessel 9 is not peeled off.

【0020】以上の結果より、第2圧縮空気供給配管3
4に供給する原料圧縮空気の圧力が5kgf/cm2
に到達するのに1min以上かけ、592Pa(5kg
f/cm2G)に達した空気12.6×10-43/s
(75l/min)を気体分離膜モジュール35(3
本)に供給し、流量調節弁10から得られる窒素濃縮空
気流量を24.9×10-53/s(15l/min)
に調節したところ窒素濃度は97.5%の窒素富化空気
を得る事が出来た。
From the above results, the second compressed air supply pipe 3
The pressure of the raw material compressed air supplied to No. 4 is 5 kgf / cm 2 G
It takes more than 1 min to reach 592 Pa (5 kg
Air reaching f / cm 2 G) 12.6 × 10 −4 m 3 / s
(75 l / min) to the gas separation membrane module 35 (3
The flow rate of nitrogen-enriched air obtained from the flow control valve 10 is 24.9 × 10 −5 m 3 / s (15 l / min).
When adjusted to, it was possible to obtain nitrogen-enriched air with a nitrogen concentration of 97.5%.

【0021】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。図2は第2の実施
例を示すものである。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows a second embodiment.

【0022】図2において、31は第1圧縮空気供給配
管、32aはモータバルブ、33bはモータ、34は第
2圧縮空気供給配管、35は気体分離膜モジュール、1
0は流量調節弁、36は窒素濃縮空気供給配管、37は
酸素濃縮空気供給配管である。
In FIG. 2, 31 is a first compressed air supply pipe, 32a is a motor valve, 33b is a motor, 34 is a second compressed air supply pipe, 35 is a gas separation membrane module, 1
Reference numeral 0 is a flow rate control valve, 36 is a nitrogen enriched air supply pipe, and 37 is an oxygen enriched air supply pipe.

【0023】図2は、図1のアクチェータバルブ32を
モータバルブ32aに、圧力調整バブル33をモータ3
3bに変更した点が実施例1と異なり、以下は同じであ
る。アクチェータバルブ32は圧力調整バルブ33によ
り、アクチェータバルブ32の開閉度をコントロールす
るのに対して、モータバルブ32aは、モータ33bに
より開閉度をコントロールする点が異なっている。
In FIG. 2, the actuator valve 32 of FIG. 1 is used as a motor valve 32a, and the pressure adjustment bubble 33 is used as a motor 3.
3b is different from the first embodiment in that it is changed to 3b, and the following is the same. The actuator valve 32 is different in that the opening / closing degree of the actuator valve 32 is controlled by a pressure adjusting valve 33, whereas the motor valve 32a is controlled by a motor 33b.

【0024】モータ33bによりモータバルブ32a開
閉度をコントロールして第2圧縮空気供給配管34に供
給する原料圧縮空気の圧力が5kgf/cm2Gに到達
するのに1min以上かけ、592Pa(5kgf/c
2G)に達した空気12.6×10-43/s(75l
/min)を気体分離膜モジュール35(3本)に供給
し、流量調節弁10から得られる窒素濃縮空気流量を2
4.9×10-53/s(15l/min)に調節した
ところ、窒素濃度は97.5%の窒素富化空気を得る事
が出来た。
The motor 33b controls the opening / closing degree of the motor valve 32a, and it takes 1 min or more for the pressure of the raw material compressed air supplied to the second compressed air supply pipe 34 to reach 5 kgf / cm 2 G, and 592 Pa (5 kgf / c).
Air 12.6 × reaching m 2 G) 10 -4 m 3 / s (75l
/ Min) is supplied to the gas separation membrane module 35 (three), and the nitrogen-concentrated air flow rate obtained from the flow rate control valve 10 is set to 2
When adjusted to 4.9 × 10 −5 m 3 / s (15 l / min), nitrogen enriched air with a nitrogen concentration of 97.5% could be obtained.

【0025】[0025]

【発明の効果】以上のように本発明によれば、原料空気
流路材と、平膜状の気体分離複合膜と、透過気体流路材
と、原料気体流路と透過気体流路とを隔てる仕切材と
を、上記の順に重ねて一単位とし、原料空気を供給する
給気管と透過気体を排出する排気管とが一体となった給
排気管の回りにスパイラル状に巻回した気体分離膜モジ
ュールで、巻始めの一辺は原料気体流路と給排気管の給
気管が連通し、かつ、透過気体流路と給排気管の排気管
が連通するように給排気管に気体分離複合膜および仕切
材を接着し、巻終わりの一辺は透過気体流路を閉じるよ
うに気体分離複合膜と仕切材とを接着し、他の二辺は原
料気体流路と透過気体流路を気密に隔てるように封止す
る事により、濃縮効率の高い気体分離膜モジュールが得
られ、しかもアクチェータバルブ、またはモータバルブ
を使用して、原料圧縮空気供給側の圧力を徐々に上昇に
させる手段を設けて原料圧縮空気の圧力が5kgf/c
2Gに到達するのに1min以上となるように調節す
ることにより、気体分離膜モジュールの原料気体流路に
急激に圧力がかかることなく、封止剤と気体分離膜およ
び封止剤と仕切材とが剥離しないため、信頼性の高い窒
素発生機とすることができる。
As described above, according to the present invention, a raw material air flow path member, a flat membrane gas separation composite membrane, a permeable gas flow path member, a raw material gas flow path and a permeable gas flow path are provided. Separating partition material into one unit by stacking them in the above order, and a gas separation spirally wound around an air supply / exhaust pipe in which an air supply pipe for supplying raw material air and an exhaust pipe for discharging permeated gas are integrated. In the membrane module, the gas separation composite membrane is connected to the supply / exhaust pipe so that the raw material gas flow passage and the supply / exhaust pipe of the supply / exhaust pipe communicate with one side of the winding start and the permeate gas flow passage and the exhaust pipe of the supply / exhaust pipe communicate with each other. And a partition material are bonded, the gas separation composite membrane and the partition material are bonded so that one side of the winding end closes the permeated gas channel, and the other two sides air-tightly separate the raw material gas channel and the permeated gas channel. By sealing in this way, a gas separation membrane module with high concentration efficiency can be obtained and Tabarubu or use the motor valve, provided with means for the pressure of the feed compressed air supply side gradually increase pressure of the feed compressed air 5 kgf / c,
By adjusting so that it takes 1 min or more to reach m 2 G, the raw material gas flow path of the gas separation membrane module is not suddenly applied with pressure, and the sealant and the gas separation membrane and the sealant are separated from each other. Since it does not peel off from the material, it can be a highly reliable nitrogen generator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における窒素発生機の概
略構成図
FIG. 1 is a schematic configuration diagram of a nitrogen generator according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における窒素発生機の概
略構成図
FIG. 2 is a schematic configuration diagram of a nitrogen generator according to a second embodiment of the present invention.

【図3】本発明の実施例における窒素発生機の気体分離
膜モジュールの展開断面図
FIG. 3 is a developed sectional view of a gas separation membrane module of a nitrogen generator according to an embodiment of the present invention.

【図4】本発明の実施例における窒素発生機の気体分離
膜モジュールの概略説明図
FIG. 4 is a schematic explanatory diagram of a gas separation membrane module of a nitrogen generator according to an embodiment of the present invention.

【図5】従来のスパイラル状分離膜モジュールの説明図FIG. 5 is an explanatory diagram of a conventional spiral separation membrane module.

【符号の説明】[Explanation of symbols]

1 原料気体流路材 2 気体分離複合膜 3 透過気体流路材 4 仕切材 5 給排気管 6 給気管 7 排気管 8 封止剤 9 圧力容器 10 流量調節弁 31 第1圧縮空気供給配管 32 アクチェータバルブ 32a モータバルブ 33 圧力調整バルブ 33b モータ 34 第2圧縮空気供給配管 35 気体分離膜モジュール 36 窒素濃縮空気供給配管 37 酸素濃縮空気供給配管 1 Raw Material Gas Channel Material 2 Gas Separation Composite Membrane 3 Permeation Gas Channel Material 4 Partition Material 5 Air Supply / Exhaust Pipe 6 Air Supply Tube 7 Exhaust Pipe 8 Sealant 9 Pressure Vessel 10 Flow Control Valve 31 First Compressed Air Supply Pipe 32 Actuator Valve 32a Motor valve 33 Pressure adjustment valve 33b Motor 34 Second compressed air supply pipe 35 Gas separation membrane module 36 Nitrogen concentrated air supply pipe 37 Oxygen concentrated air supply pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料気体流路材と、平膜状の気体分離複
合膜と、透過気体流路材と、原料気体流路と透過気体流
路を隔てる仕切材とを、上記の順に重ねて一単位とし、
原料空気を供給する供給管と透過気体を排気する排気管
とが一体となった給排気管の回りにスパイラル状に巻回
した気体分離膜モジュールで、巻始めの一辺は原料気体
流路と給排気管の供給管が連通し、かつ、透過気体流路
と給排気管の排気管が連通するように給排気管に気体分
離複合膜および仕切材を接着し、巻終わりの一辺は透過
気体流路を閉じるように気体分離複合膜と仕切材とを接
着し、他の二辺は原料気体流路と透過気体流路とを気密
に隔てるように封止した気体分離膜モジュールと、気体
分離膜モジュールに供給する原料圧縮空気の圧力を徐々
に上昇にさせる手段とを有することを特徴とする窒素発
生機。
1. A raw material gas flow path member, a flat membrane-like gas separation composite membrane, a permeating gas flow path member, and a partitioning member for separating the raw material gas flow path and the permeating gas flow path are stacked in the above order. One unit,
A gas separation membrane module spirally wound around a supply / exhaust pipe in which a supply pipe for supplying raw material air and an exhaust pipe for exhausting permeated gas are integrated. Adhere the gas separation composite membrane and partition material to the supply / exhaust pipe so that the supply pipe of the exhaust pipe communicates with the exhaust gas pipe of the supply / exhaust pipe, and the permeate gas flow on one side of the winding end. A gas separation membrane module in which a gas separation composite membrane and a partitioning material are adhered so as to close a passage, and the other two sides are sealed so that a raw material gas passage and a permeation gas passage are airtightly separated, and a gas separation membrane. And a means for gradually increasing the pressure of the raw material compressed air supplied to the module.
【請求項2】 前記気体分離膜モジュールに供給する原
料圧縮空気の圧力を徐々に上昇にさせる手段は、気体分
離膜モジュールに供給する原料圧縮空気の圧力が5kg
f/cm2Gに到達するまでに要する時間が1min以
上であることを特徴とする請求項1記載の窒素発生機。
2. The means for gradually increasing the pressure of the raw material compressed air supplied to the gas separation membrane module is such that the pressure of the raw material compressed air supplied to the gas separation membrane module is 5 kg.
The nitrogen generator according to claim 1, wherein the time required to reach f / cm 2 G is 1 min or more.
【請求項3】 前記気体分離膜モジュールに供給する原
料圧縮空気の圧力を徐々に上昇にさせる手段がアクチェ
ータバルブまたは、電動バルブから成ることを特徴とす
る請求項1記載の窒素発生機。
3. The nitrogen generator according to claim 1, wherein the means for gradually increasing the pressure of the raw material compressed air supplied to the gas separation membrane module comprises an actuator valve or an electric valve.
JP1838793A 1993-02-05 1993-02-05 Nitrogen generator Pending JPH06227803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1838793A JPH06227803A (en) 1993-02-05 1993-02-05 Nitrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1838793A JPH06227803A (en) 1993-02-05 1993-02-05 Nitrogen generator

Publications (1)

Publication Number Publication Date
JPH06227803A true JPH06227803A (en) 1994-08-16

Family

ID=11970310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1838793A Pending JPH06227803A (en) 1993-02-05 1993-02-05 Nitrogen generator

Country Status (1)

Country Link
JP (1) JPH06227803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328787A (en) * 1994-06-07 1995-12-19 Amada Co Ltd Method and device for supplying assist gas for laser machine
US5709733A (en) * 1995-05-29 1998-01-20 Nitto Denko Corporation Gas separation method
JPH10263109A (en) * 1997-03-27 1998-10-06 Nohmi Bosai Ltd Fire extinguishing method and fire extinguishing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328787A (en) * 1994-06-07 1995-12-19 Amada Co Ltd Method and device for supplying assist gas for laser machine
US5709733A (en) * 1995-05-29 1998-01-20 Nitto Denko Corporation Gas separation method
JPH10263109A (en) * 1997-03-27 1998-10-06 Nohmi Bosai Ltd Fire extinguishing method and fire extinguishing device

Similar Documents

Publication Publication Date Title
US5104532A (en) Flat stack permeator
JP5501897B2 (en) Oxygen-enriched air separation and recovery device
RU2010592C1 (en) Integrated multimembrane permeable cell and method of manufacture, integrated multimembrane permeable module and method of recuperation of two different passing fluxes of initial multicomponent flux
US4789480A (en) Membrane module and the use thereof for the separation of liquids according to the pervaporation process
CA2171142A1 (en) Planar Solid-State Membrane Module
JPH01171618A (en) Air permeable device of module having no outer shell
KR950701544A (en) Cassette membrand system and method of use for low pressure separations
CA1320141C (en) Multi-leaf membrane module
JPH06227803A (en) Nitrogen generator
JPH06246125A (en) Gas separation membrane module
JP2005262211A (en) Method for separating/collecting oxygen-rich air from air and gas separation membrane module
JP3207635B2 (en) Hydrogen gas separation device
EP0630682A2 (en) Layered plasma polymer composite membranes
JPH06262026A (en) Air separation membrane module
JPH0699016A (en) Gas separation membrane module
JPH02135117A (en) Gas separation module and multistage gas separator
JP2573670B2 (en) Spiral type membrane separation device
JP2878297B2 (en) Method for producing nitrogen-enriched air
US3355861A (en) Mixture separation cell
JPH06246124A (en) Gas separation membrane module
FR2216000A1 (en) Compact gas permeation filter - with alternate porous layers faced with membranes on both sides giving high area to volume ratio
JPH0328104A (en) Inline oxygen enriching film device
JPS6354914A (en) Gas separation device
JPH01288303A (en) Fluid separation element
US11779880B2 (en) Gas separation system and gas separation method